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Assuming a general linear model with known covariance malrix, several linear
and nonlinear predictors are presented and their properties are discussed. In the
context of simultaneous multiple prediction, a total sum of squared errors is
suggested as a loss function for comparing predictors. Based on a fundamental
relationship between prediction and estimation, a very general class of predictors is
developed from which predictors with uniformly smaller risk than that of the
classical best linear unbiased (i.e., universal kriging) predictor can be constructed.
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1. INTRODUCTION

Over the past 20 years, a large amount of research has been carried out
in the area of shrinkage estimation. Since the introduction of the
James—Stein estimator in 1961 [15], many significant extensions of their
work have proven useful. Examples include extensions to linear models
with general covariance structures, the use of different types of loss
functions, and the application of shrinkage estimation to families of
distributions other than the Gaussian.

However, it has not been until recently, through the work of Copas [7]
and Copas and Jones [8], that shrinkage techniques have been extended
to the prediction of a random variable. In this paper, we carry their
development of shrinkage predictors one step further by developing a
broad class of predictors that is based on a general linear model with
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arbitrary covariance structure. From this class, the best linear unbiased
predictor, as well as the shrinkage predictors of Copas [7], may be
obtained.

Assume the following general linear model for Z, and unobservables Z,,:

Z=Xp+¢

(1.1)
Zo=XoB+x,

where

Z is the n-dimensional data vector;

Z, is a k-dimensional vector of unobserved values that will be
predicted from the data; write Zo=(Z, |, ..., Zy )"

X and X, are matrices of explanatory variables (rank(X)=p), the
rows of which can represent a trend surface;

B is a px 1 vector of unknown fixed parameters; and

£ and ¢ are random errors with zero mean and covariance matrix

ZZZ ZZO:I

=g2J, (1.2)
2oz Zno

var((g, &))) = 62 [

where X ,,, 2oy, and X are known positive definite matrices and ¢° is an
unknown constant.

Based on this model, the problem is to predict the k-dimensional vector
Z, using some optimal function of the data Z. Let the predictor be

P(Z)=(p\(Z), .., p«(Z))" (1.3)

Following the ideas of James and Stein [15], in the realm of multivariate
estimation, an appropriate measure (loss function) of overall prediction
performance is

k
Lp,Zo)=0"2 ) (pi(Z)—Z, ), (1.4)

i=1

which may be considered as an index of accuracy for either stochastic or
nonstochastic predictors. For stochastic predictors, expectations may be
taken, yielding the risk function

k
r(p, Zo; B, 02)=0*2E< )3 (pi(Z)_ZO‘iV)

i=1

=06 E((M(Z) —Z,) (MZ) — Z,)), (1.5)

which reflects the desire to predict well at all k points collectively.
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In the following sections, we present and compare several stochastic
predictors using the measure (1.5). Section2 gives a general class of
predictors based on a fundamental relationship between prediction and
estimation. Section 3 considers the risk function for these predictors, and in
Section 4, predictors with smaller risk than that of the best linear unbiased
predictor are constructed. Section 5 compares a few of these predictors
using an example based on a spatial data configuration.

2. A GENERAL CLASS OF PREDICTORS

Initially, to motivate the ideas behind linear prediction, we shall assume
that B in (1.1) is known. Consider the heterogeneous linear predictor

P(Z)=BZ+ec, (2.1)

where B is a k x n matrix and ¢ is a k x 1 vector. From (1.5), its risk is

o {(BX—X,)Pp+c) (BX—X,)p+c)}
+tr(BZ ,, B + Z oo — 2BZ 1). (2.2)

By differentiating (2.2) with respect to B and ¢, and equating to zero, the
optimal values for B and ¢ are

Bop=Z0z27;,  Cop=XoB—ZozZ,, XB; (23)

that these values minimize (2.2) is shown in Toutenburg [24, p. 140].
Hence, the best heterogeneous linear predictor is

Px(Z)=EozZ7;7{Z+(X0_202227{X)ﬂ- (24)

This predictor p,(Z) is well known in time series (see [25, p. 77 or [10,
p. 75], and in geostatistics it is called the simple kriging predictor.

