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a b s t r a c t

The optimization of parallel applications is difficult to achieve by classical optimization
techniques because of their diversity and the variety of actual parallel and distributed
platforms and/or environments. Adaptive algorithmic schemes, capable of dynamically
changing the allocation of jobs during the execution to optimize global system behavior,
are the best alternatives for solving this problem. In this paper, we focus on non-clairvoyant
scheduling of parallel jobs with known resource requirements but unknown running times,
with emphasis on the regulation of idle periods in the context of general list policies. We
consider a new family of scheduling strategies based on two phases which successively
combine sequential and parallel execution of jobs. We generalize known worst-case
performance bounds by considering two extra parameters, in addition to the number of
processors and maximum processor requirements considered in the literature, namely,
job parallelization penalty and idle regulation factor. Furthermore, we prove that under
certain conditions of idle regulation, the performance guarantee of parallel job scheduling
in space-sharing mode can be improved.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Different types of parallel applications introduce different constraints on scheduling policies depending on their dynamic
and static characteristics. Unfortunately, in most cases there is no sufficient knowledge about applications to schedule them
efficiently based on models found in the classical theory. Moreover, real application characteristics are too complex to be
used as formal scheduling constraints. If the application constraints are unpredictable or undefined, the resource allocation
for computing jobs could be done by a scheduler based on available information such as parameters of the processors or the
operating system. However, they are also very hard to define formally.

1.1. Applications

Though scheduling problems have been studied for decades [1,3], little is known about the efficiency1 of on-line and non-
clairvoyant parallel job scheduling solutions [26,4]. Parallelism inside of applications adds a new dimension to the scheduling
problem. The manner in which the job partitioning can be done (when a job requires more than one processor at a time)
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1 Typically three groups of measures in the evaluation of the scheduling policies’ efficiency are considered: user centric, system centric and algorithmic
centric. User centric evaluation criteria such as mean turnaround time, response time, waiting time, and response ratio help to estimate the algorithms
from the point of view of parameters important for users. System centric evaluation criteria (processor utilization, throughput) help assess algorithms from
the viewpoint of the system use. Algorithmic centric evaluation criteria (competitive ratio) help to estimate the quality of scheduling algorithms.
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depends on its divisibility property. According to the classification of Feitelson et al. [6,14], two general job classes named
rigid and flexible are distinguished depending on job processor requirements. Rigid jobs include parallel jobs that require a
fixed number of processors for parallel execution: number that is not changed until the job is completed. Moldable jobs can
be run on any number of processors. However, once the number of processors has been allotted to the job it remains the
same throughout its execution [13]. Malleable jobs belong to the flexible job class and have the flexible divisible property so
that they can be divided into any number of segments of any desired fractional size. The number of processors allotted to the
job is not imposed in advance and depends on the number of processors available at the time of allocation, and on the change
in requirements or load. At any time, when more processors are available, the same job can be preempted, redistributed and
resumed on a different number of processors. Evolving parallel jobs require different number of processors during their
execution [11].

1.2. Framework for resource management

As parallel and distributed systems are being deployed to support a wide range of parallel workloads, with diverse
characteristics and varying quality-of-service requirements, scheduling becomes a challenging research issue. The variety
of job scheduling policies intended for different application/system settings has been studied in the literature [38]. It is
clear that practical scheduling solutions require a variety of models and techniques. Managing the performance of systems
through direct administrator or user adjustment of scheduling policies is impractical. One possible way to handle realistic
scheduling problems is to use a framework that can support different solutions and adapt to them on-line.

In [31], a generic adaptive scheduling strategy, called (a, b, c)-Scheme, was introduced. The scheme unifies the scheduling
of sequential jobs and jobs that may require more than one processor for their execution. It automatically adapts to the
right application granularity by using a set of three parameters: a, b and c referring respectively to system, application and
scheduling strategy characteristics. This framework appears to be a good starting point for understanding the unification
of different dynamic scheduling strategies. Preliminary results show that using the strategy it is possible to design good
approximation algorithms for scheduling parallel jobs [32].

1.3. Penalty factor

To find a trade-off between the complexity of actual parallel systems and the desired simplicity of their models for
theoretical study, we consider the model of parallel jobs based on a penalty factor. Such a model has been used in
various actual programs [2,7]. The idea is to add an overhead to the parallel execution time that includes the time lost
for communication, synchronization, preemption and any extra factors that come from the management of the parallel
execution. The penalty factor implicitly takes into account some constraints, when they are unknown or very hard to define
formally. It hides real application characteristics or computer parameters, though known, but too complex to be used as
formal scheduling constraints. It can be considered as a ratio of the ideal speedup over the observed one. The penalty of a
single job execution or workload processing can be also estimated based on an empirical analysis, benchmarking, counting,
profiling, performance evaluation through modeling or measurement, or based on the information provided by a user. In the
job model of Downey [8], the speedup function needed to estimate the penalty function is modeled using three parameters:
the average parallelism of the job, the variance in parallelism and the number of processors. Given these parameters, a
hypothetical parallelism profile can be constructed and the speedup is calculated.

Several qualitative shapes of the penalty as a function of the number of processors allotted to the job have been discussed
in the literature [2]: constant, linear, and convex. They are the most common classes when parallelizing actual numerical
applications. The constant shape of the penalty function corresponds to a system where applications achieve near linear
speedup with increasing number of processors. The linear penalty function corresponds to the logarithmic shape of a job
speedup function that exhibits speedup that mostly rises monotonically up to the certain threshold and slows down beyond
a certain number of allocated processors. The convex penalty function corresponds to the small start-up overhead. The
addition of extra processors costs minimum up to the certain threshold. Beyond the threshold the cost of the parallelism
management is increased causing reduction of the speedup. It correlates with the concave speedup function.

