Available online at www.sciencedirect.com

ScienceDirect

HOSTED BY

JOURNAL OF
COMPUTATIONAL
DESIGN AND
ENGINEERING

Journal of Computational Design and Engineering 2 (2015) 183-194
www.elsevier.com/locate/jcde

Thickness and clearance visualization based on distance field of 3D objects

Masatomo Inui, Nobuyuki Umezu™®, Kazuma Wakasaki, Shunsuke Sato

Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan

Received 28 January 2015; received in revised form 14 April 2015; accepted 15 April 2015
Available online 28 April 2015

Abstract

This paper proposes a novel method for visualizing the thickness and clearance of 3D objects in a polyhedral representation. The proposed
method uses the distance field of the objects in the visualization. A parallel algorithm is developed for constructing the distance field of
polyhedral objects using the GPU. The distance between a voxel and the surface polygons of the model is computed many times in the distance
field construction. Similar sets of polygons are usually selected as close polygons for close voxels. By using this spatial coherence, a parallel
algorithm is designed to compute the distances between a cluster of close voxels and the polygons selected by the culling operation so that the
fast shared memory mechanism of the GPU can be fully utilized. The thickness/clearance of the objects is visualized by distributing points on the
visible surfaces of the objects and painting them with a unique color corresponding to the thickness/clearance values at those points. A modified
ray casting method is developed for computing the thickness/clearance using the distance field of the objects. A system based on these algorithms
can compute the distance field of complex objects within a few minutes for most cases. After the distance field construction, thickness/clearance
visualization at a near interactive rate is achieved.
© 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Inscribed spheres; Spatial coherence; Parallel computation; Axis-aligned bounding box (AABB); Modified ray casting; GPU

1. Introduction

Thickness and clearance are basic parameters in product design.
The thickness of individual walls and ribs is important for cal-
culating allowable stresses and strains in functional analysis. In
general, modern products are designed to be lightweight by
reducing the wall thickness by as much as the required structural
strength will permit. Thickness evaluations are important in other
design tasks, such as for the shape of the insulator that shields the
noise of an automobile engine. The insulator shape must have a
sufficient and constant thickness across its surface to reduce the
volume of transmitted sound.

Part thickness is important from the viewpoint of manufactur-
ability. In injection molding, hot melted plastic material is forced
into a mold cavity so that it cools and hardens to take the shape of
the required part. It is difficult to insert this plastic material into
very thin wall shapes. If the wall thickness is large and not

*Corresponding author. Tel. 481 294 38 5262.
E-mail address: umezu@mx.ibaraki.ac.jp (N. Umezu).
Peer review under responsibility of Society of CAD/CAM Engineers.

http://dx.doi.org/10.1016/j.jcde.2015.04.001

uniform, local depressions (sink marks) may appear because of the
excessive shrinkage of thicker regions during the cooling process
[1,2]. To assist the machine designer, some CAD systems provide
part thickness visualization functions [3-5].

The thickness of the complementary shape of a part should
correspond to the clearance around the part. Sufficient clearance
between engine components is necessary for cooling their surfaces
using air flow. Moreover, clearance affects the accessibility of
cutting tools and fixtures to the part surface during the machining
process. Clearance evaluation is an important process for auto-
mobile safety. The international regulations state that exterior
surface parts that could be contacted by a sphere of radius 50 mm
must have a roundness of greater than R2.5 [6,7]. Detecting the
sphere contact shape is equivalent to identifying part surfaces with
a clearance of greater than 100 mm.

In this paper, we propose a novel method for visualizing the
thickness and clearance of three-dimensional (3D) objects in a
polyhedral representation. The proposed method employs the
distance field of an object for the visualization. Consider a solid
object in a box-like space. The 3D distance field of the object is a
uniform cell decomposition of the space where at each cubic cell

2288-4300/© 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.sciencedirect.com/science/journal/22884300
http://dx.doi.org/10.1016/j.jcde.2015.04.001
www.elsevier.com/locate/jcde
http://dx.doi.org/10.1016/j.jcde.2015.04.001
http://dx.doi.org/10.1016/j.jcde.2015.04.001
http://dx.doi.org/10.1016/j.jcde.2015.04.001
mailto:umezu@mx.ibaraki.ac.jp

184 M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

(voxel) in the space, the distance from the center of the voxel to the
closest point on the object surface is recorded. In addition, other
properties such as the identification number of the closest polygon
may be recorded in the voxel. The usage of recorded distance
values depends on whether the voxel is internal or external to the
object. A distance field with internal voxels is used for thickness
visualization, whereas clearance visualization is realized using a
distance field with external voxels.

The distance field of a polyhedral object can be obtained via
iterative computation of the distance between the center of each
voxel and the surface polygons. Polygons on the object surface can
be classified into groups according to their proximity. For each
group, an axis-aligned bounding box (AABB) that tightly encloses
the polygons is defined [8]. Using an AABB tree, ie., a
hierarchical structure of boxes, polygons that are sufficiently close
to a given voxel can be selected. Similar sets of polygons are usu-
ally selected as close polygons for close voxels. On the basis of
this spatial coherence, a novel parallel algorithm is designed in
order to compute the distances between a cluster of close voxels
and the polygons selected by the culling operation so that the fast
shared memory mechanism of the graphics processing unit (GPU)
is fully utilized.