The best heterogeneous linear predictor (2.4) is unbiased for Z,, and the
minimized risk is

r(p,,ZO;B,02)=(r(200—2(1222;22()). (2.5)

Now, consider the general class of predictors suggested by (2.4), namely,

PZ,B)=Z0,Z ;0 + Z(Xo— 20,2 1 X)B, (2.6)

where B is any estimator of B. If (Xo— 2022 ,,X) is of full column rank,
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then any predictor may be written in this form, for if p(Z) is any predictor,
take P to be

{(Xo=202272X) (Xo— 20227, X)} !
X (Xo_):oz):ztéx)l (p(Z)_EOZZEZ}Z)'

Moreover, p(Z, B) inherits its first-order and second-order moment proper-
ties from the estimator P; e.g., if P is unbiased for B, then p(Z, ﬁ) is unbiased
for Z,,.

The best linear unbiased predictor (BLUP) [12] is a member of this
class and is obtained by estimating B with the generalized least squares
estimator of B, namely

BoLs=(X'Z,2X) 'X'E,,Z. (2.7)
Then the corresponding predictor, ie., the BLUP is
PAZ)=P(Z Bors) = Loz Z 2 Z+ (Xo— L0z E 72 X)Bars,  (28)
with the risk given by
rp,, Zo; B, 0?)=tr{ (X' 2} X)"'Q},

where Q is given in Eq. (3.3) below.

There are other important members of the class (2.6). The preshrunk
predictors of Copas [7] can be obtained by taking 2,,=1, X,,=¢ (a
k x n matrix of zeros) and by taking § to be

- —2D(n-— 2 .
Boys= (1 - (P )(A',l P),S = >B()LS! (2.9)
(n—p+2)Bos X' XPors

where Bors=(X'X)"'X'Z and s’=(1/(n—p)NZ— XBors)' (Z — XBors)-
Upon substitution into (2.6), we obtain

pi(Z)=p(Z, ﬁOJS)=X0B0JS~ (2.10)

The predictors developed by Copas [7] were developed for the
prediction of a single random variable assuming that the X, at which future
predictions are required is also random and not a fixed quantity, as we
have assumed. To obtain a reduction in risk over the BLUP for a single
random variable, averaging over the explanatory variables is crucial. The
focus of this paper is not the prediction of a single random variable, but the
prediction of many random variables simultaneously. Although the
predictors of Copas [7] are embedded in (2.6) algebraically, his approach
to shrinkage prediction is different from that given here.
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In geostatistical applications where the covariance structure of model
(1.1) is a function of the distance between data locations, the predictors
given by (2.6) honor the data. In this case, Xo=X, 2, =2 ,,= 2, s0
that p(Z, B)=Z, and r(p, Z,; p. ¢°) =0. Also, when X, = ¢, p(Z. B) = X, B.
and the prediction problem reduces to one of estimation of .

For general X' ,, and X, the general James-Stein type estimator of B,

- a(n—p)é* ~
ﬁn:(l—A _ )B~. (2.11)
o PorsX'Z 2 XBars)

may be chosen to give

Po(Z)=P(Z, Biys) =207 Z L+ (Xo— 20,2 S X)Beys. (2.12)

In (2.11), a is a constant that is chosen so that the James-Stein estimator
has uniformly smaller mean-squared error than that of the generalized
least squares estimator, and 6= 1/(n—p}Z — XBg1s)' 2, N2 — XBous)-
Discussion of appropriate choices for a, as well as a resentation of James-
Stein estimators under the framework of minimax estimation, will be
presented in subsequent sections.

Clearly, many similar types of predictors may be obtained in the manner
illustrated above. Other choices of B that lead to predictors different from
the BLUP include ridge-regression esmtimators [14], minimax adaptive
generalized ridge estimators [23], and Bayes and empirical Bayes
estimators [9]). For a good general discussion on estimation in linear
models, see Rao [20].

The remainder of this article focuses on the construction of predictors
with uniformly smaller risk than that of the best linear unbiased (kriging)
predictor. In this context, minimax estimators will be considered.

3. DECOMPOSITION OF RISK

Harville [13] presents a general decomposition of prediction error that
can be specialized to our situation. We present here a direct proof of the
decomposition of risk since it illuminates our basic approach to improved
prediction.