We exclude from analysis the applications with super linear speedup that may be obtained for some big applications
exceeding cache or available memory, and applications with speedup value less than one (that do not contain enough
parallelism or have a large parallelization overhead).

1.4. Idle regulation

The basic principle of list scheduling is a greedy method that keeps processors utilized if there are jobs ready to be
executed. Scheduling strategies that use dynamic idle regulation approaches to improve system behavior have received
some interest recently. Job partitioning to keep some processors idle was suggested in [23]. An analysis has shown its
effectiveness for non-scalable workloads, possibly with high variance in arrival rate and execution. In [17], the design and
implementation of a scheduling policy that prevents the degradation in performance due to scheduling idle processors too
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early are presented. It keeps some processors idle during some periods of time before scheduling them. Exploiting unused
time slots in list scheduling is also considered in [28].

In the work reported here, we emphasize on a simple policy based on list scheduling parameterized for the idle regulation.
We consider the general framework introduced in [34], the (a, b, c)-Scheme, where the strategies are described by a set
of parameters. The value of the first parameter a represents the number of processors allowed to be idle in the system
before switching to the second phase, b represents the type of jobs (rigid, malleable, moldable, etc.), and c represents the
scheduling strategy of the second phase (list, LPT, first fit, backfill, etc). It is important to note that the optimal settings
for these parameters are very site specific and depend on the workload, resources, and other environmental factors. In real
parallel systems, the value of the parameter a can be selected in accordance with the current system load, and provided by the
scheduler. It depends on the penalty factor of the applications, and, based on measuring runtime workload characteristics,
can adapt to the change of quality of the workload. We show that the variation of parameter a allows us to find a trade-
off between avoiding idle processors by starting the parallelization sooner when more jobs are parallelized (with a larger
overhead), and delaying their parallelization (causing processors to be left idle) until a smaller number of jobs is available.
We also show that an improvement of known worst-case performance bounds can be achieved by bounding the maximum
number of processors that can remain idle.

Several models of the workload with availability of information about jobs’ execution performance are known [8].
However, it is clear that the choice of appropriate policies must be guided at least in part by the behavior of the actual
parallel workload that is diverse and can be changed at runtime. The (a, b, c)-Scheme uses the idea of tuning the system
parameter a at runtime to optimize the system behavior, by measuring workload characteristics to estimate the penalty
factors. It can be done by post-mortem analysis of job characteristics during a certain time interval. The runtime measuring
of workload characteristics to improve job scheduling has received considerable attention in recent years. In [22], on-line
measuring of a job’s execution parameters and speedup in making production scheduler decisions was discussed. In [27],
the use of runtime measurements to improve job scheduling on a parallel machine with emphasis on gang scheduling-based
strategies was studied.

1.5. Processor allocation regulation

The number of processors chosen by the user for job execution is typically based on the nature of the job or user desire,
and does not take into account the workload characteristics of the multiprocessor system. This number is usually suitable for
light load conditions, but it leads to unacceptably low system performance at heavy load [14]. Since users cannot practically
know the system load, one possible way to optimize system behavior is to support different solutions and adapt to them at
runtime.

The idea of allocating fewer and fewer processors to each job under heavy load, thus increasing throughput, was proposed
in [15]. Maximizing application speedup through runtime selection of an appropriate number of allocated processors was
discussed in [21], where the use of a runtime system that dynamically measures job efficiency at different allocations
and automatically adjusts a job’s processor allocation to maximize its speedup was proposed. While in [20], the study
of the dynamic scheduler that uses runtime idleness information to dynamically adjust processor allocations to improve
shared memory system utilization was presented. A self-adaptive scheduling strategy in a master–worker paradigm
that dynamically adjusts the number of processors based on performance measures gathered during job execution was
considered in [16]. In [8], it was shown that, of several strategies with equivalent turnaround times, the strategy that reduces
allocation when load is high yields the lowest slowdowns. A general virtualization technique that simulates a virtual machine
of p processors on p′ < p processors and allows the execution of a parallel job that requests p processors while only p′

processors are allotted to it can be found in [25]. The technique yields good results for different network topologies. The
two-phase strategy for the processor allocation regulation in the main frame of gang scheduling was introduced in [24].
A number of gang scheduling policies for parallel and distributed systems with different resource allocation scheme have
been proposed [10,12,9,18,29,33].

1.6. Outline

The reminder of the paper is organized as follows: in Section 2, we present the notation and statement of the scheduling
problem and describe the two-phase strategy for on-line parallel job scheduling with idle regulation. The analysis of the
performance guarantee considering a specific job allocation to 1 and/or the whole m processors machine (1− m allocation
policy) is presented in Section 3. The analysis of the case when jobs allocated to a fixed number of processors (1−k allocation
policy) is discussed in Section 4. Finally, conclusions and further research directions are discussed in the last section.

2. Preliminaries

We focus on the analysis of scheduling systems where all jobs arrive at time 0 and are processed into the same batch. A
set of available and ready jobs will be executed up to the completion of the last one. All jobs that arrive during this time will
be processed in the next batch. A relation between this scheme and the scheme where jobs are released over time, either
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at their release time, or according to the precedence constraints is known, studied for different scheduling strategies for
general or restricted cases, and leads to an additional factor of 2 [30].