Thickness ¢ of a 3D object at point p on the surface is defined as
the diameter of the maximum inscribed sphere S contacting the
surface at p (see Fig. 1) [3]. Similarly, clearance c at p is defined as
the diameter of the maximum circumscribed sphere T externally
contacting the surface at p. The thickness/clearance of objects can
be visualized by distributing points on the visible surface of the
objects and painting them with a unique color corresponding to
their thickness/clearance values. A novel method, namely, mod-
ified ray casting, is developed for computing the thickness/clea-
rance at each surface point. Ray casting is a typical method for
visualizing 3D scalar fields. In regular ray casting, a line of sight
(ray) through the object is assigned for each pixel. Pixel color is
determined by accumulating values in the scalar field along the
ray. In our modified method, each ray is cast in the same way as in
the regular method until it reaches a point on the object surface.
Then, the ray turns in a direction perpendicular to the surface and
proceeds into the distance field to detect the first peak value in the
field that corresponds to the radius of the maximum inscribed or
circumscribed sphere contacting the surface at that point.

Fig. 1. Thickness/clearance definitions in the sphere method.

The remainder of this paper is organized as follows. Section 2
provides some definitions of thickness and clearance for 3D
objects. In addition, it briefly reviews previous studies on dist-
ance field computation and thickness/clearance visualization.
Section 3 summarizes the contributions of the present study.
Section 4 describes a parallel distance field computation algorithm
and its implementation using Compute Unified Device Architec-
ture (CUDA) [9], an industry-standard GPU computation environ-
ment. Further, it discusses the use of shared memory on the basis
of spatial coherence of the distance field. Section 5 describes the
modified ray casting method for visualizing the thickness/clearance
of objects. Some methods for improving the visualization perfor-
mance are also discussed. Section 6 presents thickness/clearance
visualization results for sample objects. Using the parallel proces-
sing capability of the GPU, a distance field with around 80 million
voxels can be computed within a few minutes at a sufficiently high
speed for practical use. After the distance field is obtained, the
thickness/clearance of an object can be visualized at a near-
interactive rate by using our modified ray casting algorithm.
Finally, Section 7 summarizes our findings and concludes
the paper.

2. Related studies
2.1. Thickness/clearance definitions and analysis

In mechanical drawing, thickness is defined as the distance
between points on two opposite parallel surfaces. This definition is
not suitable for objects with complex curved surfaces. The two
major methods for defining the thickness of a 3D object are the ray
method and the sphere method [1,3,10]. In the ray method, the
thickness at a point p on a surface is given by using a ray
originating from p in a direction opposite to the local outward
normal. The Euclidean distance d between p and another point ¢
corresponds to the thickness where ¢ is an intersection point bet-
ween the ray and the surface immediately opposite to the object
(see Fig. 2). This definition is ambiguous if the two surfaces
containing p and ¢ are not parallel, because the thickness values at
p and g become different.

The sphere method always returns consistent results. In this
method, the thickness at a point p on a surface is given by the
diameter of the maximum inscribed sphere contacting the surface at
p (see Fig. 1(a)). Since the locus of the center of the maximum
inscribed sphere corresponds to the medial axis of the object
(dashed lines in the figure) [11], the thickness at a surface point
corresponds to twice the distance between the point and the medial
axis. In general, the thickness given by the sphere method is
consistent with the mechanical drawing definition of thickness for a
plate-like shape, except at its corners, where the diameter of the

—

q N

p

Fig. 2. Thickness definition in the ray method.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194 185

maximum inscribed sphere decreases, as shown in Fig. 1(b).
Subburaj et al. defined “exterior thickness” by proposing a modi-
fication to the sphere method. In this method, the skeleton of an
object is used instead of its medial axis to define thickness [10].
However, exterior thickness is not suitable for evaluating the
thickness of thin wedge shapes, where the thickness value becomes
much greater than expected.

Some CAD systems provide thickness visualization functions
[4,5]. In general, their visualization quality is not adequate for
precisely understanding variations in the thickness of an object.
GeomCaliper is a system specialized for the thickness visualization
of polyhedral solid models. It supports both the ray method and the
sphere method. According to a report [3], it employs a uniform
grid and k-d tree for achieving good thickness computation
performance; however, the technical details of this report have
not been published. Furthermore, to the best of our knowledge, no
commercial system is available for visualizing product clearance.

Thickness/clearance visualization has not been actively rese-
arched in academic communities. Subburaj et al. [10] proposed
thickness analysis based on a voxel model. In addition to “exterior
thickness”, they proposed two new metrics: “radiographic thick-
ness”’, which is based on a variant of the ray method, and “interior
thickness”, a type of distance transform that will be explained later.
Lu et al. [12] proposed thickness analysis based on a distance
transform for detecting thicker regions of 3D objects. Previously,
we developed a simple thickness visualization system for a solid
model [13], whereby the thickness of a polygon was determined
by using the sphere method with a distance field.