LemMA 3.1. Assume the model (1.1). Ifﬁz BZ for some p x n matrix B,
and (pIZ,B), .., p(Z,B)) given by Eq.(26) is a predictor of
Zo=(Zy \,.sZy ), then

E(pAZ,B)— 2, ,)* = E(p.(Z, B)— Zo.,) + E(p(Z, B)— p.(Z, B))*,
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which upon expansion is equal to
‘72(200. ii_EOZJZZI;(ZOZvi)/)
+E{B—B) (Xo.i=Zoz. 2,2 X) (Xo. i~ Loz, 22 X)B-B)}

where Lo, ; is the (i, i)th element of Lo, and X, ; and X, ; are the ith rows
of X, and X, respectively.

Proof.

E(p(Z,B)—Z,,)=E(p,(Z,B)~p/Z,B))
+2E{(pAZ, B) = pi(Z, B))p.Z, B)— Z,. )}
+E(pAZ,B)— Z(),i)z'

If ﬁ:BZ, then cov(f}, PAZ,B)y—2Z,,)=0 and the cross-product term of
(3.1) is zero. Thus,

E(pAZ,B)—Z,.) = E(piZ,B) = pi(Z, B)) + E(pAZ, B)— Zo,)>.  (3.1)

Substituting  pAZ, B) = 2o, ZLZ + (Xo, — Zos. 2 0X)p, and
PAZ,B)— 20, Z 2L+ (Xo,,— X072 ,,X)P into (3.1) and taking expec-
tations gives the result.

LEMMA 3.2.  Assume the model (1.1) and assume also that
E(Zy | 2)= 2072 122+ (X~ 2072 ;3 X)B=p/(Z, B).
The Lemma 3.1 holds for any B, linear or not.
Proof. Let 8(Z) be any function of the data Z. Then
coV(&(Z), pAZ,B)— Z, )= E[S(Z)E(Z, ,|Z) - Z,..)]
=E[3Z){E(E(Z,;|Z)— Z, )| Z}]1=0.

Thus, since B=8(Z), for some function 8, cov(p, p,(Z, B)—Z,,)=0,
and the cross-product term in (3.1) is zero. Hence the decomposition of
Lemma 3.1 holds.

Clearly, when Z and Z,, are jointly normal, the assumption of
Lemma 3.2 is satisfled. However, Lemma 3.2 also holds when
Y, =(Z',Z, ;) has an elliptically symmetric distribution with location
vector p; = ((XP), X, ;B)’, covariance matrix X', and a probability density
function of the form:

S =121 Y {ly, ) Z7 (yi—n)}
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Kelker [17] gives the properties of elliptically symmetric distributions
and shows that the conditional expectation of Z given Z, , has the form
of that required by Lemma 3.2. Finally, if (Z’, Z;)’" has an elliptically
symmetric distribution, so too does Y,, i=1, .., k.

Thus, whenever Z, regresses linearly on Z, Lemma 3.2 shows that the
risk function (1.5) may be decomposed into the sum of two parts:

rp Zoi B 02 =tr(Zgo— L0z 2545 50) +0 EB-B)YQ(B—B), (3.2)

where
Q:(XO_ZOZZEZI'X), (XO_ZOZZ‘E?}X)' (3-3)

The first term of the risk (3.2) is inherent in prediction of Z, with
known (it is equal to r(p,, Z; B, 6)); the second is due to the estimation
of B.

The decomposition (3.2) has important implications for the comparison
of two predictors.

DerFINITION. A predictor p*(Z)=p(Z, B,) is preferable to another
predictor p**(Z)=p(Z, B,) if r(p*, Zo; B, 0?)<r(p**, Z,; B, 0?), for all
(B, %) e R”x(0, o).

Assuming the decomposition (3.2) holds, p* is preferable to p** if and
only if

o CE{(B~BY QB —P)} — o E(B.—B) 0.~ P)} <O
forall (B, a%)e R*x(0, ); (3.4)
ie., if and only if B, has a uniformly smaller (or equal) weighted mean
squared error than that of B,. Thus, the problem of prediction and the

comparison of predictors has been reduced to the problem of estimation
and the comparison of estimators.

4. IMPROVED PREDICTION

In this section we construct predictors, based on the general class (2.6),
that have risks less than or equal to that of the best linear unbiased
predictor, over regions of (B, 6%)e R”x(0, o). The minimax predictor to
be defined in Section 4.3 is shown to achieve uniform improvement of risk.