2.1. Scheduling problem

We consider a set of independent parallel jobs with the objective of minimizing the total execution time (makespan)
in the frame of the two-phase list scheduling strategy. The following problem is studied: given a parallel machine with
m identical processors and a set of n independent parallel jobs T = {T1, . . . , Tn} whose processing times p1, . . . , pn are not
known until their completion. The number of processors ki needed for the execution of job Ti may not be imposed (Section 3),
or fixed and known as soon as it becomes available (Section 4). We assume that the job irrespective of ki can be scheduled
either on a single processor, on m processors (if ki is not preset), and/or on requested ki processors (if ki is fixed). Real systems
support preemptions, so we assume that the job can be preempted, redistributed and migrated if necessary. Unfortunately,
it may incur large overheads. To minimize the number of preemptions we restrict our analysis to the case where the job can
be preempted once, assigned to the required number of processors, then it cannot be preempted and/or run on a different
set and/or different number of processors. Hence, the algorithms perform at most m preemptions.

A parallel job Ti is characterized by a triple Ti = {pi, ki, µ
i
k}: namely, its execution time on a single processor (the total work

done by the job), the number of requested processors ki, and the penalty factor of its parallel execution on ki processors. Its
parallel execution time is pi

k = µ
i
kpi/ki. We assume that pi

k depends non-increasingly on ki, at least for a reasonable number
of processors, and pi = pi

1. Let p̄ = max1≤i≤n{pi}, p̄‖ = max1≤i≤n{p
i
k}, k = min1≤i≤n{ki}, and k̄ = max1≤i≤n{ki}.

Calculating the speedup Sik of the execution of job Ti on k processors as pi
1/p

i
k, the penalty µi

k is considered as the ratio of
the ideal speedup over the actual one µi

k = k/Sik. We assume that the penalty factor µi
k of job Ti depends non-decreasingly

on the number of allotted processors k: µi
k ≤ µ

i
k+1 for any 1 ≤ k < m. If the job is allocated to one processor then µi

1 = 1.
Let µ̄ = max1≤i≤n{µ

i
k}, and µ = min1≤i≤n{µ

i
k}. According to a job monotonic property [36], assigning more processors to a

job decreases its execution time at least up to a certain threshold, but increases its computational area,2 hence

µp̄

k̄
≤
µ̄p̄

k̄
≤ p̄‖ ≤

µp̄

k
. (1)

Let W =
∑n

i=1 pi be the total work of all jobs, W‖ =
∑n

i=1 µ
i
kpi be the total work performed in the parallel execution, where

µW ≤ W‖ ≤ µ̄W. (2)

Let C∗
‖

denote the makespan of an optimal schedule, and C∗ denote the makespan of the optimal schedule, when the
parallelization of the jobs is not allowed. For a strategy A, let CA be the makespan of the corresponding schedule. Note that

W/m, p̄ (3)

are lower bounds of C∗, and

W‖/m, p̄‖ (4)

are lower bounds of C∗
‖
.

Assuming that the workload consists of at least m big jobs (with size k̄ and processing time p̄‖), hence W‖ ≥ mp̄‖k̄, we
obtain

C∗
‖
≥ p̄‖k̄. (5)

From (1) we get

C∗
‖
≥ p̄‖k̄ ≥ µp̄. (6)

All strategies will be analyzed according to their competitive ratios. Let ρ‖(I) = CA(I)/C∗‖(I) and ρ(I) = CA(I)/C∗(I) denote
the competitive and sequential competitive ratios of algorithm A for an instance I. To measure the overall quality of A we
define the performance of A by ρ∗

‖
= sup{CA(I)/C∗‖(I) } and ρ∗ = sup{CA(I)/C∗(I) }, respectively. The first one shows the worst

case of the ratio between the makespan incurred by an algorithm A and the best-case makespan. The sequential competitive
ratio will highlight the possible gain to allow the multiprocessing jobs compared to the classical approach of general list
scheduling where jobs are purely sequential.

2 Computational area is equivalent to the product of execution time and number of processors kip
i
k = µ

i
kpi .
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Fig. 1. The two-phase strategy with a = 4, m = 6.

2.2. The two-phase algorithm

We are interested in studying the influence of idle regulation on a general list scheduling based on a two-phase strategy.
This strategy has been introduced in [24] and considers two successive phases. In the first phase, when the number of jobs is
large, the strategy allocates processors sequentially without idle times and communications. When enough jobs have been
completed, it switches to a second phase with multiprocessor execution. In the following analysis, we assume that in the
first phase each processor has one job, each job is assigned to one processor, and thus, the processors’ utilization is 1, and
the schedule is optimal. Inefficiency appears when less than m jobs remain. In [24], another strategy is applied when the
first processor becomes idle. In this paper, we generalize this approach by introducing an idle regulation mechanism. Hence,
when the number of idle processors becomes larger than a, where 0 ≤ a ≤ m, all remaining jobs are preempted and another
strategy is applied to avoid too many idle processors. Fig. 1 illustrates this algorithm, when a special type of scheduling
called gang scheduling is considered in the second phase (1 − m allocation policy) (see Section 3). The use of parallel job
scheduling in the second phase (1− k allocation policy) is illustrated in Fig. 6 (see Section 4).