Most clearance analysis methods developed thus far are
specialized for specific manufacturing requirements, for example,
the configuration space for robot motion planning [14] and the
accessibility cone for machinability evaluation [15,16]. Similarly,
in the medical field, some clearance visualization methods are
known to assist in the navigation of implants in virtual environ-
ments [17,18]. These methods are too specialized for simply
visualizing the clearance distance around objects.

2.2. Distance field computation and visualization

We use the distance field for thickness/clearance visualization.
Fast algorithms for constructing the distance field have been
actively investigated [19]. There are two basic approaches. The
first approach is named distance transform, which is based on the
propagation of the distance information [20,21]. In this method,
voxels on the object boundary are detected and their exact distance
values are calculated in the initialization step. The distances are then
propagated to the remaining internal or external voxels. The new
distance of a voxel is computed from the distances of its neighbors
by updating the values according to the pre-defined template
[22-24]. Zhao [25] proposed a fast sweeping method for solving
the eikonal equation in a discrete manner. Chang et al. [26]
followed Zhaofs method for computing a complete distance field.
Distance fields obtained by propagation are basically approxima-
tions, and they are not suitable for some engineering applications
where precise results are necessary.

The second approach is based on the exact computation
of the distance between a voxel and the surface polygons.

In distance field construction, some distance computations can
be discarded on the basis of their spatial coherence. Payne
and Toga [27] utilized the coherence by storing polygon data
in a hierarchical bounding box. Gueziec [28] extended this
method in his Meshsweeper algorithm, where a distance
interval is computed for each bounding box. This interval
gives the lower bound and upper bound of distances between a
voxel and any polygons in the box. If the lower bound of a
box is greater than the upper bounds of some other boxes, then
all polygons in the box can be ignored in the distance
computations.

Each feature (vertex, edge, or facet) of a triangle mesh can be
converted into its corresponding characteristic polyhedron contain-
ing the points closest to the feature. The computation cost of the
distance field can be reduced by classifying the voxels according to
the characteristic polyhedrons [29]. Characteristic polyhedrons for
all features of objects constitute a 3D Voronoi diagram, which is a
partitioning of the 3D space into regions where each region
consists of all points that are closer to one feature than to any other
[30]. Hoff et al. [31] proposed a Voronoi diagram computation
method accelerated by polygon rendering hardware. Sud et al.
[32,33] improved their method and used it for the computation of
the 3D distance field.

The adaptively sampled distance field (ADF) records the
distance values adaptively according to local details, and it
stores the data in a spatial hierarchy for efficient processing. In
general, an ADF requires less memory than a regular distance
field based on uniform cell decomposition. An ADF that stores
distances at the cell vertices of an octree was proposed in
[34-36]. The distance values in a voxel are derived by the
trilinear interpolation of values at the vertices. The ADF is
not effective for some engineering applications where addi-
tional distance-related properties, for example, identification
number of the closest polygon, are required to be stored in
each voxel.

Visualization of a 3D scalar field such as a distance field is a
typical topic in volume rendering [37]. There are two basic
approaches for rendering a scalar field: explicit extraction of
the iso-surface in the field and generation of a semi-transparent
picture by accumulating the scalar values in the field. Ray
casting is used in the second approach [38,39]. In this method,
a ray is cast into the voxels of the scalar field, and it samples
the voxel values at certain intervals. The sampled values are
accumulated along the ray for determining the opacity required
to produce a semi-transparent picture.

In volume rendering, the distance field is usually not a
visualization target, but it is used to facilitate visualization
or computation of other information in the 3D space. For
example, a distance field is used for computing an offset
surface [40]. The distance field is also useful in ray casting.
The interval size for sampling points along the ray is critical to
the rendering performance in ray casting. By using the distance
information recorded in the voxels in advance, an interval size
that is guaranteed not to penetrate the object boundary can be
determined [41]. To the best of our knowledge, no report on
the visualization of object thickness/clearance based on the
distance field exists in the literature.

186 M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

3. Contributions of the present study

In this paper, we propose a fast and precise method for
visualizing the thickness/clearance of 3D objects on the basis
of their internal/external distance field. Thus, the contributions
of our work are as follows.

Thickness/clearance visualization based on distance field: The
major contribution of the present study is development of a
novel method for precisely visualizing the thickness/clearance
of 3D objects based on the distance field. The sphere method is
used for measuring the thickness/clearance of the objects. In
our previous system [13] and in commercial systems such as
GeomCaliper [3-5], the thickness of objects is visualized by
painting each polygon with a single color corresponding to its
thickness value. In general, the visualization quality of this
method is low if the object is roughly tessellated with large
polygons or polygons of non-uniform sizes. Our method
visualizes the thickness/clearance of objects on the basis of
points that densely cover the visible surfaces of the objects.
For each point, a maximum inscribed or circumscribed sphere
contacting the surface at that point is computed by the
modified ray casting method, and the point is painted with a
unique color corresponding to the thickness/clearance value
(i.e., the diameter of the contacting sphere).