4.1. Bayesian Prediction

In model (1.1), suppose

Z|p~N(XB,0o*X,,) and B~ N(O, 2y (4.1)
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The distribution of P reflects the prior information about the unknown
parameter B. Here o is a nuisance parameter assumed fixed but unknown;
a prior for ¢* could also have been chosen, but this will not change the
estimation of B. Straightforward algebra (see, e.g., [5]) gives

Bo=(X'ZAX+5,) ' (Z,0+X'Z,)2Z) (4.2)

as the Bayes estimator of §. Substituting (4.2) into (2.6) gives the Bayes
predictor of Z,:

ps(Z)=p(Z, Bs)
=202 2L+ (Xo— 20z Z 1 XWX Z X+ 2,)7!
X (X 0+ X2, 7). (4.3)
This is precisely the Bayes predictor derived by Kitanidis [18].
Note that when Zﬁ'ﬁ‘ =¢ (a px p matrix of zeros), corresponding to no
information on P, Eq.(4.3) reduces to p,(Z) of (2.8), the best linear

unbiased (kriging) predictor. Also, taking 8=0 and X, =(1/x)/,, for
some constant x in (4.2), gives the ridge-regression estimator

Be=(X'Z, X+xl,) "(X'Z,)Z) (4.4)

[14] and hence a ridge predictor
P(Z)=P(Z Br)
=208 L+ (Xo— 20,2 XWX 2, X+kl) (X' E5,Z).
(4.5)
Empirical Bayes predictors may also be considered by estimating @ in (4.3)

with an estimator 0.
The Bayes predictor (4.3) is biased:

E(ps(Z) = Zo|B) = (2022 72 X — Xo) B+ (X~ 20725, X)
X (X' L (X' Z2X+Z5) 0+ X' 'XB)
Also, since By is linear in the data, Lemma 3.1 applies and from (3.2) its
risk (conditional on §) is

r(ps; Zo; B, 0%) = tr(Zo0 — Loz 2 ;7 Z20) +t(T'QT(X'Z ;X))
+a Hp—0) WOW(B—0), (4.6)

683 45 1-5
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where T=(X'Z0X+Z,) " (X'L,}X), W=I-T, and Q is given by
(3.3). From this we can see that r(ps, Zg: P, ) <r(p,, Zg; B, %) if and
only if

o HP—0) WOWPB-0)<tr(X' T, X) '—t(T'QT(X'X ,,X) ).
(4.7)

It is possible to satisfy (4.7) if B is close to 8. Of course, the problem 4s
that B is unknown. Hoerl and Kennard [14] give some discussion on this
problem in the context of ridge regression. For further discussion, see

Smith [21] and Giles and Rayner [11].

4.2. Minimax Prediction
Judge and Bock [16] consider the family of estimators of B:

BJB: {Ip_h(ﬁlGLSBBGLS/(n“p)él)C} ﬁGLS’ (4.8)
where

B and C are p x p real matrices;

h(-) is a real-valued function;

6> = {1/(n— p)HZ — XBors) £, 0(Z ~ XBaus);

BoLs is the generalized least squares estimator of B given in

Eq. (2.7), and I, is the p x p identity matrix. (49)

Using B, as an estimator of B in (2.6), we obtain the corresponding
family of predictors

PAZ)=P(Z Br) = 2022 2+ (Xo— 20, 2,3 X) Bra. (410)

The conditions under which this family of predictors has risk (given by
(3.2)) less than or equal to that of the best linear unbiased predictor are
given in the following theorem.

THEOREM 4.1. Assume (Z’,Zy) are jointly Gaussian with mean and
covariance given by (1.1) and (1.2), respectively. Furthermore, assume that Q
given by (3.3) has rank p, and matrices C and B of (4.8) are chosen so that
Q'2CQ~'? and Q'?BQ ~'? are positive-definite matrices that commute with
each other and that also commute with Q"*(X'~,}X)"' Q"% Let A,(D) and
tr(D) denote the maximum eigenvalue and the trace of any square matrix D.

If
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2t(CX'L,X) ' Q-2A(C(X'2,,X) ' Q)}
(n—p+2)Ai(C'QCB™ ") ’

(i) 0<rcx (4.11)

(1) 0 h{w) < c/u, for all u>0, and h is differentiable for all u> 0,
(1) Y(u)=u?{(c/u)—hu)} "+ h(u)

is nondecreasing in u if h{u) < c/u, where
={cln—p=2)/A {1, (C'QCB ) A(C(X'Z,;X)"' Q)}

and
f=@/(n—-p-2))q;
then

r(pr. Zo: B, 62) < r(p,, Zo; B, 07) forall (B, 6*)e R"x(0, o).

