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Abstract

A variant for the superspin one-half massive superparticle in 4D, N = 1, based on Dirac superfields, is 
offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields 
of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. 
Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a 
very straightforward implementation of the path-integral method. The corresponding superpropagators are 
presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, 
is given in terms of their component fields. The model is first presented for the case of two superspin 
one-half superparticles related by the charged conjugation operator, but in order to treat the case of neutral 
superparticles, the Majorana condition on the Dirac superfields is also studied. We compare our proposal 
with the known models of spinor superfields for the one-half superparticle and show that it is equivalent to 
them.
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1. Introduction

More than forty years after its invention, supersymmetry still possesses some unexplored 
and/or not completely understood facets, providing a source of active research such as the study 
of massive supersymmetric theories. To gain further insight on the subject, we present a new 
framework for superspin one-half in 4D, N = 1 (see [1,2] for examples of well known free su-
perspin one-half models). Over the last decade progress has been achieved in the formulation of 
free massive theories up to superspin three-halves [3–11]. Generalizations to the case of complex 
mass can be found in [12–15]. A common feature of these studies is the use of general off-shell 
superfields restricted only by their reality condition. Their convenience relies on the fact that 
taking appropriate products of superderivatives on these superfields, one can create constrained 
(by construction) spinor chiral superfields that have a smooth zero mass limit. An example of 
this situation is the relation between left and right strength superfields (Bianchi identities) in 
supersymmetric gauge theories.

We approach the study of massive one-half supermultiplets by working with spinor chiral su-
perfields that are not further constrained. There are two models for these supermultiplets based 
on chiral spinor superfields [16,17]. A distinctive feature of our model is that auxiliary fermionic 
fields are essential for the off-shell closure of the superalgebra, and they play a key role in pro-
viding the mass terms of the propagating fermionic degrees of freedom, a situation that is not 
present in the current known models. The degrees of freedom of the component fields for the 
one-half superspin models in [16,17], represent a 8(fermionic) + 8(bosonic) realization of su-
persymmetry, the present work represents a new off-shell (16 + 16) irreducible realization of 
supersymmetry for the superspin one-half case.

Differences between models describing the same supermultiplet rely on the possible cou-
plings of the corresponding interacting theory, and those couplings are in turn determined by the 
propagating fields that carry the particles of the supermultiplet. In [16], the spin-one particles 
propagate trough second-rank antisymmetric tensors. In addition, the spin-zero state in [17] is 
described by a 3-form field. As opposed to these models, where second-order derivatives and 
superderivatives are present in the free action, here we introduce only first order derivatives (in a 
similar fashion to Dirac theory in ordinary space), allowing us to represent the supermultiplet as 
a collection of fields with the lowest dimension possible: scalar, Dirac and vector fields.

The use of chiral superfields that are not further constrained makes very easy the implementa-
tion of the path-integral; the calculation of the superpropagator for the Dirac superfields is carried 
out on the same lines of the Wess–Zumino model, opening the possibility of further studies on 
the renormalization properties of interacting theories constructed with these superfields. We give 
the details of a super Yukawa model, the simplest possible interacting theory.

Recently, in the context of a superspace formulation of Weinberg’s “noncanonical” meth-
ods [18], a set of super Feynman rules for arbitrary superspin massive theories has been presented 
in [19], together with the explicit form of the interaction picture superfields for arbitrary su-
perspin. These superfields have the common feature of being exclusively constrained by the 
supersymmetric chiral condition, and therefore they bear a closer resemblance to the superfields 
of the Wess–Zumino model than those superfields constructed through superderivatives of gen-
eral superfields. One of the main purposes of this paper is to construct an off-shell model by 
canonical and path-integral methods, beyond the superspin zero case, where the properties of 
[19] are met. We show that both the spinor superfields of Ref. [16] and the Dirac chiral super-
fields, in the interaction picture and the superpropagators of the models, coincide with those 
of [19], establishing a proof of consistency between both formalisms.
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Difficulties in formulating general results for higher superspins and extended supersymmetries 
are in part due to the issue known as the ‘SUSY off-shell challenge’ [5,20], that can be enunciated 
as follows: given the propagating off-shell fields of the corresponding supersymmetric multiplets, 
find an enlarged set of fields such that the superalgebra closes. Then write the corresponding 
invariant Lagrangian for the enlarged set of fields. In order to maintain the given supermultiplets, 
the required additional fields must not propagate (they must be auxiliary). This last requisite is 
satisfied if the equations of motion for the auxiliary fields are algebraic equations.

In contrast to the approach followed by [21], here we start with a superfield formulation, en-
suring the closure of the superalgebra. Then the problem is to elucidate if the chosen superfields 
can generate a sensible Lagrangian, such that its free part (after eliminating the auxiliary fields) 
is the correct Lagrangian for the propagating fields.

When tackling higher superspin theories of chiral superfields with odd spinor indices, the use 
of bilinear terms in the Kähler potential (D-terms), gives a second order derivative term for the 
zeroth component of the fermionic expansion, leading naturally to a theory with second order 
derivatives for fermions. Although there are constructions for these kinds of theories, both in 
space and in superspace [22], their unitarity is not manifest [23]. A solution to this conundrum 
is based on the observation that an F -term, with the same dimensionality as the D-term, can be 
introduced with the help of the Dirac derivative /∂ . Even though we focus on superfields with just 
one spinor index, the setting can in principle work for chiral superfields with an arbitrary odd 
number of spinor indices, where the Dirac derivative is available.

In this paper we derive the free action for Dirac superfields by requiring the following condi-
tions:

(a) The absence of second order derivatives for fermion fields off-shell.
(b) The emergence (after eliminating the auxiliary fields) of the free action for Dirac, scalar, and 

vector fields with degenerate mass.

We introduce two different types of chiral superfields in order to distinguish the particle su-
permultiplet from the antiparticle one. Both the first and second order terms in the fermionic 
variables expansion contain auxiliary fields, in contrast to the cases for the scalar and the mass-
less strength chiral superfields, where there are auxiliary fields only in one term for each case. 
After identifying the scalar and vector propagating fields, we write the off-shell tensor-field (that 
appears in the linear term of the Dirac superfields) in terms of the 4 × 4 matrix covariant ba-
sis 

(
I, γ5, γμ, γμγ5,

[
γμ, γν

])
. Taking suitable linear combinations of operators of dimension 5

and less, the desired free Lagrangian is obtained. Next, we calculate the corresponding super-
propagators following a straightforward generalization of the chiral scalar superfield case. We 
also discuss the similarities and differences of the model [16] (denoted as Siegel model in what 
follows) and ours. We give expressions for the interacting potential of a super Yukawa model: 
a scalar superfield coupled to a bilinear of Dirac superfields, and show that this Yukawa term can-
not be present in Siegel model. Finally, imposing the Majorana condition on the Dirac superfield, 
we obtain the case of a neutral superparticle.