Parallel computation of distance field: Most critical precondi-
tion of using our thickness/clearance visualization method in
practice is fast construction of precise distance field. We use
the concept of spatial coherence for reducing the computation
cost of the distance field in the case of a uniform resolution. In
contrast to previous methods proposed by Payne and Toga [27]
and by Gueziec [28], our method uses a distance range
between a cluster of voxels and the bounding box of polygons
in the culling operation. The geometric data of the polygons
that remains after the culling operation are stored in the fast
shared memory mechanism of the GPU. They are efficiently
used by threads, each of which computes the distance between
a voxel in the cluster and the polygons. The parallel processing
capabilities of GPUs are advancing at a rapid pace. Hence, we
believe this approach is more promising than other methods
using traditional depth buffer hardware (for example [32, 33]).
We adopt the initial concept of the method described in [13].
The method presented in this paper uses axis-aligned boxes to
enclose the voxel cluster and surface polygons in order to
improve the culling performance in the distance field com-
putation.

4. Parallel distance field computation
4.1. Preparations

Our method requires a tessellated CAD model of objects as the
input. Most commercial CAD systems provide a function to output
the model data as a group of triangular polygons, for example, in
the STL file format. The model is decomposed into a set of small
cubic cells (voxels) according to a uniform spatial grid. Each voxel
is classified as an internal or external voxel according to the
position of its center with respect to the object boundary; if the

center of a voxel lies on the boundary, the voxel is classified as
both internal and external.

Data conversion from the input polyhedral model to its equ-
ivalent voxel model is performed using the vertical ray method.
Consider an axis-aligned box-like space that tightly encloses the
given model. The space is subdivided using a uniform axis-aligned
spatial grid with equal intervals. The grid is projected onto the
xy-plane. From each projected grid point, an upward ray is
extended along the z-axis direction, and the intersection points of
the ray with the surfaces of the given polyhedral model are
computed. The intersection points are sorted according to their z-
coordinates, and a set of segments corresponding to the internal
part of the object on the ray are obtained. Spatial grid points
located on the segments are selected as the center points of the
internal voxels.

The computation of a model with external voxels is performed
in a similar manner. In this case, the box enclosing the polyhedral
model is expanded by D (10% of the largest axis of the box) by
shifting the six rectangular surfaces of the box outwards. As in the
case of the model with internal voxels, vertical rays are generated,
and the intersection points of the rays with the surface polygons
are computed. Based on the obtained points, segments correspond-
ing to the external part of the object are derived. The grid points
located on the segments correspond to the center points of the
external voxels.

The resolutions of the spatial grid are determined such that the
total number of generated internal (external) voxels is close to a
predetermined number m. In the current implementation, m is set
to 80 million, near maximum number of voxels allowed in our
computing environment. A parallel algorithm for converting a
polyhedral model into its corresponding voxel model is imple-
mented. A program based on this algorithm can convert a complex
polyhedral model with 2 million polygons into its equivalent voxel
model with 80 million cells in less than 5 s.

To prepare data that is suitable for the proposed method, the
surface polygons of the input model are classified into small
groups according to their proximity. This classification proceeds
by using an AABB tree, i.e., a hierarchical structure of boxes [8].
Consider n triangular polygons forming the model surface. Define
a root AABB that encloses all triangular polygons of the given
model. Polygons in the AABB are sorted along a line parallel to its
longest axis. Then, two child AABBs are formed by the first n/2
sorted polygons and the remaining polygons. The process of
defining child AABBs is iterated, and a binary AABB tree is
obtained. The tree construction process is terminated when all leaf
AABBs of the tree contain only n,,, or fewer polygons, where
Nyax 1S the maximum number of polygons allowed for each leaf
AABB. In our implementation, we set n,, =4 based on
numerical experiments. Each leaf AABB retains the number of
polygons within as well as the geometric data (coordinates of
vertices) of the polygons.

4.2. Culling of unnecessary distance computations
The basic process in the distance field construction is the

computation of the distance between the center of a voxel and a
polygon on the object surface. The computation cost can be

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194 187

BBox1

BBox3
BBox0

BBox2

Fig. 3. Culling operation in a layer in an AABB tree.

reduced by using the hierarchical AABB tree. Traverse the tree
from the root node to the leaf nodes in the breadth-first manner.
The following culling operation is executed in each layer. Assume
that n bounding boxes (BBox, BBoxy, ..., BBox,_) are found
in a layer as shown in Fig. 3. Here, d; represents the shortest
distance between a voxel center v and a point on the surface of
BBox;, whereas D; represents the longest distance between v and a
point on BBox;. Since polygons within BBox; are bounded by the
box, the distance between v and any polygon in BBox; must be
greater than d; and less than D,

Select a box BBox,,;, whose value D,,;, is the smallest among
the D; values. If d; is greater than D,,;,, then the distance between v
and any polygon within BBox; must be greater than the distance
between v and any polygon within BBox,,,,; therefore, polygons
within BBox; can be ignored in the distance field construction.
Fig. 3 shows that four bounding boxes are found in a certain layer
during breadth-first AABB tree traversal. Further, D, of BBox; is
the smallest among Dy, D1, D,, and Ds5. Since dy and d3 are
greater than D,, polygons within BBox, and BBox; are not
relevant to the shortest distance for v, and they can be excluded
from the following computation. In the next layer in the breadth-
first tree traversal, child bounding boxes of only BBox; and BBox,
are evaluated in the culling operation.

