Intersite validations of the pixel-wise method for liver R2* analysis in transfusion-dependent thalassemia patients: a more accessible and affordable diagnostic technology

Pairash Saiviroonporn, a Vip Viprakasit, b Kleebسابai Sanpakit, b John C. Wood, c Rungroj Krittayaphong d

BACKGROUND AND OBJECTIVES: MRI-R2* has been accepted as a clinical tool for monitoring iron overload in thalassemia patients, especially for monitoring liver iron concentration (LIC). The most optimal and practical method of analysis however, is still open to further investigations. Our objective was to investigate intra- and intersite observer variability of the pixel-wise method for liver R2* analysis in thalassemia patients using a monoeXponential with a constant offset model.

PATIENTS AND METHODS: We performed 88 liver R2* measurements on 72 thalassemia major patients. A single breath-hold multi-echo gradient-echo sequence was acquired and analyzed at both the reference (REF) and local (LOC) sites. The analysis defined the region of interest in the whole liver parenchyma, excluding the great vessels, and were reported as median values.

RESULTS: The R2* values from the REF and LOC were statistically comparable for all comparisons. The intrasite and intersite observer variation were 0.75% (less than 0.9%) and 2.5%, respectively, both of which are comparable to previous reports, but substantially lower than conventional region-based approaches.

CONCLUSION: The low variation of the R2* also yielded excellent variation in the tabulated hepatic iron content. However, caution is required when comparing the results to different implementation methods and appropriate evaluation and validation of methodology for any new scan site is essential before its clinical use.
sustainable to respiratory motion, but it cannot provide the distribution pattern of R2* values in the liver. The PW method can overcome this limitation, but is more computationally intensive. In terms of fitting methodologies, there are three accepted models for fitting the decay curves: the single-exponential (S-EXP), mono-exponential with constant offset (C-EXP), and bi-exponential (BI-EXP) models. The S-EXP model can be implemented with or without truncating the plateau part of the signal from the fitting (truncation model). Finally, the ROI can be defined into two separate strategies as from partial or whole liver parenchyma. Previously, Positano et al investigated all such the differences on simulated data as well as on thalassemia patients and found that using median R2* calculated by the PW approach with the C-EXP model on the whole liver ROIs yielded the lowest intra- and interobserver variations. However, there was some limitation since this study is performed only on-site with custom automatic segmentation software for ROI generation.

Determination of liver iron concentration (LIC) has long been recognized as a standard monitoring in transfusion-dependent thalassaemia (TDT) patients who receive regular blood transfusions. Until recently it has been shown that the MRI approach for LIC measurement is also critically important in nontransfusion-dependent thalassaemia (NTDT) patients who show a weaker correlation between serum ferritin (SF) and LIC. Therefore, SF might not be able to predict the level of liver siderosis and guides iron chelation practice as it does in TDT. Moreover, using a non-invasive approach by MRI measurement can reduce undesirable complications and uncertainty related to standard liver biopsy. Although such an MRI measurement has been available by means of a standard service provider such as Ferriscan (Resonance Health Limited and Resonance Health Analysis Services Pty Limited, Claremont, Australia) in many developed countries, this essential monitoring remains limited to only a few thalassaemia patients, especially in the Far East where the cost of imaging and data interpretation is still unaffordable by most patients. To provide accessibility to more affordable new technology to under-funded thalassaemia patients in a setting where resources are limited such as Thailand, we have established the North-South collaboration between Mahidol University, Bangkok and the University of Southern California, Los Angeles, California, United States. Our local software designed to determine cardiac T2* has been established and validated as reported previously. In this report, we describe our further evaluation of the software on the determination of LIC using MRI-R2*. We investigated intersite variation of the reference site (Children's Hospital Los Angeles, California, United States) and our institute (Siriraj Hospital, Bangkok, Thailand) using manually defined ROI and independently generated analysis tools.

PATIENTS AND METHODS

Eighty-eight liver R2* measurements were performed on 72 transfusion-dependent thalassemia (TDT) patients (32 males and 40 females, mean [SD] age 18.0 [6.9] years) who received regular transfusion and iron chelation therapy since ≥10 years old and had serum ferritin levels more than 1000 ng/mL. Patients with a contraindication to MR (such as pacemakers and claustrophobia) and an inability to comply with the instruction were excluded from the study. Approval of the study was obtained from the Institutional Review Board of Faculty of Medicine, Siriraj Hospital, Mahidol University.