We adopt the notation and conventions of [24], reviewed briefly in Appendix A, where we 
also include formulae for the tensor–spinor fields used throughout the paper. We have chosen a 
four-spinor notation for supersymmetry, since this allows us to work in a unified manner with 
the four-spinor notation of the Dirac superfields. For the sake of completeness, we have included 
a section where some of our findings are written in the more common dotted-undotted spinor 
notation.
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Summarizing, in this paper we present a variant realization for the model of two massive 
superspin-1/2 multiplets, as well as the special case of just one multiplet. It is shown that this 
latter variant is equivalent to the known models based on chiral spinor superfields. The distinctive 
feature of our proposal is the introduction of auxiliary spinor component fields that in turn leads 
to a description of the physical fields in terms of their lowest dimensional representation. The 
explicit relation between or model and those described in [16,17] is currently under investigation 
and will be presented elsewhere.

The paper is structured as follows. Section 2 deals with the general properties of Dirac su-
perfields. The details of the tensor–spinor fields are studied in Section 3 and the supersymmetric 
free Lagrangian is constructed in Section 4. In Section 6 we give expressions for the interacting 
potential of a super Yukawa kind. Reality conditions on the superfields are presented in Section 7. 
Section 8 is devoted to show some of our results in a two-spinor notation. Finally our conclusions 
are offered in Section 9.

2. Dirac superfields

The superspin one-half superparticle consists of states with spin 
(

1
2 ,

1
2 ,0,1

)
(note that super 

antiparticles can be different from their superparticles). The corresponding propagating fields are 
denoted by(

χ+)
α
,

(
χ−)

α
, φ, aμ . (1)

We insert the Dirac field 
(
χ+)

α
in the zeroth order fermionic component of a (+)-chiral super-

field 
(
�+)

α
. Similarly, 

(
χ−)

α
is embedded in a (−)-chiral superfield 

(
�−)

α
. The signs (±)

refer to the chirality conditions

1
2

[
(I ∓ γ5)D

]
β

(
�±)

α
= 0 , (2)

where Dα is the four-spinor superderivative. The rest of the component fields are the auxiliary 
Dirac fields G+ and G−, and a tensor–(four)spinor field ξβα that contains the physical fields φ
and aμ. Specifically, the superfields are defined by the expansion(

�±)
α

≡ (
χ±)

α
− √

2 (ϑ± · γ5 ξ)α + ϑ · ϑ±
(
G± + /∂χ∓)

α
, (3)

with 2ϑ± = (I ± γ5)ϑ . The dot product between two 4-spinors ϑ and ϑ ′ is defined by the 

relation ϑ · ϑ ′ = ϑᵀεγ5ϑ
′. Notice that the mass dimension of (3) is 

[
3
2

]
. Having /∂χ∓ in the 

F±-term (given as the coefficient of ϑ · ϑ±) is well-defined, since under infinitesimal supersym-
metric transformations, both the zeroth order term in the fermionic expansion of a (±)-chiral 
superfield, and the second order term in the expansion of a (∓)-chiral superfield, transform lin-
early in ϑ±. This shift will be essential to obtain a first order derivative theory for fermion fields 
off-shell; the coefficients accompanying these derivative terms are chosen for later convenience. 
Component fields transform under an infinitesimal supersymmetry transformation as

δχ±
α = √

2
(
ϑ̃± · γ5 ξ

)
α
,

δG±
α = −√

2
(
ϑ̃∓ · γ5

[
/∂ ξ + ξ

←−
/∂ ᵀ

])
α
,

δξαβ = √
2

+,−∑{(
γ5/∂ϑ̃−ε

)
α

(
χε

)
β

+
(
γ5ϑ̃ε

)
α

(
Gε + /∂χ−ε)

β

}
. (4)
ε
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Here ϑ̃ stands for the infinitesimal fermionic parameter and (· · · )←−/∂ = ∂μ (· · · ) γ μ. The Dirac 
adjoint of the superfield is defined by the relation

�̄± (x,ϑ) ≡ [
�∓ (x,ϑ)

]†
β , (5)

and reads(
�̄±)

α
= (

χ̄∓)
α

− √
2
(
ϑ± · ε ξ̄)

α
+ ϑ · ϑ±

(
Ḡ∓ − χ̄±←−

/∂
)
α
, (6)

where ξ̄ = βξ∗β . From the point of view of Poincaré invariance the tensor–spinor field forms 
a reducible representation. However, from the point of view of supersymmetry, the Dirac su-
perfields are irreducible since they contain 16 fermionic and 16 bosonic complex components 
(unless further constraints are considered).

3. Tensor–spinor fields

In order to identify the propagating fields in ξαβ , we study this tensor–spinor field in the 
interaction picture. To do so we use the methods of Weinberg [18], where the momentum wave-
functions for the annihilation part of the free field is given by the product 2p0uα (p, σ )uβ (p, σ̃ )
of two Dirac spinors (the corresponding product for the creation part is 2p0 vα (p, σ ) vβ (p, σ̃ )). 
As each spinor index carries a spin one-half, the general particle content for this field consists of 
a particle (and its antiparticle) of spin in the tensorial representation 1

2 ⊗ 1
2 . By construction, ξ

satisfies two Dirac equations:

(/∂ + mD) ξ
phys = 0,

[
ξphys

]
εγ5

(
−←−
/∂ + mD

)
= 0 , (7)

where mD stands for the (degenerate) supermultiplet mass. The propagator for this field reads

(−/∂ +mD)αα′ (−/∂ +mD)ββ ′ �F (x) . (8)

We use the Clebsh–Gordan coefficients to write the states in the representation 1
2 ⊗ 1

2 as a sum 
of terms of definite zero and one spins (and similarly for the antiparticle states). The free tensor–
spinor field can be expressed in terms of the fields φ and aμ as