4.3. Parallel distance computations with GPU

After the culling operation during the AABB tree traversal,
some AABBs are obtained at the leaf nodes of the tree. These
AABBs enclose polygons sufficiently close to the given point v.
The point-polygon distance computation is finally applied to the
polygons within these obtained AABBs and v. The distance
between v and the polygons is computed using the GPU in a
parallel manner.

A GPU consists of hundreds of small streaming processors (SP)
on a chip. The main factor underlying GPU acceleration is the
replacement of the iterative execution of a function in a loop with
the parallel execution of its equivalent threads on SPs. CUDA is
designed to provide a parallel execution framework of threads in a
C program [9]. In order to properly manage the threads, CUDA
provides grid and block structures. A block is a 1D, 2D, or 3D
array of threads. The maximum number of threads in a single
block must be less than or equal to 512. A grid is a 1D or 2D array
structure of blocks. The total number of blocks must be less than
or equal to 65,535 for each dimension.

BBox0

BBox4

-7

-

Fig. 4. Spatial coherence of polygons for close voxels.

The data used by the GPU must be initialized in the main
memory for the CPU and transferred to the global memory (device
memory) for the GPU. The data stored in the global memory is
“globally” accessible from any SP. After the computation, the
result is written back to the global memory. Eight SPs constitute a
streaming multi-processor or SM (Recent GPU architecture
features more SPs in single SM). Each SM corresponds to a
block of threads, and threads in the same block are executed by
SPs in a single SM corresponding to the block. A SM includes
shared memory, which is a special “global” memory accessible
only by SPs in the same SM. Because of the correspondence
between SPs in an SM and threads in a block, threads in the same
block can use the shared memory as a global memory. Owing to
the high data-access speed of the shared memory, effective use of
the shared memory is crucial to realizing a high-performance
CUDA program.

4.4. Use of spatial coherence

In the GPU computation, the geometric data of the polygons is
stored in the global memory. The data access speed of the global
memory is much slower than the computation speed of the GPU;
therefore, the arithmetic unit of the SP has to suspend processing
until the required geometric data is completely transferred from the
global memory to the registers of the SP. This speed limitation can
be overcome by using the fast shared memory mechanism.

In the distance field computation, polygons in the same leaf
AABB are often selected for voxels in close proximity. Fig. 4
shows this characteristic. In this figure, vy and v, are the center
points of two adjacent voxels. Owing to their closeness in the
voxel model, polygons close to vy are usually also close to v;.
After the AABB tree traversal, BBox,, BBox;, BBox,, and BBox;
are obtained as the leaf AABBs sufficiently close to vy, and
BBox;, BBox,, BBoxs, and BBox, are obtained as the leaf
AABB:sS sufficiently close to v;. Since BBox;, BBox,, and BBox;
are close to both vy and v, the polygon data in these 3 AABBs
can be gsharedh by threads for computing the distance for vy and
other threads for computing the distance for v;. By transferring the
data of these polygons to the shared memory from the global
memory before the distance computation, and by using the data in
the shared memory for the computation, a significant improvement
in performance can be realized.

188 M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

The actual implementation for using the shared memory is as
follows. By using the grid structure of the voxel model, a cluster of
voxels with 8 x 8 x 8 resolution is obtained as the voxels in close
proximity. Our parallel distance computation software derives the
distances for these 512 (=8 x 8 x 8) voxels simultaneously. An
axis-aligned cube tightly bounding these voxels is defined. Instead
of a point, this cube is used for retrieving leaf AABBs that enclose
the polygons sufficiently close to the voxels. In order to cull
AABBs using the cube, it is necessary to compute the shortest
distance and longest distance between the cube and an AABB. As
shown in Fig. 5, the shortest distance d between a cube and an
AABB is computed by using their gap distances in each axis
direction. The largest distance D corresponds to the longest
diagonal length of an axis-aligned box enclosing the cube and
the AABB within. The same AABB culling rule explained in the
previous section is applicable to the AABB tree traversal, except
that it involves the use of a cube of the voxel cluster instead of a
point. New shortest and longest distance metrics between a cube
and an AABB are used for selecting the AABBs to be culled.

After the culling operations, a set of leaf AABBs enclosing
polygons sufficiently close to the cluster of 512 voxels is obtained.
A CUDA program is defined to compute the shortest distance for
these 512 voxels with respect to the polygons in the obtained leaf
AABB:s. In our software, a block of threads is defined for each leaf
AABB, and each thread in the block is defined to compute the
shortest distance between the center of a voxel in the cluster
and polygons in the leaf AABB corresponding to the block
(see Fig. 6). For these block and thread definitions, all threads in
the same block compute distances with respect to the polygons in
the same AABB; therefore, they can share the polygon data during
the processing operations. Such polygon data are copied from the
global memory to the shared memory of the SM corresponding to
the block for realizing fast data access in the distance computation.