Here, r(-,Zy; B, 0%) is given by (3.2), po(Z) is the best linear unbiased
predictor of Z, given by (2.8), and p, is given by (4.10).

Proof. Since (Z’', Zg) are jointly Gaussian, Lemma 3.2 applies, so that
from (3.2),

r(pr, Zoi By 02) =tr(Zoo— Loz 722 20) + S E(B— B) Q(B—B).

Substituting in for p,(Z), p.(Z), ﬁJB, and PoLs using (4.10), (2.8), (4.8),
and (2.7), respectively, gives

r(ps. Zy: B, UZ)"'(I’MZMB 0?)
o M E(( BJB B)QBJB B)) - BGLS B) Q(ﬂGLs B))}.

Conditions (i), (u) and (iii) ensure that ﬂm is minimax [16, p. 234] under
loss function ¢ ~*(B — B)’ Q(p — B). Hence

r(ps, Zo; B, 67 <r(py, Zo: B, 67) forall (B, 62)e R”x(0, ).

Theorem 4.1 shows that a large class of (nonlinear) predictors can be
found that have uniformly smaller or equal risk than the best linear
unbiased (kriging) predictor.

4.3. Improved Nonlinear Prediction

CoROLLARY 4.1. Under the assumptions and notation of Theorem 4.1, if

P(Z)=P(Z, Bays) = 20z E 702+ (Xo—Z0,Z .2 X) Boyss (4.12)

where
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~ a(n— p) 6* )A

={1—= _ LS (4.13)
Poss ( BursX'E 2 XBars Pos

0 <2[tr{(X’E,:}X)*' Q}).] l—2]
S (n—p+2)

and 1, is the largest eigenvalue of (X'2 ;) X) ' Q, then
r(Ps, Zo: B, 62)<r(py, Zo; B, 0?)  forall (B, c%)e R"x(0, oc).

Proof. Take h(x)=a/x, ae R, B=(X'2;,X), and C=1, and apply
Theorem 4.1. Note that in the case of James-Stein estimation, the
Gaussianity assumption may be relaxed to include elliptically symmetric
distributions [22]. As a consequence (see Lemma 3.2), the uniform
reduction in risk over that of the BLUP also holds for elliptically symmetric
distributions as well.

The condition (4.14) of Corollary 4.1 warrants some discussion. The
assumption that Q is full rank p implies that k > p, so that at least p
random variables must be predicted. Also, p (the dimensionality of the
estimation problem) must be larger than two [15]. If (X'Z,}X) is
ill-conditioned, (4.14) may fail to hold. The matrix @ depends on the
relationship of prediction locations to data locations and requires that the
two be reasonably close together. This suggests that (4.14) may be more
likely to hold for interpolation problems than for extrapolation situations.

, (4.14)

For the interval defined by (4.14) to exist, tr{(X'Z ;) X) ' Q} A, ' must
be at least two. But tr{(X'2 1 X) ' Q} 4, '=2X4,/max{4;}, where the 1’s
are the eigenvalues of (X'Z,1X) "' Q. In a spatial setting, a natural design
criterion for the choice of prediction locations is the maximization of
2 /max{4,;}. There are probably many choices of X and X, particularly
in the spatial and temporal settings, for which there is no interval defined
by (4.14). In this case, no predictor of the general form of py(Z) will be
minimax.

Expressions for the bias and the risk may be derived for any member
of the class p,(Z) (and hence for py(Z)) once A(-) has been specified.
Straightforward extensions of theorems in Appendix B of Judge and Bock
[16] give

E(po(Z) = Zo)= —a(Xo— 20,2 .2 X) E(X, o /hip s 2 B (415)
and
r(ps, Zo; B, 02) =tr(Zgo — 20222;220)

+tr(Q(X’Z7i7}X)7l)E{l—aX(znrp]/X(2p+2.i)}2
+ B,Qﬁ{E(l - X(Zn—p)/x(217+4,).))2
+ 2B /Xl r20) = 1h (4.16)
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where x; ,, is a noncentral chi-squared random variable on v degrees of
freedom, with noncentrality parameter A =p'X"'2 ) XB/20?, independent of
the central chi-squared random variable %, _,,.