ξphys
(√

2εγ5

)
= (

mD φ − γ μ∂μφ
)
γ5 + i

(
mDaμγ

μ − 1
4fμν

[
γ μ, γ ν

])
, (9)

with f μν = ∂μaν − ∂νaμ (more details on the derivation of this equation can be found in 
Appendix A). Extending (9) for the off-shell case, the imposition of (7) gives:

– The Klein–Gordon equation for the φ field(
� − m2

D

)
φ = 0 . (10)

– The Lorentz condition, the Proca equations and Bianchi identities for the aμ field

∂μaμ = 0, ∂μfμν − m2
Daν = 0, εμνρσ ∂νfρσ = 0 . (11)

Having identified the physical fields, we write the general off-shell ξ field (needed for super-
symmetry) as the sum of its symmetric and antisymmetric parts:

ξ = ξs + ξa . (12)
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In the covariant 4 × 4 basis 
(
I, γ5, γμ, γμγ5,

[
γμ, γν

])
, ξs and ξa are given by

√
2 ξa = (

id − mDφ γ5 + (
bμ + ∂μφ

)
γ μγ5

) [
εγ5

]
,

√
2 ξs = i

(
−mDaργ

ρ + 1
4

(
fρσ + cρσ

) [
γ ρ, γ σ

]) [
εγ5

]
. (13)

From (4) we can read the transformation rules of the fields in (13) under supersymmetry infinites-
imal transformations

δd = −iϑ̃ · γ5
[
/∂ω+

1 + ω+
2

]
,

δφ = − 1
mD
ϑ̃ ·ω+

2
,

δaμ = − i
mD
ϑ̃ · γ5

[
∂μω

−
1

+ γμω
−
2

]
,

δbμ = ϑ̃ ·
{

1
2

[
γμ, /∂

]
ω−

1 + γμω
−
2 + 1

mD
∂μω

+
2

}
,

δcμν = iϑ̃ · γ5

(
iεμνρσ ∂

ργ σ γ5ω
+
1

− 1
2

[
γμ, γν

]
ω+

2 + 1
mD

[
∂μ, γν

]
ω−

2

)
, (14)

with

ω±
1 = (

χ±)
+ + (

χ∓)
− , 2ω±

2 = (
G±)

+ + (
G∓)

− , (15)

and (· · · )± = 1
2 (I ± γ5) (· · · ). Next we ask what kind of operators, written in terms of ξ , can 

generate the free Lagrangian for the massive scalar and vector fields, and algebraic equations of 
motion for the auxiliary fields d, bμ and cμν . The answer is

Lξ0 = − 1
4mD

ξ̄
(
/∂ξ + ξ

←−
/∂ ᵀ + 2mDξ

)
. (16)

To prove this, we first introduce the Lagrangians

Lξs0 ≡ − 1

2mD
ξ̄s (mD + /∂) ξs , (17)

Lξa0 ≡ − 1

2mD
ξ̄a (mD + /∂) ξa , (18)

that decompose in the covariant 4 × 4 basis as (up to total derivative terms)

Lξa0 = d∗d + b∗
μb

μ − m2
Dφ

∗φ − ∂μφ
∗∂μφ , (19)

Lξs0 = − 1
2f

∗
μνf

μν − m2
Da

∗
μa

μ + 1
2c

∗
μνc

μν . (20)

These are the required Lagrangians for the scalar and massive vector fields, with the auxiliary 
fields completely decoupled from the propagating ones. Finally we note that their sum is equal 
to the expression (16).

4. The free supersymmetric Lagrangian

Once we have described the bosonic sector of the superfields �±, we look for the form of the 
supersymmetric free Lagrangian. We introduce the following D-terms (defined as the expansion 

coefficient of 
(

1
2

)
(ϑ · ϑ+) (ϑ · ϑ−), up to total derivatives):

1
2

[
�̄−ε�ε

]
D = −∂μχ̄ε∂μχε − ∂μχ̄

(−ε)∂μχ−ε − 1
2 ξ̄ /∂ (I + εγ5) ξ

+ ḠεGε − χ̄ (−ε)←−/∂ Gε + Ḡε/∂χ−ε , (21)
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with ε = ±. There are F±-terms that have the same dimensionality of (21):[
�̄ε/∂�ε

]
Fε

= −∂μχ̄ε∂μχε − ∂μχ̄
−ε∂μχ(−ε) − χ̄−ε←−/∂ Gε

+ Ḡ−ε/∂χε + 1
2 ξ̄ (I + εγ5)

[
ξ
←−
/∂ ᵀ

]
. (22)

The other bilinear at our disposal is[
�̄ε�ε

]
Fε

= χ̄−εGε + χ̄−ε/∂χ−ε + Ḡ−εχε + χ̄ ε/∂χε + 1
2 ξ̄ (I + εγ5) ξ . (23)

We construct the supersymmetric Lagrangian by taking linear combinations of these three 
bilinears and we adjust the constants by requiring, besides Hermiticity, the absence of terms of 
the form −∂μχ̄ε∂μχε , and the emergence of the free Lagrangians for the propagating fields, 
when the auxiliary fields are evaluated at their equations of motion. The resulting free action is1

ADirac
0 = − 1

16mD

∫
d4x d4ϑ

[
�̄−�+ + �̄+�−

+ 2δ2 (ϑ−) �̄+ (/∂ + 2mD)�
+ + h.c.

]
(24)

with the corresponding Lagrangian density

LDirac
0 = 1

4mD

+,−∑
ε

(
1
2

[
�̄−ε�ε

]
D − [

�̄ε (/∂ + 2mD)�
ε
]
Fε

)

= Lχ0 + Lξ0 , (25)

where Lχ0 stands for

Lχ0 =
+,−∑
ε

(
−χ̄ ε /∂χε + 1

4mD
ḠεGε − 1

2 Ḡ
ε χ−ε − 1

2 χ̄
(−ε) Gε

)
, (26)

and Lξ0 is given by equation (16), that is, the complete free Lagrangian reads:

LDirac
0 = −m2

Dφ
∗φ − ∂μφ

∗∂μφ − 1
2f

∗
μνf

μν − m2
Da

∗
μa

μ − χ̄ + /∂χ+ − χ̄ − /∂χ−

+ 1
4mD

(
Ḡ+G+ + Ḡ−G−) + d∗d + b∗

μb
μ + 1

2c
∗
μνc

μν

− 1
2

(
Ḡ+ χ− + χ̄− G+ + Ḡ− χ+ + χ̄+ G−)