5. Thickness/clearance visualization with distance field

In our method, the thickness/clearance of 3D objects is
visualized by using the distance field. The visualization is
achieved using the following three-step algorithm:

Step 1: Generate dense points completely covering visible
surfaces of the object.

BBox

Bounding 4

v cube for e
| voxel cluster &

X

N

Fig. 5. Shortest distance d and longest distance D between two axis-
aligned boxes.

BBoxo
______________________ CUDA block W
O T Ee—— ~
| eeeeeceo00 BBox1 \
i eeeeeeeee thread _— — }
| 000000000 .. T i
| eeeee000
! oooooooo:/‘é_ _________________ g
| 000000000 thread .
! ©00000000 e BBoxa
i eeeeee00e m
| eeeeee000
. 512voxels ~ _.+*
"""""" BBox3

Fig. 6. Block and thread definitions.

Step 2: For each point on the visible surfaces, the thickness/
clearance value at the point is computed by using the modified
ray casting method.

Step 3: Each point is painted with a unique color according
to the thickness/clearance value to complete the visualization.

Details of each step are provided in the following subsec-
tions along with an example for thickness visualization with
the distance field of internal voxels. The same algorithm is
applicable to clearance visualization.

5.1. Point generation on visible surfaces

Points densely covering the visible surfaces of the objects can
be generated on the basis of the information of the viewing
frustum for projecting 3D shapes onto two-dimensional (2D) frame
buffer [42]. Projection is a process for transforming (x,y,z)
coordinates of 3D objects into 2D (i,j) coordinates, where i and
J denote the pixel position in the frame buffer. A viewing frustum
represents the prismatic region of space in the modeling domain
that may appear on the display. A local coordinate frame for the
projection is defined in association with the viewing frustum. Its
origin coincides with the eye position, and its x-axis and y-axis are
aligned with respect to the horizontal direction and vertical
direction of the display. The z-axis is oriented such that its
negative direction is the same as the viewing direction.

In the following explanation, the use of the orthogonal
projection is assumed in the rendering process. Our point
generation concept is not limited to the orthogonal projection; it
is also applicable to the perspective projection with small
modifications. Consider a frame buffer after rendering an image
from which the hidden surfaces of objects have been eliminated.
For each pixel in the frame buffer, a point is generated on the
visible surfaces of the objects. The x and y coordinates of the point
in the local coordinate frame are computed on the basis of the pixel
position (i,), the resolution of the display, and the left, right, top,
and bottom clipping plane information of the viewing frustum. The
z coordinate is determined by the depth value of the pixel, and the
near and far clipping plane information of the frustum. The
obtained coordinates in the projection coordinate frame can be

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194 189

transformed into coordinates in the modeling domain by a simple
matrix operation.

In our thickness/clearance computation method that is explained
in the next subsection, the surface normal vector is required at the
visible points. For each surface polygon, a unique identification
number of 24 bits is assigned. Before the rendering, the normal
vector of the polygon is recorded in association with its
identification number. In the rendering operation, each polygon
is painted with a unique color corresponding to its identification
number. Such colors are generated by recognizing the 24-bit
identification number as a series three 8-bit numbers representing
red, green, and blue components of the color. After the rendering,
the (r, g, b) information of each pixel is obtained from the frame
buffer. Its corresponding identification number is determined by a
simple inverse operation from (r, g,b) to a 24-bit number. The
normal vector at the visible point corresponding to the pixel is
obtained by retrieving the recorded normal vector using the
identification number as the key.

5.2. Maximum inscribed sphere in distance field

Consider the determination of the maximum inscribed sphere
contacting a visible surface at point p. The diameter of the sphere
corresponds to the thickness at p in the sphere method. Fig. 7
shows the distance field of internal voxels of an object. For
simplicity, distances are denoted as integer values in the figure.
The actual values are floating point numbers. Cast a ray from p in
a direction opposite to the surface normal at p. The center points of
spheres contacting the surface at p must be located on the ray.

®
1[1]11]1[1[1[IN[1]A1[1]1 1[1[1]1]1
212]2]2]2]22]2[2X 2] 2] 2] 2][2[2[W]2]2]2]2
3/313[3|3[33]3 3N[3]3]/3[3[3]3 3|13[3 X
alalalalaa]alafala[aNa]a]a]a]a]a]N4]a]a Medial
4lal4lalalal4]5]|5]/5/5Ms|5¢512 44]4/4]a axis
313]3[3]3[3]3 5"666‘\‘54333333
212]2]2|2|2|3 5|/6[7|7|6[5N\4[3(2]2/2|2]2
11]1]1]1]1[2[3\a[5]6Y6[5]4[N[1]|¥]1][1]2
NL[2]3 5/616[5/4[3|2
1[2[3™5]5(4[3]2] A | T 11
1[2[3 45154 1 >
1(23]4]515[4(3]|2]1 Eye
1(2(3]4(5¢5[4[3]2]1
1(2(3/4(515(4(3[2]1 .
1(2|3|4[5]5[4(3]|2]1 Display
Fig. 7. Modified ray casting method.
A VIFIFIERAN
Al 2][2] 2[Na2]e]2\
Jl273]33]3[][312[1[\
2[3[4iplalaldtal3]2
2[3lalklols[d[4a[3]2]1
3] 4[5 M6 4[3[2]2
S0 2] N4l 56| 747 6] D\a| 3] 2] 1\
2| 3[a|STetp8]8| 7] 6] Na3] 2]\
/1]2]3]4][5]6[l[8]8[7[6]5]%/3]2[1
1[2[3[4]s]e[f[8f8]7]6[5]a\3]2[1]\
2[3]a[s|e[7]B[olo[8]7[6]5N\a[3[2]\
1/2[3[4[5[6|7[Blojol8[7]6]5[l[3]2]1
1l213[a[5]6]7]8[kholio[9[8 76 [F4[3]2 1
1\2[3[4[5]6]7]8[plrol10[9[8 7 [6|5[4[3 |2 [1
AT2[\a[5]6[7[8]9Mof1f11]10[9[8]7/6[5]4[3 |2
J1]2]3\a[s[6[7]s[olofali1]i0] o8] /T6[5]4[3 21\
ZI JT112[3[™5]6[7]8]9[{o[tjra[10/ o[8f7[6]5[4[3[2]1]V