The expressions (4.15) and (4.16) may be evaluated using the
computational formulas for inverse moments of a noncentral chi-squared
distribution given in Bock eral. [6] and Xie [26]. Patnaik [19] shows
that a chi-squared distribution can be closely approximated by a scalar
multiple of a central chi-squared random variable, which could be used to
simplify (4.15) and (4.16). Of course, all expressions depend on the
unknowns B and o2, but estimators based on Pg s and 62 can be used.

It is known that the positive part of Pe;s [2],

" a(n— p) é* *
B+ =<1_A =~ ) BGLS: (4~17)
o BasX'Z 3 XBovs

where g * =max{0, g}, dominates Bg,s. That is,

E(Beys—B) WBes—B)<E((Bys —B) WiBais—B),  (4.18)

for all (B', 6°)e R”x(0, c0), and any nonnegative-definite weight matrix W;
for a proof of this see Judge and Bock [16, p. 239]. Consequently, with Q
playing the role of W in (4.18), the predictor

Po(Z)=P(Z, Beys) =202 2 732+ (Xo— 20223 XV BSys  (4.19)

must necessarily have smaller risk (as given in (1.5)) than that of py(Z) in
(4.15).

Expressions for the risk of the estimator s, and hence for the risk of
the predictor, py(Z), are intractable. However, (4.16) could be used instead,
since it would give a conservative value of the risk of po(Z).

The predictor p, has a nice interpretation as a shrinkage predictor. Since
Boss shrinks the generalized least squares estimator Pg, s towards zero, the
corresponding predictor in (4.10) shrinks the best linear unbiased predictor
p.(Z) to the best linear predictor under the assumption that p is known
and equal to 0; i.e.,

PAZ)={I,— h(Birs BBors/(n— p) 6%) CY(PAZ) = 20, Z ;1)
+ EOZE;;Z.

Throughout this development of minimax prediction, we have chosen to
focus on the family of minimax estimators developed by Judge and Bock
[16], simply because the condition for minimaxity are concise and easy to
use, and because the familiar James—Stein type estimators are members of
this class. However, our results are not limited to the consideration of this
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one class. Other minimax predictors can be constructed using the minimax
estimators developed by, e.g., Berger [3] and Strawderman [23], or any
in the family of admissible estimators developed by Alam [1]. In practical
situations, the choice of the estimator (and hence the predictor) is a
difficult one; see Berger [4] for some interesting ideas on minimax
estimator selection.

If the condition on the constant @ in (4.14) is not met, we recommend
using the universal kriging predictor given in (2.8). However, if this
condition is satisfied, then the predictor po(Z) has risk which is uniformly
smaller than that of the best linear unbiased predictor and is the predictor
of choice among those presented in this paper.

S. EXAMPLE

In this section, we compare the risk of three of the predictors presented
in this manuscript, based on the small spatial data configuration illustrated
in Fig. 1. In order to make this comparison, the linear model given by
Eq. (1.1) must be completely specified. This will be done using geostatistical
ideas.

Denote a typical spatial location in Fig. 1 by s =(x, ), and the datum
associated with this location as Z(s). Then, taking the rows of the matrices,
X and X, to be linear functions of the spatial indices, the linear model of
Eqg. (1.1) may be written as

™ 7(0.0, 0.0) 1.0 00 007
Z(10,0.0) 1.0 1.0 00
Z(2.0,0.0) 1.0 20 00
Z(0.0, 1.0) 10 00 1.0

Z=| z10,1.0) = 10 10 10 |p+e (5.1)
Z(20, 1.0) 1.0 20 10
Z(0.0, 2.0) 1.0 00 20
Z(1.0, 2.0) 1.0 1.0 20
| z(20,20) 10 20 20
™ Z(0.5,0.5) 1.0 05 057
Z(1.0,0.5) 10 1.0 05

Zo=| Z(1505) |=| 1.0 1.5 05 |p+e,.
Z(0.5, 1.5) 10 05 15
|_Z(1.5,1.5) 10 15 1.5_]
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2.5

2.0 ) 0 ]

1.5 P P

1.0 4 D 0 D

0.5 - P P P
+

0.0 D 0 0

_0'5_
IlllIllIII[V[Y'IIIXIIII]IIIYTTI
-0.5 0.0 0.5 1.9 1.5 2.9 1.5

FiG. 1. Spatial data configuration for the example presented in Section 5; D denotes data
locations and P denotes the locations of values to be predicted from the data.