. (27)

The equations of motion for the auxiliary fields are

G± = 2mDχ
∓, d = 0, bμ = 0, cμν = 0 . (28)

Inserting this solutions, in Eq. (27), we obtain the Lagrangian for the scalar, Dirac and vector 
massive free fields. Alternatively, we can start writing the supersymmetric equations of motion, 
that follow from the action (24) (with the definition D2± = 1

2DᵀεD±):

1
2D

2±�± ± (/∂ + 2mD)�
∓ = 0 . (29)

1 In our conventions∫
d4x[· · · ]D = − 1

2

∫
d4xd4ϑ[· · · ],

∫
d4x[· · · ]F± = ± 1

2

∫
d4xd4ϑδ2(ϑ∓)[· · · ]

with δ2(ϑ±) = 1ϑᵀεϑ± .
2
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With the help of 1
4D2∓D2±�± = −��±, we can see that these motion equations hold if and only 

if the superfields �± are simultaneous solutions of the Dirac and the “Wess–Zumino” equations:

(/∂ + mD)�
± = 0, 1

2D
2±�± = ∓mD�

± . (30)

Thus, the Dirac superfield in the interaction picture reads(
�±)free = (

χ±)free − √
2ϑ± · γ5ξ

free + mD (ϑ · ϑ±)
(
χ∓)free

, (31)

where 
(
χ±)free satisfies the Dirac equation and ξ free is of the form (9), satisfying (7). These 

interaction-picture superfields have been obtained in [19] by the noncanonical methods of Wein-
berg.

It is instructive to examine the spinor superfields and the Lagrangian contained in [16] (Siegel 
model) within the context of the present work. In Siegel model, only the right and left superfields (
�+)

+α and 
(
�−)

−α are introduced (including their adjoints),(
�±)

±α = (
χ±)

±α + (γ5ϑ)±α (ξ0 ± ξ5)

− 1
4ξμν

([
γ μ, γ ν

]
γ5ϑ

)
±α + ϑ · ϑ±

(
G± + /∂χ∓)

±α . (32)

In writing the tensor ξ±α,±β , we have used the fact that only the projection (0, 0)2 ⊕
[(1,0)⊗ (0,1)] of the Lorentz group appears. The fields ξ0, ξ5 and ξμν correspond to the coeffi-
cients of I, γ5 and 1

4

[
γ μγ ν

]
in the 4 × 4 covariant basis, respectively. For the massive case, just 

by counting degrees of freedom, we can see that all component fields are propagating except for 
one scalar field. The free supersymmetric action of Siegel model is written as follows

ASiegel = 1
4

∫
d4xd4ϑ G∗G −

(
m2

D/2
)∫

d4x d2ϑ+ �̄+�++ + h.c. (33)

where

G = D · (�+ + �−) = (
D+ ·�++ + D− ·�−−

)
. (34)

In terms of the fermion fields

η+
α = √

2mD
(
χ+)

+α + 1√
2

(
G+)

−α , η−
α = √

2mD
(
χ−)

−α + 1√
2

(
G−)

+α , (35)

and the bosonic fields

ξ0 = 1
2D, ξ5 = 1

2 A, ξμν = 1
2
√

2
B̃μν , (36)

the supersymmetric action (33), expressed in components, reads:

ASiegel = (−)
∫
d4x

[
η̄+ (/∂ + mD) η

+ + η̄− (/∂ + mD) η
−]

+
∫
d4x

[
∂μB̃∗

μν ∂ρB̃
ρν + m2

DB̃
∗
μνB̃

μν − ∂μA
∗∂μA − m2

DA
∗A + D∗D

]
.

(37)

Therefore, one of the main differences between Lagrangians (24) and (37), is that in the former 
case, the spin one particle is propagating through a vector field, while in the later case, through a 
second-rank antisymmetric tensor. We can see that the free superfields 

(
�±±

)free
are in agreement 

with the free superfields reported in [19].
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Written in terms of the dual tensor field Bμν = 1
2ε

μνρσ B̃μν , the Lagrangian for the spin-one 
particle is [25]:∫

d4x
(
∂μB̃∗

μν ∂ρB̃
ρν + m2

DB̃
∗
μνB̃

μν
)

= −
∫
d4x

(
1

6
F ∗
μνρF

μνρ + m2
DB

∗
μνB

μν

)
, (38)

with

Fμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν . (39)

The introduction of the right and left superfields 
(
�+)

−α and 
(
�−)

+α in the Lagrangian (24), 
enables us to express the particles of the supermultiplet as the lowest mass dimension fields 
(scalar, Dirac and vector), at the expense of introducing more auxiliary fields (including 
fermionic).

The model in [16] describes a 8 + 8 realization of supersymmetry, whereas our model (due to 
the extra superfields) constitutes a 16 +16 realization. An analogous analysis can be made for the 
model in [17] (which has the same number of off-shell fermionic degrees of freedom as [16]), in 
this case, the spin particle is propagating through a vector field and the spin zero particle through 
3-form field (�μνρ).

Before closing this section, we comment on the other approaches that do not make use of chi-
ral superfields. There are very well known models for superspin one-half in which the component 
propagating fields have minimal mass dimensions [16,26,27]. They are based on unconstrained 
scalar superfields (usually taken to be real). Recent works constructed with these type of super-
fields include the introduction of auxiliary superfields, the superspin one and three-halves cases, 
and models with complex mass parameters [5–7,11–15]. (For an alternative gauge formulation 
of the massive superspin-1/2 multiplet, see [9].) Among their component fields, these models 
feature the vector field for the spin one particle, and consequently they are known as the vector 
multiplet models (tensor multiplet for case of the three-half superspin). The simplest prototype 
of these kinds of models is based on a unconstrained superfield V [16,26,27]. In this case, three 
of the four scalar component fields of V are auxiliary, and the rest of the components are propa-
gating fields. The models containing the scalar superfield V and those built with the chiral spinor 
superfields �±± are equivalent even in the presence of supergravity [16,26,27]. However, as far 
as we know, it is not clear if this duality holds for arbitrary potentials of V .