<

Fig. 8. Necessity of an additional termination condition for ray casting.

Distance values are sampled along the ray at certain intervals. At
each sampling location, the distance value is computed by
interpolation of distance values at the voxels around the location.
This value represents the radius of the inscribed sphere whose
center point is at that location. If the location is sufficiently close to
P, the obtained sphere contacts the object surface at p.

As the sampling points move into the object, the distance value
increases and a larger inscribed sphere can be defined. The
maximum inscribed sphere contacting the surface at p is obtained
when the sampling location reaches the medial axis of the object.
After passing the medial axis, the distance value at the sampling
location starts decreasing. The maximum inscribed sphere con-
tacting the surface at p is thus determined by tracing the ray in the
distance field to detect the first peak value of the distance. In the
clearance computation at a surface point, a ray is cast from the
point along the surface normal direction. It is traced in the distance
field with external voxels to detect the first peak value in the field.
The obtained distance value corresponds to the radius of
the maximum circumscribed sphere contacting the surface at
that point.

We refer to the sphere determination method described above as
gmodified ray castingh. This method generally returns reasonable
thickness/clearance values; however, it is not a perfect strategy.
Fig. 8 shows an exceptional case. Consider a vertical protrusion
(the figure shows the section). A ray is cast along the negative z-
axis direction from a point p at the top. In this case, the distance
value continues to increase after the ray passes the medial axis.
After passing the medial axis, the derived sphere does not contact
the surface at p, as shown in Fig. 8. In order to reject such cases,
an additional condition for terminating the tracing is necessary.

S 9[9]9]9[9]9[9[a]a]9
N 8/8|8/g/s/glaglglals
N, 71717(71717(7 (7|77 .
6/6/6/6/6|6/6/6(6/6 i
< S[5[5[$[5[5[5[5[5]5 .
S 4]alaldlalalalala]a e
N 3[3[3[3[3[3[3[3]3]3 A
S [202]2[2[2]2]2]2]2]2] |-
SJaaadalafafaaal:
P

Fig. 9. Requirement of additional termination condition of ray casting in
clearance visualization.

2

L
-~
’ ~~o

Fig. 10. Casting direction of a ray for computing the radius of a sphere
contacting a concave edge e.

190

Since the sphere must contact the starting point p, the distance
value at the sampling point on the ray must be equal to the
distance dist between the sampling point and p. If dist becomes
greater than the distance value at the sampling location, the ray has
already passed the medial axis and the tracing operation must
terminate.

In the clearance visualization, a ray is cast from a surface point
along the normal vector direction at that point. No local peak value
is detected for some surface points, for example, a point p in

a
«11|2/3|4|5 4
1123/ 4|5|4
5<_.|/«s4'\/:'§\4
Plil2l3lals|a
112|3]|4|5|4

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

Fig. 9. As shown in the figure, distance values along the vertical
ray starting from p simply increase until it reaches the border of the
distance field. In order to address this situation, we further modify
the ray casting algorithm. The local peak value detection process in
the clearance visualization terminates when the value becomes
greater than D — &, where ¢ corresponds to the cell size. D is the
expansion size of the axis-aligned box defined in the conversion
process from the input polyhedral model to a cell decomposition
model with external voxels.

b Medial axis
1
2. n \\\d‘é\ d’ E
3| 4|54
3| 4| 514
34|54
3| 4| 514

Voxels close to the surface

Fig. 11. Improvement for reducing the thickness computation time.

Fig. 12. Thickness visualization results of simple models.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194 191

Sample A

Sample B

4

Fig. 14. Close-up view of sample E.