The successive phases are shown: phase 1a, when all the processors are busy; phase 1b, when at least m−a+1 processors
work (both phases use the well-known Graham’s list strategy); and phase 2, when a or more processors become idle, and,
hence, turn to a second strategy with parallel jobs. The parameter a is equal to the largest number of processors allowed to
be idle in the system before switching to the second phase. It determines the balance between the number of jobs processed
by the first and the second strategies. The sequential execution of jobs in the first phase under heavy load is a best strategy as
there is no extra overhead. In the second phase, when the load is reduced and the number of idle processors becomes equal
to or greater than a, the system changes strategy to avoid too many idle times. When such an idle regulation is used, there
is a trade-off between starting parallelization sooner, when a is small (hence more jobs are parallelized causing larger par-
allelization overhead), and delaying their parallelization, when a is big (hence causing more processors to be left idle), until
a smaller number of jobs is available. This scheme balances the needs of the user (job) with those of the computer system.

We assume that all parallel jobs can be executed sequentially irrespective of their type and the number of processors
needed for the execution. It is a reasonable assumption for many distributed and shared memory applications, in which
parallel processes can be executed sequentially (in particular, message passing processes executed by one processor, or
a load balancing scheme based on common pool of jobs easily adapted to the processors’ number). It is suitable even for
rigid jobs that cannot cope with the reducing or increasing the number of allotted processors. Rigid jobs can be executed
efficiently on one processor because of exploiting one processor communications locality.

But the assumption excludes from our consideration some class of parallel jobs, for example, synchronous shared memory
applications, where parallelism cannot be transformed efficiently to the serial execution.

3. Analysis of 1 − m allocation policy

In this section, we provide an analysis of the two-phase algorithm with idle regulation for the case 0 ≤ a ≤ m considering
a specific allocation of parallel jobs to 1 and m processors. Before deriving the general bound, we review some known results
for the restricted cases of a = 0 and a = 1 (studied in [24]). The case a = 0 corresponds to the strategy that starts from the
second phase with an allocation to m processors. The case a = m corresponds simply to list scheduling of sequential jobs
(only first phase is applied).

a = 0.
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Fig. 2. The two-phase strategy with a = 1 and m = 5.

The performance guarantees of any list algorithm for scheduling independent parallel jobs on m processors can be found
in [24]. It is shown that ρ∗

‖
≤ µ̄/µ and ρ∗ ≤ µ̄. If all jobs in the optimal solution are allocated to m processors (µ = µ̄) then

ρ∗
‖
= 1, and if they are allocated to one processor (by our assumption µ = 1) then ρ∗

‖
= ρ∗.

Lemma 1. The performance guarantees of any list algorithm for scheduling independent jobs on one processor are bounded as:
ρ∗ ≤ 2− 1

m
,ρ∗
‖
≤

1
µ
+

k̄
µ
(1− 1

m
), and ρ∗

‖
≤

1
µ
(2− 1

m
) in the case of large workload.

Proof. The proof of the first bound is straightforward and appears to rely mainly on the Graham type arguments. An idle
interval occurs when a processor does not process a job. Recall that in a greedy schedule, an idle interval can only occur if
no tasks are available for processing. Let W◦ denote the sum of lengths of idle intervals in a schedule within the time span
0 (start time of the schedule) and C (end of the schedule). With W◦ ≤ (m− 1)p̄ [37], C = W+W◦

m
≤

W+(m−1)p̄
m

that is similar to
Brent’s lemma [5], ρ∗

‖
≤

W
mC∗
‖

+
p̄
C∗
‖

(1− 1
m
) and ρ∗

‖
≤

W‖
µmC∗

‖

+
p̄
C∗
‖

(1− 1
m
).

From (3), (4) and (1), it follows thatρ∗ ≤ 2− 1
m

andρ∗
‖
≤

1
µ
+

k̄
µ
(1− 1

m
). And following assumption (6), we getρ∗

‖
≤

1
µ
(2− 1

m
),

which proves the lemma. �

Remark. If all the jobs in the optimal solution are allocated tomprocessors (µ = µ̄, k̄ = m) thenρ∗
‖
≤ m/µ̄, that corresponds

to the bound in [24], and if they are allocated to one processor then ρ∗
‖
= ρ∗.

a = 1.

Let us assume now that the strategy switches from the Graham’s strategy to Gang when a first processor becomes idle, so
a = 1 (Fig. 2). This case has been studied in [24]. It uses a combination of two extreme scheduling strategies Graham and
Gang, a combination of allocation of one processor per job and assigning the whole machine to a job (coordinated strategy).
In the first phase, when n ≥ m, each job is processed on one processor (Fig. 2a). At time t, less than m jobs remain. In order to
avoid idle processors the remaining jobs are preempted and assigned to m processors according to Gang strategy (Fig. 2b).
The performance guarantees are bounded as: ρ∗

‖
≤

µ̄
µ
(1− 1

m
)+ 1

µm
and ρ∗ ≤ µ̄

(
1− 1

m

)
+

1
m

(see Theorem 1, a = 1).

3.1. Idle regulation with a > 1

Let us assume now that the strategy switches from the Graham’s strategy to Gang when a or more processors become
idle.

Theorem 1. Given a set of n independent jobs each with a penalty factor, from µ to µ̄, allocated to one and/or to m processors,
the performance guarantees of the two-phase strategy with idle regulation by the parameter a can be estimated as:

ρ∗
‖
= max{ρ∗1

‖
,ρ∗2
‖
} and ρ∗ = max{ρ∗1,ρ∗2}, where

ρ∗1
‖
≤

1
µ

(
1+

a− 1
m

)
, ρ∗2

‖
≤
µ̄

µ

(
1−

a

m

)
+

a

µm
,
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Fig. 3. ρ∗
‖

, varying m; a = 30, (I) logarithmic speedup function and (II) linear m/2 speedup.