The study was conducted on a 1.5T Philips Achieva XR Quasar Dual Gradient system (Philips Medical Systems, the Netherlands) using a five-element cardiac phased-array coil. Each patient was scanned at a mid-hepatic slice using a multi-echo fast gradient-recalled-echo sequence acquired within a single breath-hold time. Imaging parameters were a repetition time (TR) of 80 ms, 20 echo times (1.07-16.30 ms with 0.80 ms increments), a flip angle of 20 degrees, a slice thickness of 10 mm, a matrix of 128×256 pixels, and a field of view (FOV) of 40 cm, which yielded a voxel size of 3.1×1.6×10 mm³. In this study, hence, the maximum practical measurable R2* due to the limitation of MR acquisition was 1308 Hz, which is a reciprocal of the minimum TE employed, divided by 1.4. The acquired images were analyzed locally (LOC) and also transferred in DICOM format to process at the reference (REF) site. All R2* analyses were performed independently at both sites using individually-developed custom-written software implemented in MATLAB software (The MathWork, Natick, Massachusetts, United States). The PW method using the C-EXP model was employed for such calculation at both sites. The raw and R2* parametric images were then employed to manually define a large ROI of the whole liver parenchyma excluding the major blood vessels. Two MR technologists independently performed the analysis at the local site (intrasite observer) and data were also compared to the result from the reference site (intersite observer). The R2* results were reported as the median of the data inside the defined ROI and the hepatic iron content (HIC) was
tabulated from the linear relationship with the R2* according to the expression of (3):

\[
\text{HIC (mg/g dw)} = 0.0254 \times \text{R2* (Hz)} + 0.202
\]

According to the maximum practical measurable R2* in this study, the maximum measurable HIC in this study, hence, was about 33.40 mg/g dry weight.

All statistical analyses were evaluated using the MATLAB Statistics Toolbox. A Bland-Altman plot was used to analyze the agreement between the two different R2* data sets. The coefficient of variation (CV) was used as the quantitative analysis of the closeness of the agreement. The CV was calculated from the standard deviation of the difference between the two data sets, then divided by their mean and presented as a percentage. The paired t test was selected to evaluate the difference between the data. A P value less than .05 was considered to be significant.

RESULTS

An example of liver images with corresponding tabulated HIC map overlaid with defined ROIs (the blue line) from the whole liver parenchyma are shown in Figure 1. These data were obtained from a thalassemia patient who had severe iron concentration in the liver.

In this study, the mean R2* values from the reference and local sites were 695±463 and 700±463 Hz, respectively (P = not significant). The differences between the intra- and interobservers at the local site were also not significant. Sixteen patients were excluded from the validation because their liver R2* was out of the measurable range (R2* >1308 Hz).

The Bland-Altman plots of the R2* and HIC values from intra- and intersite observers of the measurable data range are shown in Figure 2. The corresponding bias, 95% CI, and the CV of these variations are presented in Table 1. The intrasite variation in the measurable range had a small bias (0.39 Hz) and CV (0.83%). The intersite variation was also low with R2* bias less than 5 Hz and CV of 2.5% as shown in Figure 2 and in the last row of Table 1. Thus, the variation of the tabulated HIC from the intersite variability in the study had a bias lower than 0.12 mg/g dry weight and CV of 2.2%. The linear correlation of R2* between the two sites was in very good agreement with a coefficient of determination of 0.998. However, if all patient data were included for the validation, the intersite variation would have a bias of about 8 Hz and 4.5% of CV with a coefficient of determination of 0.986. In summary, in this study, the intrasite CV of the R2* data in the measurable range was less than 0.9%, while it was only about 2.5% for the intersite with a low bias for all comparisons (less than 1 and 5 Hz for intra- and intersite variation, respectively). Such a low variation of the R2* yielded also an excellent variation in the tabulated HIC, which had a similar low bias and CVs.

DISCUSSION

At present, the MRI measurements of R2 and R2* have essentially replaced conventional liver biopsy for hepatic iron quantification in thalassemia patients, due to its accuracy and ease of use. Suitable R2* images can be obtained using a single breath hold multiphase gradient-echo sequence that has become standard on all three major MRI platforms. Some disagreement still exists regarding the optimal analysis methods, although PW assessment with constant offset com-
The variability in this study arises from more than the 5.6% from the RB approach employed in clinical practice. The analysis in this study, hence, employed such a method to further investigate the intra- and intersite variation and found that the method also provided comparable bias and variations as described in Positano’s report, even when using only a manually defined ROI instead of automatic liver segmentation. Intrasite variation was about 0.75%, which is comparable to the previously reported 0.85%, but substantially lower than 3.7% or 4.4% from the conventional RB approach. Intersite observer variability was about 2.5%, which is comparable to the same method reported by Positano et al at 2.9%, but lower than the 5.6% from the RB approach employed in clinical practice. The variability in this study arises from differences in tracing liver boundaries and differences in software implementation of the fitting routines; given the small overall error, these differences must be insignificant. While automatic segmentation may facilitate the speed of image interpretation, reproducibility was similar to manual boundaries.