5. Superpropagators

On general grounds, we would expect the couplings of the antisymmetric propagating field 
Bμν of Siegel massive model to possess one degree more of UV divergence with respect to 
the propagating vector field aμ of the Dirac superfields, but in a supersymmetric theory, we 
have to keep in mind that the auxiliary superfields also contribute to the correlation functions in 
superspace. In this section, we show that not only the superpropagators of the two mentioned 
models (with actions (24) and (33)) possess the same degree of divergence, but (in essence) they 
coincide.

An attractive feature of models with superfields that are only the restricted by their super-
symmetric chiral condition is the fact that path integrals can be easily implemented. Upon the 
identification(

�±) = D2 (
S±)

, �̄± = −D2 (
S̄±)

, (40)

α ∓ α ∓ α
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we can integrate over a set of four-spinor general superfields �α = (S+, S−)α , without further 
constraining the integral functional [24]. The corresponding Green functions can be extracted 
from functional integrals of the form

1

Const.

∫ [∏
c

d�̄cd�c

](
�̄a1 . . . �̄an�b1

. . .�bn

)
exp

[
−i

∑
ab

Dab�
∗
a�b

]
, (41)

with a, b, a1, . . . , bn running over continuous and discrete indices. The free action is always 
invariant under

δ�α =
∑
β

(
D+β ηβα,D−β τβα

)
, (42)

for arbitrary superspace functions ηβα and τβα . Thus, the superpropagator �ab ≡ 〈�a�̄b〉 sat-
isfies the relation 

∑
c Dac�cb = Paδab , where δab is a product of Dirac and Kronecker delta 

functions and P is the chiral projection matrix

P = 1

−4�

(
D2+D2− 0

0 D2−D2+

)
. (43)

Once the general structure of �ab has been determined, from Eq. (40) we can straightforwardly 
obtain the superpropagators for the fields �± and �̄±. In terms of the general superfields (40), 
the free action (24) reads

ADirac
0 = 1

16mD

∫
d4xd4ϑ

[
S̄−D2+D2−S+ + S̄+D2−D2+S−

− 2
(
S̄+ (/∂ + 2mD)D2−S+)

+ 2
(
S̄− (/∂ + 2mD)D2+S−)]

, (44)

and the relevant superpropagators of the model become〈
�±
α (z1) �̄

∓
β (z2)

〉
= (−i) (−/∂ + mD)αβ �F

(
x±

12

)
, (45)

〈
�±
α (z1) �̄

±
β (z2)

〉
= ±(−i)2δ2 [

(ϑ1 − ϑ2)±
]

× {
mD (−/∂ + mD)αβ �F

(
x±

12

) + δαβδ
(
x±

12

)}
, (46)

with �F (x) as the Feynman massive propagator and(
x±

12

)μ = x
μ
1 − x

μ
2 + (ϑ2 − ϑ1) · γ μ (

ϑ2∓ + ϑ1±
)
. (47)

Notice that the superpropagators in (45) and (46) can be directly compared with those of the 
Wess–Zumino model, as both cases can be written in the form

(−i)P (−i∂)�F

(
x±

12

)
, (∓2i) δ2 [

(ϑ1 − ϑ2)±
]
P̃ (−i∂)�F

(
x±

12

)
, (48)

where the Wess–Zumino case is recovered through the relation P(−i∂) = P̃ (−i∂)/mS = 1 while 
the Dirac case follows from

P(−i∂) = (−/∂ +mD), P̃ (−i∂) = mDP(−i∂) +
(
m2

D − �
)
. (49)

Working in the same lines to obtain the superpropagators of the Siegel model (discussed at 
the end of Section 4), we find
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〈�±±α (z1) �̄
±
±β (z2)〉 = ±2δ2 [

(ϑ1 − ϑ2)±
](

2m2
D − �

)
δ±α,±β�F

(
x±

12

)
〈�±±α (z1) �̄

∓
∓β (z2)〉 = (−/∂)±α,∓β �F

(
x±

12

)
. (50)

Recall that the subscripts + and − represent left and right projections, respectively, and note 
that the left and right projections of the superpropagators (45) and (46) are the same as the 
superpropagators (50).

We conclude this section pointing out that the superpropagators obtained in the present work 
are consistent with those reported in [19].

6. Super Yukawa interactions

The purpose of this section is to outline the form of possible interaction potentials. We intro-
duce the scalar superfields �+ and �−

�± = z± − √
2ϑᵀ

±ε λ + ϑ · ϑ±R± , (51)

with their corresponding free Lagrangian

LScalar
0 = 1

2

+,−∑
ε

[
�∗ε�(−ε)]

D
− ms

+,−∑
ε

[
�∗(ε)�ε

]
Fε

= −
+,−∑
ε

∂μz
ε∗∂μzε − λ̄/∂λ +

+,−∑
ε

Rε∗Rε

− ms

(+,−∑
ε

(
zε∗R−ε + Rε∗z−ε

) + λ̄λ

)
, (52)

and �∗∓ (x,ϑ) = [
�± (x,ϑ)

]∗. In order to construct the trilinear superpotential for scalar and 
Dirac superfields, we have at our disposal several combinations formed out of �+ and �∗+ and 
left–right projections of the bilinears 

(
�̄+)

α

(
�+)

β
and 

(
�+)

α

(
�+)

β
. As an example we take

W = h�+�̄+ [
1
2 (I − γ5)

]
�+ , (53)

whose F+-term reads

[W]F+ = hR+χ− (
χ+)

− + hz+
(
χ− (

G+ + /∂χ−)
− +

(
Ḡ− − χ̄+←−

/∂
)(
χ+)

−
)

+ 1
4 hz

+ ξ̄ (I + γ5) ξ (I − γ5) + h ξ̄ (λ)+
(
χ+)

− − (ελ)+
(
χ−

)
− ξ . (54)

In terms of the expansion for ξαβ we have

1
4h ξ̄ (I + γ5) ξ (I − γ5) = −h (

i mDa
∗
μ + b∗

μ + ∂μφ
∗) (

i mDa
μ + bμ + ∂μφ

)
,√

2 (λ)+ ξ̄
(
χ+)

− = λ+ · γ5γ
μ

(
i mDa

∗
μγ5 + b∗

μ + ∂μφ
∗) (

χ+)
− ,

√
2 (ελ)+ ξ

(
χ−)

− = (
χ−)

−
(−i mDaμγ5 + bμ + ∂μφ

)
γ μ (λ)+ . (55)

The non-appearance of the strength tensor fμν is only due to the fact that we have chosen the 
left projection for the superfield �+. We note that the algebraic solutions to the auxiliary fields 
become non-polynomial in the interacting theory. Although the introduced super Yukawa poten-
tial possesses non-renormalizable interactions, we should expect that due to non-renormalization 
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theorems, their ultraviolet behavior will improve. The coupling (53) shows an explicit difference 
between the model of Siegel and ours, this interaction superpotential is not available in the former 
case, since only left and right superfields �−− and �++ are introduced.