ρ∗1 ≤ 1+
a− 1
m

, ρ∗2 ≤ µ̄

(
1−

a

m

)
+

a

m
.

Furthermore, ρ∗1
‖

and ρ∗1 are tight in the case of m ≤ aµ̄−1
µ̄−1 ,ρ∗2

‖
and ρ∗2 are tight in the case of m > aµ̄−1

µ̄−1 .

Proof. The following are the phases of the algorithm (Fig. 2):

1a. [ 0, t) All processors are busy.
1b. [t, t′) At least m− a+ 1 processors work.

2. [ t′, t′′) a or more processors become idle, and Gang strategy is applied.

The work done in phase 1a is denoted by W1
= m · t. From time t onwards, there remain less than m unfinished jobs. Each

job not finished until t′ is executed necessarily in phase 2. Then, assuming that part of these h jobs have not been processed
in phase 1a or 1b the remaining work is equal to W2

=
∑h

i=1
(
prem
i − δ

)
≤ h (p̄− δ), where prem

i is the remaining work for the
job i, h ≤ m− a, and δ = t′ − t.

The completion time is C ≤ 1
m
W1
+ δ + µ̄ 1

m
W2. Two lower bounds of C∗ are δ and W1

+(m−a+1)δ+W2

m
. Hence W1

m
≤

C∗ − (m−a+1)
m

δ− 1
m
W2 and

C ≤ C∗ −
m− a+ 1

m
δ−

1
m

W2
+ δ+ µ̄

1
m

W2.

Assuming h jobs executed after t, it follows that C ≤ C∗ − m−a+1
m

δ+ µ̄−1
m (p̄− δ) h+ δ = C∗ +

(
a−1
m
−

µ̄−1
m

h
)
δ+ µ̄−1

m
hp̄.

Let B (a) = a−1
m

, A (h) = µ̄−1
m

h, and J (a, h) = (B (a)− A (h)) δ + A (h) p̄. We consider two different possibilities for values
of A (h) and B (a).

I. If A (h) ≥ B (a) then J (a, h) ≤ A (h) p̄. Hence C ≤ C∗+ (µ̄−1)h
m

p̄, C ≤
C∗
‖

µ
+

h
m
( µ̄
µ
−

1
µ
)p̄‖k̄, andρ∗ ≤ 1+ (µ̄−1)(m−a)

m
= µ̄(1− a

m
)+ a

m
.

From (5), ρ∗
‖
≤

µ̄
µ
(1− a

m
)+ a

µm
. A (h) ≥ B (a) when a−1

m
−

µ̄−1
m

h ≤ 0, hence h ≥ a−1
µ̄−1 . For h ≤ m− a, we obtain m− a ≥ a−1

µ̄−1

and m ≥ aµ̄−1
µ̄−1 .

II. If A (h) < B (a) then J (a, h) ≤ (B (a)− A (h)) p̄ + A (h) p̄ ≤ B (a) p̄. Hence C ≤ C∗ + a−1
m

p̄ and C ≤
C∗
‖

µ
+

(a−1)k̄
µm

p̄‖. It follows

that ρ∗ ≤ 1+ a−1
m

and ρ∗
‖
≤

1
µ
+

a−1
µm

. A (h) < B (a) when a−1
m
−

µ̄−1
m

h > 0, hence h < a−1
µ̄−1 . For h = m− a, m− a < a−1

µ̄−1 and

m < aµ̄−1
µ̄−1 . �

Remark. For a = 0, ρ∗ ≤ µ̄ and ρ∗
‖
≤ µ̄/µ correspond to performance guarantees of any list algorithm for scheduling jobs

allocated to m processors (see Section 3.1). For a = 1, ρ∗ ≤ µ̄(1− 1
m
)+ 1

m
and ρ∗

‖
≤

µ̄
µ
(1− 1

m
)+ 1

mµ
, which are equal to the

bounds of [24]. For µ̄ = 1, ρ∗ = ρ∗
‖
= 1, the jobs are parallelized without overhead. The schedule has no idle intervals and

is optimal. For a = m, ρ∗ ≤ 2− 1/m, only the Graham strategy is applied, and ρ∗
‖
≤

1
µ
(2− 1/m).

Fig. 3 shows the competitive ratio ρ∗
‖
, varying the number of processors, fixed a, logarithmic shape of a job speedup

function of m (linear penalty factor), and linear m/2 shape of a job speedup function of m (constant penalty factor of 2).
Fig. 4 presents the performance, varying the parameter a, and fixed number of processors. Both figures show that tuning

the idle times by the parameter a allows us to get the minimum of the worst-case error bound for two different workload
characteristics.

4. Analysis for 1 − k allocation policy (rigid jobs)

We provide now an analysis of the two-phase algorithm with allocation to 1 and/or to the fixed number of processors,
from k to k̄, with idle regulation by 0 ≤ a ≤ m. We study the performance with regard to the number of processors allotted
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Fig. 4. ρ∗
‖

, varying a, m = 600; (I) logarithmic speedup function and (II) linear m/2 speedup.

Fig. 5. Scheduling rigid jobs in space-sharing mode.

to a job for its execution and its penalty factor. Before deriving a general bound, we review known results of the restricted
case with a = 0 that corresponds to the strategy that starts from the second phase (scheduling rigid jobs by a list algorithm).
The case a = m corresponds to list scheduling for sequential jobs (only the first phase is applied).

a = 0.