Although the observer variation of the liver R2* analysis from the conventional RB approach was already in acceptable ranges, a two-fold reduction in variability may be important at high R2* values, for assessing interval change, and for clinical trial design; a two-fold lowering of variability translates to a four-fold decrease in patient accrual targets. However, caution must be used when comparing across studies. The lower intersite variation found in the present work might be due to high liver R2* values (723±480 Hz) which may have lower variability on a percentage basis than measurements on less heavily loaded patients. Prior reports have also reported T2* variability, which will tend to emphasize errors at lower iron concentrations. We also excluded patients whose R2* were greater than the measurable range (R2* >1308 Hz), which reduced the variation from 4.5% to 2.5%. Such high variations due to the out-of-range data have been reported in previous studies as well. The exclusion of such data, nevertheless, does not affect the clinical data range because it is more than two times the cut-off point (R2* = 588 Hz or HIC = 15 mg/g dry weight) of what is considered to be severe iron overload in the liver.

Even though the study demonstrated a low R2* variability, caution is still required when comparing the results to different implementation methods. Various factors may affect such comparisons. First, if we compared the PW to RB approach, the result will be comparable for the clinical range, but will be systematically underestimated by the RB method in the normal range (R2* < 50 Hz). Second, in our study we employed the C-EXP model so when comparing our result to another study using the BI-EXP model, the result is still fully comparable, but our R2* result will be underestimated by about 333 Hz over the whole R2* range when compared to the S-EXP model. Finally, when comparing our result from the whole liver ROI to a partial one, as in the conventional method, the variation will be higher due to the sampling error on the latter method, which is due to the heterogeneity of live iron deposition.

The study may have some limitations. There are few patients who have liver iron overload in the borderline or normal ranges so the observer variation reported in this study relied heavily on patients with iron overload. More patients recruited in these borderline iron overload and normal LIC regions will help to better represent observer variation from the whole ranges. Furthermore, a basic semi-automatic liver segmentation should also help to further optimize the operator interactions and furthermore make the result more consistent for follow-up studies.

In conclusion, the intrasite CV of the liver R2* data in the measurable range was less than 0.9% in our study, while only about 2.5% for the intersite CV with a low bias for all comparisons. Such a low variation of the R2* yielded excellent variation in the tabulated HIC. Our “poor man” approach described in this study can reliably provide an accurate alternative for liver iron determination for clinical application to monitor and guide management in patients with iron overload who require iron chelation therapy.

<table>
<thead>
<tr>
<th></th>
<th>R2* Bias [95% CI] (Hz)</th>
<th>Coefficient of variation (%)</th>
<th>Hepatic iron concentration Bias [95% CI] (mg/g dw)</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrasite</td>
<td>0.39 [-9.64 10.44]</td>
<td>0.83 (1.31)</td>
<td>0.01 [-0.24 0.27]</td>
<td>0.80 (1.29)</td>
</tr>
<tr>
<td>Intersite</td>
<td>-4.72 [-23.38 13.93]</td>
<td>2.45 (4.46)</td>
<td>-0.12 [-0.60 0.35]</td>
<td>2.20 (3.58)</td>
</tr>
</tbody>
</table>
Acknowledgement

The authors would like to thank all thalassemia patients and their parents who participated in this study. We thank Prakaj Thanapiboonpol and Supaporn Nakyen for their technical assistance; Novartis Co., Thailand for its supports for MATLAB program; and Philips Medical Systems for their technical assistance.

Conflict of interest and funding

No conflict of interest. This work was supported by a grant from the Siriraj Grant for Research Development (R015233005) to R.K. and P. S. VV was supported by Thailand Research Fund, BIOTEC and the National Research University Grant through Thalassemia Center, Mahidol University, Thailand.

Author contributions

PS was the principal investigator and takes primary responsibility for the paper. PS, VV, JCW, and RK conceived the study design and were involved in interpretation of data; KS supplied patient material; PS performed statistical analyses and wrote the manuscript and VV was responsible for the final draft of the manuscript. All authors read and approved the final version of the manuscript.

REFERENCES

LIVER R2* ANALYSIS

original research report