7. Reality conditions

In considering two superfields with opposite chirality for the scalar and Dirac cases, we have 
allowed for the whole supermultiplet to carry internal non trivial quantum numbers. To recover 
the usual Majorana field from the linear term of the scalar superfield, we must impose the reality 
condition �∗± = �±, from which we have(

z+
)∗ = z−,

(
R+)∗ = R−, λ = −εγ5βλ

∗ . (56)

For the Dirac superfield, we impose the Majorana Condition

�̄±
α = (

εγ5�
±)

α
(57)

that in terms of its components reads(
χ+)∗ = −εγ5βχ

−,
(
G+)∗ = −εγ5βG−, ξ = −εγ5 ξ̄ εγ5 . (58)

This last condition implies the following relations for the bosonic fields

d = d∗, φ = φ∗, bμ = b∗
μ, aμ = a∗

μ, cρσ = c∗ρσ . (59)

Therefore, the bosonic propagating and auxiliary fields become all real. Since any Dirac super-
field can be written as the sum of two Majorana superfields, expression (25) splits into two copies 
of the Lagrangian for Majorana superfields.

By identifying

� =�+, �̄ = �̄−, �− = �̄εγ5, �̄+ = −�ᵀεγ5 , (60)

the action in Eq. (24) for the case of only one superspin one-half multiplet, can be written entirely 
in terms of only the Dirac chiral superfield � (D+� = 0) and its Dirac adjoint �̄ (D−�̄ = 0) as 
follows:

A0 = − 1
16mD

∫
d4x d4ϑ

[
�̄� − δ2 (ϑ−) � · (/∂ + 2mD)� + h.c.

]
. (61)

The corresponding component Lagrangian, is (27) with the complex fields evaluated at (58)
and (59).

8. Two component notation

Through the manuscript, we have adopted the 4-spinor component notation of [24]. In 
this section, we rewrite some of our findings in the corresponding 2-spinor dotted-undotted 
(Van der Waerden) notation, for the case of the Majorana chiral superfield. For every index 
α = 1, 2, 3, 4, we introduce an undotted index (a = 1, 2) and dotted index (ȧ = 1̇, ̇2) to rep-
resent the right projection (+α) and the left projection (−α) of the 4-spinor α, respectively. The 
4-spinor variable ϑα and the 4-spinor superderivative, in terms of dotted-undotted indices, are 
expressed as

ϑα =
(
θa
θ̄ ȧ

)
, Dα =

(
Da

D̄ȧ

)
. (62)
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The inner product between two undotted two-spinors va and v′
a is given by

vv′ = vav′
a = −vav′ a . (63)

We have used eab, the two-dimensional totally antisymmetric tensor (e12 = +1), to raise the 
index of v′

a . The tensor eab, satisfies eabebc = δca . Similar remarks apply for dotted-spinors. To 
convert the four by four matrices γ μ and �μν = (−i/4) 

[
γ μ, γ ν

]
into two-dimensional notation, 

we apply the following substitution rules:

γ
μ
+α−β → −i (σμ)

aḃ
, γ

μ
−α+β → −i (σ̄ μ)ȧb

�
ρσ
+α+β → (

σρσ
) b

a
, �

ρσ
−α−β → (

σ̄ ρσ
)ȧ
ḃ
. (64)

Considering the Majorana superfields of the Section 7, we write

�+ = 2
√

2mD

(
ϕa
ψ̄ ȧ

)
, �̄− = 2

√
2mD

(
ψa ϕ̄ȧ

)
,

�− = 2
√

2mD

(
ψa
ϕ̄ȧ

)
, �̄+ = 2

√
2mD

(
ϕa ψ̄ȧ

)
, (65)

where the above two-component superfields satisfy the chiral conditions (see Eq. (2)):

D̄ḃ ϕa = D̄ḃ ψ̄ ȧ = Db ψa = Db ϕ̄
ȧ = 0 . (66)

These two-spinor superfields, can be expanded in components as

ϕa = ηa + θa h + θbfab + θθ
(
τa − i

(
σμ

)
aḃ
∂μζ̄

ḃ
)
, (67)

ψ̄ ȧ = ζ̄ ȧ + θb g
ȧb + θθ

(
κ̄ ȧ − i

(
σ̄μ

)ȧb
∂μηb

)
, (68)

with fab = fba . The supersymmetric action (24) for the Majorana case, written in terms of these 
superfields, is

A
Majorana
0 = −(1/4)

∫
d4x d2θ d2θ̄

[
ψaϕa + ϕ̄ȧψ̄

ȧ
]

−
∫
d4x d2θ

[
1
2 ϕ

a←→∂ aḃ ψ̄
ḃ + mD

(
ϕaϕa + ψ̄ȧψ̄

ȧ
)]

+ h.c. (69)

where 
←→
∂ aḃ = −i

(−→
∂ μ + ←−

∂ μ
)(
σμ

)
aḃ

. The relation between the component fields (χ+
α , G+

α , 

d , φ, aμ, bμ, cμν ) and the set (ηa , ζ̄ ȧ , h, gaḃ, fab), carrying Dirac–Lorentz and dotted–undotted 
indices, respectively, is given by

χ+
α = 2

√
2mD

(
ηa
ζ̄ ȧ

)
, G+

α = 2
√

2mD

(
τa
κ̄ ȧ

)
, (70)

and

h = 2
√

2mD (id − mDφ) ,

gȧb = 2
√

2mD
(
σ̄μ

)ȧb (
mDa

μ − ibμ − i∂μφ
)
,

fab = −2
√

2mD
(
σμν

)
ab

[
fμν + cμν

]
, (71)

with f μν = ∂μaν − ∂νaμ. All fields with Lorentz indices (including scalars) are real [see 
Eq. (59)] and the remaining fields χ− and G− are defined according to Eq. (58).
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To obtain the massive one-half superspin model of Ref. [16], we only consider one chiral 
superfield:

φa = ηa + θa (A + iB) + θbFab + θθ
(
χa − i

(
σμ

)
aḃ
∂μη̄

ḃ
)
, (72)

with A = A∗, B = B∗ and Fab = Fba . The propagating fields are ηa, A, Fab , while B is an 
auxiliary superfield. They do not satisfy any additional constraints. The spin 1 boson is encoded 
in the real second-rank antisymmetric field B̃μν ,

Fab = −(1/2
√

2)
(
σμν

)
ab
B̃μν . (73)

Since this tensor field does not satisfy the Bianchi equations, it cannot be decomposed as deriva-
tives of a vector field [the free action for this field is given by Eq. (38)]. The supersymmetric 
action (33), in a two-spinor notation (for the case of the neutral superparticle) acquires the form

ASiegel = − 1
4

∫
d4xd2θd2θ̄

(
Daφa + D̄ȧφ̄ȧ

)2 −
(
m2

D
/2

)∫
d4x d2θ φaφa + h.c.