Before going into the details of the two-phase algorithm we make some general remarks well known in the literature.

Lemma 2. The performance guarantees of any list algorithm for scheduling independent parallel rigid jobs are bounded as:

ρ∗
‖
≤

2m− k̄

m− k̄+ 1
and ρ∗ ≤

1
m− k̄+ 1

(
µ̄m+

µ

k
(m− k̄)

)
.

Proof. In the schedule, there are two kinds of time slots which can be combined conceptually into two successive intervals,
namely C1 and C2 (Fig. 5) [19,35]. Both intervals correspond respectively to the time slots when at most k̄− 1 processors are
idle, and strictly more than k̄− 1 processors are idle.

Let W‖ be a total work performed. Noticing that C2 is limited by the maximum job execution time p̄‖ (or the length of the
critical path in the case of precedence constrains [19,35]), and W‖ ≥ (m − k̄ + 1)C1 + C2, we obtain an upper bound of the
total completion time

C = C1 + C2 ≤
W‖ − C2

m− k̄+ 1
+ C2 ≤

W‖ + (m− k̄)p̄‖

m− k̄+ 1
.

From (4), it follows that ρ∗
‖
≤

2m−k̄
m−k̄+1 . Recalling (2), (3) and (1), we obtain

ρ∗ ≤
µ̄m

m− k̄+ 1
+

µ(m− k̄)

k(m− k̄+ 1)
=

1
m− k̄+ 1

(
µ̄m+

µ

k
(m− k̄)

)
. �

Remark. The result is a generalization of the well-known Graham bound. For sequential jobs we obtain the bound 2− 1/m
(no penalty: µ = µ̄ = 1, and k = k̄ = 1) and both competitive ratios coincide.

Lemma 3. The sequential performance guarantee of any list algorithm for scheduling independent parallel and sequential jobs is
bounded as: ρ∗ ≤ µ̄ 2m−k̄

m−k̄+1 .
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Fig. 6. The two-phase strategy for a = 4 and m = 9.

Proof. The proof follows directly from Lemma 2 and the assumption that k = 1.

ρ∗ ≤
1

m− k̄+ 1

(
µ̄m+

µ

k
(m− k̄)

)
≤ µ̄

2m− k̄

m− k̄+ 1
. �

4.1. Idle regulation with a > 0

Let us turn now to the case in which the strategy switches from the Graham’s strategy to parallel job scheduling when a
processors become idle (Fig. 6).

Theorem 2 (Sequential Competitivity [32]). Given a set of n independent parallel jobs with variation of the penalty factors, from
µ to µ̄, allocated to fixed number of processors, from k to k̄, the sequential performance guarantee of the two-phase strategy can
be estimated as: ρ∗ = max{ρ∗1,ρ∗2}, with ρ∗1 ≤ 1+ a−1

m
and ρ∗2 ≤ a

m
+

1
m−k̄+1 (µ̄(m− a)+

µ

k
(m− k̄)).

Proof. Let us denote by W1 the work executed until t. Each job not finished until t′ is executed necessarily in phase 2. Then,
assuming that part of these h jobs have not been processed in phase 1a or 1b, the remaining work is W2

=
∑h

i=1
(
prem
i − δ

)
≤

h(p̄ − δ), where h ≤ m − a, and δ = t′ − t. Let p̄rem
‖
= max1≤i≤n{

µi
k(p

rem
i −δ)

ki
}. Following Lemma 2 for the completion time of

phase 2, the upper bound of the total completion time C is W1

m
+δ+

µ̄W2
+(m−k̄)p̄rem

‖

m−k̄+1 . We know that W ≥ W1
+(m−a+1)δ+W2,

hence

C ≤
W

m
−

m− a+ 1
m

δ+ δ+W2
(

µ̄

m− k̄+ 1
−

1
m

)
+

(m− k̄)p̄rem
‖

m− k̄+ 1
.

Considering h jobs executed after t′, and that p̄rem
‖
≤

µ(p̄−δ)

k
, it follows that

C ≤
W

m
+

(
a− 1
m
−

(
hµ̄

m− k̄+ 1
+

(m− k̄)µ

k(m− k̄+ 1)
−

h

m

))
δ+

(
hµ̄

m− k̄+ 1
+

(m− k̄)µ

k(m− k̄+ 1)
−

h

m

)
p̄.

Let B (a) = a−1
m

, A (h) = hµ̄
m−k̄+1 +

(m−k̄)µ

k(m−k̄+1)
−

h
m

, and J (a, h) = (B (a)− A (h)) δ+ A (h) p̄. Hence, C ≤ W
m
+ J(a, h).

There are two different possibilities for values of A (h) and B (a).

I. If A (h) ≥ B (a) then J (a, h) ≤ A (h) p̄, and

C ≤
W

m
+

(
hµ̄

m− k̄+ 1
+

(m− k̄)µ

k(m− k̄+ 1)
−

h

m

)
p̄.



A. Tchernykh et al. / Discrete Applied Mathematics 157 (2009) 364–376 373

Fig. 7. ρ∗ , varying the number of processors, a = 120, k̄ = 60, k = k̄/30. (I) linear µ̄, and (II) constant µ̄.

Fig. 8. ρ∗ , varying a, m = 600, k̄ = 60, k = k̄/30, (I) linear µ̄ and (II) constant µ̄.