In a geostatistical framework, the covariance structure of the data is
specified as a function of the distance between spatial locations. In this
example, it is derived from

1.0— 1.5(|h}|/1.5)+ 0.5(|h]|/1.5)%, || <1.5;

0, IThi| > 1.5, (3-2)

C(llh|l) = {
where ||h|| is the Euclidean distance between spatial locations separated by
the vector h, and C(0)=0c’=1. Then cov(Z(s), Z(u))= C(||s —u|); for
example, cov(Z(1.0,1.0), Z(2.0,1.0)}=C(1.0)=0.15, and so the (S5, 6)th
element of 2, is 0.15. The only unknown in the linear model of Eq. (1.1)
is the 3x 1 vector B. The risk of the predictors will be computed and
compared for various values of §.

Three predictors were investigated in this example: the ridge predictor,
po(Z), of Eq. (4.5), the James—Stein predictor, pg(Z), of Eq. (4.12), and the
best linear unbiased predictor (BLUP), p,(Z), of Eq.(2.8). For each
predictor, expressions for the risk were evaluated for various B vectors.
Clearly, since the risk of the (BLUP) does not depend on B, it is constant.

The risk of the ridge predictor is given by Eq.(4.6) using 8 =0 and
2ap= (k) I5. Since the length of the corresponding ridge estimator of
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Eq. {4.4) tends to zero as k approaches infinity, and for fixed f, the risk of
the ridge estimator decreases with increasing x, large values of x were
chosen for this example. Results with x = 50 are presented here.

The risk of the James-Stein predictor, given by Eq. (4.16), is more
complicated. In computing this quantity, a value of the constant, «, must be
specified. For this example, ¢ was taken to be the upper bound in condition
(4.14), so that a=2[tr{(X'Z ) X) ' Q} A, ' —2])/(n— p+2). To evaluate
Eq. (4.16) for different § vectors, the expectations of ratios of noncentral
chi-squared random variables are needed. These were obtained using the
method given in Xie [26]. In general, this method is very easy to use;
however, caution should be taken with f close to 0, since the distribution
of the noncentral chi-squared random variable is nearly that of a central
chi-squared random variable.

Finally, the risk of the BLUP, given just below (2.8), is constant for this
example and is equal to tr{(X'Z ;) X) ' Q}, where Q is given by Eq. (3.3).

The expressions for the risk associated with each of the three predictors
were evaluated for 40 different p vectors with Euclidean norm ranging from
0.0 to 4.0. Fig. 2 shows the risk for the James—Stein predictor relative to
that for the BLUP as a function of the norm of B. Specifically, the vertical
axis represents {r(ps, Zo: B, 6%)/r(p>, Zo; B, 0%)} x 100 is plotted against

100.00 - W -
99.99
99.98 1 e, .
99.97 1 " . *
99.96 *
99.95 -
99.94 1 »
99.93
99.92 1 ,
99.91 1 .
99.90
99.89

relative risk

99.88 1
99.87
99.86

99.85

- 7 — [ T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(8'prh

FiG. 2. Relative risk of the James-Stein predictor as a function of (f'B)'>. The graph is
based on the spatial configuration of Fig. 1 and the example described in Section 5 of the text.
The vertical axis is computed as {r(ps, Zo; B)/r(ps, Zy; B)} x 100. The horizontal axis is
(’B)'”, the Euclidean norm of B.
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103 1 .
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FiG. 3. Relative risk of the ridge predictor as a function of the (B'8)'. The graph is based
on the spatial configuration of Fig. 1 and the example described in Section 5 of the text. The
vertical axis is computed as {r(ps. Zo: B)/r(Ps. Zo: B)} x 100. The horizontal axis is (p'B)'?,
the Euclidean norm of B.

(B’'B)'>. The uniform reduction in risk using the James-Stein predictor is
readily apparent, and the greatest reduction in risk occurs for p near 0, as
is expected from similar results on James-Stein estimation. Figure 3 shows
the relative risk for the ridge predictor. The strong increase in risk with
increasing PB’B, is consistent with results for ridge estimation, again
indicating that the predictor tends to reflect the properties of its associated
estimator. Note that for many P, the risk associated with the ridge
predictor is much greater than that of the BLUP.

The results of this section clearly illustrate the uniform reduction in risk
that can be obtained using the James-Stein predictor of Eq. (4.12).
Although the reduction attained in this example was not very large, larger
risk reductions may be attainable for different spatial data configurations.
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