(74)

or alternatively:

ASiegel = − 1
4

∫
d4xd2θd2θ̄

[
φa

←→
∂ aḃ φ̄

ḃ
]

+ 1
4

∫
d4xd2θ

[
φa

(
� − 2m2

D

)
φa

]
+ h.c.

(75)

One of the main differences between the actions (69) and (75), is that the introduction of an 
extra superfield ψ̄ ȧ allows to dispense of an extra derivative operator in the bilinear terms of 
the supersymmetric Lagrangian. Note that the first term of the superpotential in (69), mix the 
superfields ϕa and ψa , making impossible to split (69) into separate actions for each superfield. 
It cannot be stressed too strongly, that the differences between the model of Siegel and ours, will 
only appear in an interacting theory, as exemplified in Section 6.

9. Conclusions

In this paper we have constructed the theory for massive Dirac chiral superfields by elimi-
nating the second order derivatives in fermionic fields from the free Lagrangian. The strategy 
employed, in order to identify the propagating and auxiliary bosonic fields, was to look for the 
most general tensor–spinor field in the interaction picture and then promote it to the off-shell 
case.

The Dirac superfields are only constrained by the (supersymmetric) chiral conditions, in con-
trast to the case of a massless superhelicity one-half supermultiplet, where strength superfields 
satisfy supersymmetric Bianchi identities instead.

We also show that the mass parameter appears explicitly in the bosonic propagating fields; 
this feature is not exclusive of this formulation [16]. We point out that our formulation differs 
crucially from the known models for superspin one-half: in those models the elimination of the 
auxiliary fields restores the free Lagrangian of the bosonic sector, whereas in our case it does it 
for fermions. In this sense, our model resembles the Wess–Zumino model, as in both models the 
zeroth and second order components of the chiral superfields are the propagating and auxiliary 
fields, respectively. The similarity however is not present in the linear component.

A key ingredient of our formulation is the introduction of Dirac derivative terms in the 
F -terms of the superfields. Without them, the Dirac kinetic term would only appear after the 
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elimination of the auxiliary fields, thus leading to second order fermions off-shell, an undesired 
feature.

Our result is very simple in the sense that we have added to the Lagrangian one more super-
symmetric bilinear with respect to the free Wess–Zumino model. Besides, we have shown that 
the free theory of our model is equivalent to the current known models of massive one-half su-
perspin. Indeed, the free bare superpropagators of Siegel model and ours coincide. Interestingly, 
the presence of only one superderivative operator in our framework can potentially lead to a 
different behavior with respect to Siegel model (where two superderivatives are present) when 
supergravity effects are taken into account (this case is currently under investigation).

The formalism presented includes the case where the Dirac superfield satisfies the Majorana 
condition, reducing its dynamical components to two Majorana fields, a real scalar, and a real 
vector. An interaction theory with a super Yukawa coupling has been presented in terms of the 
off-shell component fields. We have shown that this coupling can not be present in Siegel model. 
Further study on the renormalization group equations for the couplings of the model is required. 
In particular it would be interesting to determine if this class of models can provide a scenario, 
besides that of spontaneously broken gauge symmetries, for renormalizable theories with massive 
vector fields.

Another attractive direction for future study consists on applying the present formalism to 
more general cases with arbitrary odd-superspin. An interesting example is the superspin three-
halves with Rarita–Schwinger chiral superfields, in which the bosonic sector contains massive 
vectors and gravitons.

Finally, for the superspin one-half case, a full equivalence between the canonical and path 
integral methods of this work and the non-canonical formalism presented in [19] has been estab-
lished from the structure of the superpropagators and the explicit form of the interaction picture 
superfields.
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Appendix A. Notation and conventions

In this appendix we provide formulae for the spinor–tensor fields that are used throughout 
the paper, we include the derivation of relation (9) for the tensor–spinor field in the interaction 
picture. First we establish our notation and conventions.

Dirac indices are labeled by α, α′, β, β ′, etc., Lorentz indices by μ, ν, μ′, ν′, etc. We take the 
Lorentz metric as ημν = diag (1,1,1,−1) and the anticommutator of γ -matrices is given by 
{γ μ, γ ν} = 2ημν . We stick to the representation

γ 0 = −i
(

0 I

I 0

)
= −iβ, γi = −i

(
0 σi

−σ 0

)
, γ5 =

(
I 0
0 −I

)
, (A.1)
i
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ε =
(
e 0
0 e

)
, e =

(
0 1

−1 0

)
. (A.2)

The matrices β and εγ5 satisfy

βγ μ = −γ μ†β, εγ5γ
μ = −γ μᵀεγ5 . (A.3)

These are the same conventions of [24], except for left and right spinors, which we label with 
subindices plus and minus, respectively.