From (3), ρ∗ ≤ a
m
+

1
m−k̄+1 (µ̄(m− a)+

µ

k
(m− k̄)).

II. If A (h) < B (a) then J (a, h) ≤ (B (a)− A (h)) p̄+ A (h) p̄ ≤ B (a) p̄, and C ≤ W
m
+

a−1
m

p̄, hence ρ∗ ≤ 1+ a−1
m

. �

Remark. For a = 0,ρ∗ ≤ 1
m−k̄+1 (µ̄m+

µ

k
(m−k̄)) and corresponds to a sequential performance guarantee of any list algorithm

for scheduling parallel jobs (Lemma 3). For a = m, and k̄ = k = 1, ρ∗ ≤ 2 − 1/m, only the Graham’s strategy (phase 1) is
applied.

Fig. 7 shows the sequential competitive ratio ρ∗, varying the number of processors, fixed a, k̄, k, linear µ̄ (logarithmic
shape of a job speedup function of m), and constant µ̄ (linear m/2 shape of a job speedup function of m). We assume here that
the number of unfinished jobs in phase 2 is m− a. Fig. 8 presents the performance, varying the parameter a, fixed number of
processors, k̄, k, linear and constant µ̄. Both figures show that the minimum of the worst-case error bound can be achieved
by tuning the idle times.

Theorem 3 (Sequential Competitivity for a Job Mix). Given a set of n independent parallel and sequential jobs with variation of
the penalty factors, from 1 to µ̄, allocated to fixed number of processors, from 1 to k̄, the sequential performance guarantee of the
two-phase strategy can be estimated as:

ρ∗ ≤ µ̄
2m− k̄

m− k̄+ 1
− a

(
µ̄

m− k̄+ 1
−

1
m

)
.

Proof. The proof follows directly from Theorem 2 and the assumption that k = 1. We also note for any m, k̄, µ̄, k,
A (h) − B(a) = 1

m−k̄+1 (hµ̄ +
(m−k̄)µ

k
) − 1 + 1

m
≥ 0, so that A (h) ≥ B (a). Hence ρ∗ ≤ a

m
+

1
m−k̄+1 (µ̄(m − a) +

µ

k
(m − k̄))

and

ρ∗ ≤ µ̄
2m− k̄

m− k̄+ 1
− a

(
µ̄

m− k̄+ 1
−

1
m

)
. �

Theorem 4. Given a set of n independent parallel jobs allocated to a fixed number of processors, from k to k̄, with minimum
penalty factor µ, the performance guarantee of the two-phase strategy can be estimated as:

ρ∗
‖
= max{ρ∗1

‖
,ρ∗2
‖
}, with ρ∗1

‖
≤ 1+

a− 1
m

and ρ∗2
‖
≤

(2m− k̄)

m− k̄+ 1
− a

(
1

m− k̄+ 1
−

1
µm

)
.
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Fig. 9. ρ∗
‖

, varying the number of processors, a = 120, k̄ = m/2, and constant µ.

Proof. As shown in Theorem 2, the completion time of the schedule is C ≤ W1

m
+ δ +

W2
‖
+(m−k̄)p̄rem

‖

m−k̄+1 . Note that W‖ ≥

µW1
+ (m− a+ 1)δµ+W2

‖
.

It follows C ≤
W‖
µm
+

a−1
m
δ+

W2
‖

m−k̄+1 −
W2
‖

µm
+

(m−k̄)p̄rem
‖

m−k̄+1 .

Note that W2
≤ h k̄p̄rem

‖
and p̄rem

‖
≤

µ(p̄−δ)

k
. Let ¯̄p‖ =

µp̄

k
, p̄rem
‖
≤ ¯̄p‖ −

µ

k
δ, it follows

C ≤
W‖
µm
+

a− 1
m

δ+

(
hk̄

m− k̄+ 1
−

hk̄

µm
+

(m− k̄)

m− k̄+ 1

)
p̄rem
‖

,

C ≤
W‖
µm
+

a− 1
m

δ−

(
hk̄

m− k̄+ 1
−

hk̄

µm
+

(m− k̄)

m− k̄+ 1

)
µ

k
δ+

(
hk̄

m− k̄+ 1
−

hk̄

µm
+

(m− k̄)

m− k̄+ 1

)
¯̄p‖.

Let B (a) = a−1
m

, A (h) = hk̄
m−k̄+1 −

hk̄
µm
+

(m−k̄)
m−k̄+1 , and J (a, h) =

(
B (a)− A (h)

µ

k

)
δ+ A (h) ¯̄p‖. Hence C ≤

W‖
µm
+ J(a, h).

We consider two different possibilities for values of A (h) and B (a).
I. If A (h)

µ

k
≥ B (a) then J (a, h) ≤ A (h) ¯̄p‖, and

C ≤
W‖
µm
+

(
hk̄

m− k̄+ 1
−

hk̄

µm
+

(m− k̄)

m− k̄+ 1

)
¯̄p‖.

Lower bounds for an optimal schedule are (4) and (6). Hence C∗
‖
≥ µp̄ ≥

µ

k
p̄ = ¯̄p‖, and

ρ∗
‖
≤

2m− k̄

m− k̄+ 1
− a

(
1

m− k̄+ 1
−

1
µm

)
≤

2m− k̄

m− k̄+ 1
− a

( 1
m− k̄+ 1

−
1
m

)
.

II. If A (h)
µ

k
< B (a) then J (a, h) ≤

(
B (a)− A (h)

µ

k

)
p̄+ A (h) ¯̄p‖.

Note that ¯̄p‖ =
µp̄

k
, we get J (a, h) ≤ B (a) p̄, and C ≤

W‖
µm
+

a−1
m

p̄ ≤
W‖
m
+

a−1
m

p̄.
From (6) and (4), we get C∗

‖
≥ µp̄ ≥ p̄ and ρ∗

‖
≤ 1+ a−1

m
, which proves the theorem. �

Remark. For a = 0, ρ∗
‖
≤

2m−k̄
m−k̄+1 corresponds to the well-known performance guarantee of any list algorithm for scheduling

parallel jobs. For k̄ = 1, ρ∗
‖
≤ 2− 1/m, only the Graham strategy is applied.

Fig. 9 shows the competitive ratio ρ∗
‖
, varying a number of processors, fixed a, k̄ = m/2, and constantµ (linear m/2 shape

of a job speedup function of m). We assume here that the number of unfinished jobs in phase 2 is m− a.
Fig. 10 presents the performance guarantee, varying the parameter a, fixed number of processors, k̄ = m/2, and constant

µ. Changing the parameter a allows us to get the minimum of the worst-case error bound.

Theorem 5 (Competitivity for a Job Mix [32]). Given a set of n independent parallel and sequential jobs allocated to a fixed
number of processors, from 1 to k̄, the performance guarantee of the two-phase strategy can be estimated as:

ρ∗
‖
≤

(2m− k̄)

m− k̄+ 1
− a

( 1
m− k̄+ 1

−
1
m

)
.

Proof. The proof follows directly from Theorem 4, and the assumption that k = µ = 1. We also note that A (h) ≥ B (a) (see
Theorem 3), hence

ρ∗
‖
≤

2m− k̄

m− k̄+ 1
− a

(
1

m− k̄+ 1
−

1
µm

)
≤

2m− k̄

m− k̄+ 1
− a

( 1
m− k̄+ 1

−
1
m

)
. �
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Fig. 10. ρ∗
‖

, varying a, m = 600, k̄ = m/2, and constant µ.

Table 1
A summary of performance guarantees of the two-phase strategy for the minimization of the total completion time

a Allocation ρ∗ Strategy

0 Gang ρ∗ = µ̄/µ Allocation to m processors
1 ≤ a < m 1-m-Gang ρ∗

‖
= max{ρ∗1

‖
,ρ∗2
‖
}, where

ρ∗1
‖
≤

1
µ (1+ a−1

m ),

ρ∗2
‖
≤
µ̄
µ (1− a

m )+ a
µm

Allocation to 1 and/or to m processors with idle regulation by a

0 Rigid ρ∗
‖
=

2m−k̄
m−k̄+1

Allocation to k (from k tok̄) processors

1 ≤ a < m 1-k-Rigid ρ∗
‖
= max{ρ∗1

‖
,ρ∗2
‖
}, where

ρ∗1
‖
≤ 1+ a−1

m ,

ρ∗2
‖
≤

(2m−k̄)
m−k̄+1

− a( 1
m−k̄+1

−
1
µm )

Allocation to 1 and/or to k (from k to k̄) processors with idle
regulation by a

1 ≤ a < m 1-k-Rigid &
serial

ρ∗
‖
≤

(2m−k̄)
m−k̄+1

− a( 1
m−k̄+1

−
1
m ) Allocation to 1and/or to k (from 1 to k̄) processors with idle

regulation by a

5. Conclusions

We have focused on non-clairvoyant scheduling of parallel jobs with emphasis on the regulation of idle periods in the
context of general list policies. Adaptive schemes that are capable of dynamically changing the scheduling algorithm during
the execution to optimize the global system behavior are proposed. Algorithms that have no knowledge about jobs other
than the number of unfinished jobs in the system and their processor requirements are considered. Batch scheduling under
a two-phase generic framework is used. It successively combines sequential and parallel job execution in space-sharing
mode. A framework extension with capability of idle regulation is introduced.

The main contribution is towards solving the problem of dynamic scheduling of idle intervals on parallel machines
by introducing a model that captures some important aspects of the practical scheduling problem. Jobs that are not fully
parallelizable are included. The model of parallel job based on a penalty factor is applied to reduce the complexity of real
parallel systems and simplify their theoretical study. We have generalized the known worst-case performance bounds by
considering two extra parameters: job parallelization penalty and idle regulation, in addition to the number of processors
and maximum processor requirements considered in the literature. We have showed that tuning the parameter for
regulating idle times improves scheduling performance guarantees. A trade-off between avoiding idle processors by starting
parallelization sooner when more tasks are parallelized (increasing total overhead), and delaying their parallelization
(causing processors to be left idle) until a smaller number of jobs is available can be found. The parameter a can be
calculated based on runtime measuring workload characteristics, and adapted to the change of the workload quality on-
line. A summary of the results can be found in Table 1. It shows that within the proposed model it is possible to design good
parallel job scheduling approximation algorithms whose qualitative behavior can be estimated. Performance guarantees of
job scheduling in space-sharing mode can be improved under certain conditions of idle regulation.

Several problems remain open: firstly, theoretical and experimental analysis of the idle regulation with more variations
of job scheduling strategies (largest job first, backfill, etc.), and optimization criteria, both system centric (utilization,
throughput, etc.) and user centric (waiting time, turnaround time, etc.). Secondly, the analysis of the system in a practical
scheduling environment that supports dependent jobs, and jobs that can arrive at any moment. Also of interest is the
application of the proposed scheme to the set of malleable jobs.
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