We expand the tensor–spinor ξαβ in the 4 × 4 covariant basis 
(
I, γ5, γμ, γμγ5,

[
γμ, γν

])
as

√
2ξ =

(
ξ0 + ξ5γ5 + ξργ

ρ + ξ5ργ
ργ5 + 1

4ξρσ
[
γ ρ, γ ρ

]) [
εγ5

]
. (A.4)

The Dirac adjoint of ξ is

ξ̄ ≡ βξ∗β , (A.5)

and its expansion in the invariant basis reads
√

2 ξ̄ = [−εγ5
](
ξ∗

0 − ξ∗
5 γ5 + ξ∗

μγ
μ + ξ∗

5μγ
μγ5 + 1

4ξ
∗
μν

[
γ μ, γ ν

])
. (A.6)

Let ξ̄ and ξ ′ be two tensor–spinors, we adopt the following notation for the trace of their 
product:

ξ̄ ξ ′ ≡
∑
αβ

ξ̄αβ ξ
′
αβ . (A.7)

In terms of the symmetric and antisymmetric parts of the tensor–spinor fields

ξ = ξa + ξs, ξa = −(ξa)ᵀ , ξs = (ξs)
ᵀ , (A.8)

we can write

√
2 ξa = (

ξ0 + ξ5γ5 + ξ5ργ
ργ5

) [
εγ5

]
,

√
2 ξs =

(
ξργ

ρ + 1
4ξρσ

[
γ ρ, γ σ

]) [
εγ5

]
,

√
2 ξ̄a = [−εγ5

](
ξ∗

0 − ξ∗
5 γ5 − ξ∗

5μγ
μγ5

)
,

√
2 ξ̄s = [−εγ5

] [
ξ∗
μγ

μ + 1
4ξ

∗
μν

[
γ μ, γ ν

])
. (A.9)

Notice that ξ̄a,s = (
ξa,s

)
. For any 4 × 4 matrix Mαβ , the relation

1
2 ξ̄

(
M ξ ′ + ξ ′Mᵀ) = ξ̄aM ξ ′

a + ξ̄sM ξ ′
s (A.10)

holds. In the particular cases M = I, /∂ ; each term on the right side of (A.10) gives

− 1
2 ξ̄aξ

′
a = ξ∗

0 ξ
′
0 − ξ∗

5 ξ
′
5 + ξ∗

5μξ
′μ
5 ,

− 1
2 ξ̄sξ

′
s = −ξ∗

μξ
′μ + 1

2ξ
∗
μνξ

′μν,
− 1

2 ξ̄a/∂ξ
′
a = ξ∗

5 ∂μξ
′μ
5 − ξ

μ∗
5 ∂μξ

′
5,

− 1 ξ̄s/∂ξ
′ = ξ∗∂μξ ′μν + ξμν∗∂μξ ′ . (A.11)
2 s ν ν
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When ξαβ is of the form ψαχβ we have

2
√

2 ξ0 = ψᵀεγ5χ, 2
√

2 ξ5 = ψᵀεχ,

2
√

2 ξμ = −ψᵀεγ5γμχ, 2
√

2 ξ5μ = ψᵀεγμχ,

−16
√

2 ξμν = −ψᵀεγ5
[
γμ, γν

]
χ . (A.12)

The rest of this Appendix focuses on the decomposition of the free tensor–spinor field operator 
in terms of the scalar and vector free fields. The free causal tensor–spinor field has the form

ξ free.
αβ = (2π)−

3
2

∑
σ,σ ′

∫
d3p

(
2p0

) 1
2

{
e+ix·p b(p, σ ;σ ′)uα(p, σ )uβ(p, σ ′)

+ e−ix·p
[
bc(p, σ ;σ ′)

]∗
vα(p, σ )vβ(p, σ ′)

}
. (A.13)

The annihilation particle operator b(p, σ ; σ ′) and the creation antiparticle operator bc∗(p, σ ; σ̃ )
carry the projection (σ, σ̃ ) of spin 1

2 ⊗ 1
2 . The spinors uα and vα , are the usual Dirac wave-

functions. Let b0 and b1 be the annihilation operators of definite spin zero and one, respectively. 
Thus

b(p, σ ;σ ′) =
+1∑

σ̃=−1

C 1
2 ,

1
2

(
1, σ̃ ;σ,σ ′)b1 (p, σ̃ ) + C 1

2 ,
1
2

(
0,0 ;σ,σ ′)b0 (p) , (A.14)

where the constants in the right-hand side are the Clebsch–Gordan coefficients for the decompo-
sition of the state with angular momentum 1

2 ⊗ 1
2 into states of definite spin. Inserting (A.14) in 

(A.13) we obtain the wavefunctions for the fields that carry zero and one spins. For the former 
case we have

u0
αβ(p) ≡

√
2p0

+ 1
2∑

σ=− 1
2

1
2∑

σ ′=− 1
2

C 1
2 ,

1
2

(
0, 0 ;σ,σ ′)uα(p, σ ′)uβ(p, σ ) ,

v0
α,β(p) ≡

√
2p0

+ 1
2∑

σ=− 1
2

1
2∑

σ ′=− 1
2

C 1
2 ,

1
2

(
0, 0 ;σ,σ ′)vα(p, σ ′)vβ(p, σ ) . (A.15)

The only non-vanishing Clebsch–Gordan coefficients are

C 1
2 ,

1
2

(
0 ; 1

2 ,− 1
2

)
= (−)C 1

2 ,
1
2

(
0 ;− 1

2 ,
1
2

)
= 1/

√
2 . (A.16)

With the help of (A.12) we write u0
α,β(p) in the covariant basis (A.4) as

u0
αβ(p, σ ) = 1√

2
√

2p0

[
(m + i/p) ε

]
αβ

. (A.17)

Similarly, for the creation part we have

v0
αβ(p) = 1√

2
√

2p0

[
(m − i/p) ε

]
αβ

. (A.18)

For the spin one sector we obtain the following decomposition:
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u1
αβ(p, σ ) = −1√

2
√

2p0

[
i meμ (p,σ ) + 1

2

(
pνeμ (p,σ ) − pμeν (p,σ )

)
γ ν

]
γ μεγ5 ,

v1
α,β(p, σ ) = −1√

2
√

2p0

[
i me∗μ (p,σ ) − 1

2

(
pνe

∗
μ (p,σ ) − pμe

∗
ν (p,σ )

)
γ ν

]
γ μεγ5 ,

(A.19)

where (σ = −1,0,+1) and eμ (p,σ ) are the wavefunctions for massive vector fields. Finally, 
defining the scalar and vector free fields as

φfree = (2π)−
3
2

∫
d3p√
2p0

{
e+ix·p b0(p) + e−ix·p

[
b0,c(p)

]∗}
,

afree
μ = (2π)−

3
2

+1∑
σ=−1

∫
d3p√
2p0

{
e+ix·p eμ (p, σ ) b1(p, σ )

+ e−ix·p e∗μ (p, σ )
[
b1,c(p, σ )

]∗}
,

(A.20)

we arrive at (9).
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