Since the casting distance of the ray from the surface point is object surface is not necessary in constructing the distance field. In
limited by the value D in the clearance visualization, the distance the culling operation using the AABB tree, which has been
computation for external voxels located farther than D from the explained in Sections 4.2 and 4.4, we introduce an additional

192 M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

condition specialized for the distance computation of external
voxels. In each layer in the breadth-first traversal of the AABB
tree, the shortest distances between the cube enclosing the voxel
cluster and all AABBs in the layer are computed. If the distance
between the cube and an AABB is greater than D, then the
polygons in the AABB can be ignored in the distance computation
of the external voxels in the cube because they do not contribute to
the clearance visualization result. This new culling condition serves
to effectively reduce the computation cost of the distance field of
external voxels.

The proposed visualization algorithm has one limitation. In the
thickness visualization case, the maximum inscribed sphere can
contact a concave edge e of an L-shaped object (as shown in
Fig. 10). This sphere (sphere S in the figure) has a slightly larger
diameter than the other spheres contacting its adjacent polygons.
Therefore, the thickness along e becomes larger than that of the
polygons. Because our current method casts a ray in a direction
opposite to the surface normal, it cannot derive a larger thickness
value along e, where no surface normal can be obtained. To
overcome this limitation, we must improve our algorithm so that it
can cast a ray from a point on such concave edges. A good
candidate for the direction of this ray is the bisector of the corners
of two adjacent polygons of the edge (see Fig. 10).

Table 1
Required time for distance field construction for thickness visualization.

5.3. Performance improvements

Since the thickness computation for each surface point is
mutually independent, the use of the parallel processing capability
of the GPU is a natural choice for improving the visualization
performance. Herein, we develop another mechanism for improv-
ing the visualization performance. The most time-consuming task
in the visualization is the searching operation for a local peak value
in the ray casting (see Fig. 11(a)). This task is necessary whenever
the viewing position and direction are changed. In order to
implement faster thickness visualization, we modify the definition
of the distance field. In the original definition, each voxel records a
distance value to the closest boundary polygon. In addition to the
distance value d, another distance value d between the voxel and
the medial axis is recorded in voxels that are sufficiently close to
the object surface (see Fig. 11(b)). Once such information is
recorded in the cells, the ray casting operation from a surface point
P can be quickly terminated at such voxels near the surface, and it
can return d+d as the radius of the maximum inscribed sphere
contacting the surface at p.

After the distance field has been computed, voxels sufficiently
close to the object surface are selected. In the current implemen-
tation, voxels whose distance value is less than 10% of the

Model Number of polygons Resolution Number of internal voxels Time for voxelization (s) Time for DF computation (s)
A 17,970 1238 x 1122 x 993 82,181,034 1.28 44.50
B 197,450 1265 x 1263 x 397 81,638,305 1.48 55.94
C 86,686 986 x 812 x 593 81,280,879 1.18 68.44
D 1,708,000 470 x 2249 x 1363 82,832,480 321 84.58
E 1,972,196 1007 x 1053 x 691 81,005,288 3.98 104.59

Sample E

Sample D

Fig. 15. Clearance visualization results of sample parts.

M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194 193

Table 2
Required time for the distance field construction for the clearance visualization.

Model Number Resolution Number of Time for Time for DF
of external voxelization computation
polygons voxels (s) (s)

A 17,970 469 x 437 x 400 79,858,211 0.45 59.57

B 197,450 554 x 553 x 271 79,916,355 0.58 153.37

C 86,686 518 x 450 x 364 79,553,466 0.53 81.83

D 1,708,000 269 x 652 x 462 79,904,943 0.74 794.26

E 1,972,196 471 x 487 x 362 79,567,659 1.52 876.26

maximum thickness are assumed to be close to the object surface.
For the center point of each selected voxel, the modified ray
casting operation is applied to detect the local peak value in the
distance field along the ray. The obtained distance value minus the
original value d stored in the voxel corresponds to the distance d
between the voxel and the medial axis. This additional distance
information is recorded in the voxel to enable future fast visu-
alizations. The ray direction must be specified in the modified ray
casting operation. The closest polygon to each voxel can be
detected while computing the distance field. The negative direction
of the closest polygon's surface normal n becomes the ray direction
for the voxel, as shown in Fig. 11.

6. Computational experiments

A distance field computation system and a thickness/clearance
visualization system were implemented using Microsoft Visual
C+ + and CUDA 6.5 respectively. In our computational experi-
ments, a Windows 8.1 64-bit PC with Intel Core 17 4.0 GHz CPU,
32 GB main memory, and nVIDIA GTX-980 was used.

Fig. 12 shows the thickness evaluation results of a cube and
a sphere in rough tessellation. Before the distance field com-
putation, the models were converted into their equivalent voxel
representations. The resolution of the voxel model was
determined such that the total number of internal voxels was
nearly 80 million. In Fig. 12, red is assigned to zero thickness
and blue is assigned to the maximum thickness. Expected
thickness visualization results were obtained for the models.
As explained earlier (Fig. 1(b)), thinner zones (red zones) with
small inscribed spheres are extracted along the edges of the
cube and the sphere.

Fig. 13 shows the results obtained by applying voxels our
system to rather complex sample models. In the visualization result
of the cup model (sample model A in Fig. 13), two blue zones
(thicker zones) are extracted in the inner wall of the cup where the
handle is connected to the cup. As shown in Fig. 1(a), such a
connecting part can voxel contain a larger sphere than its adjacent
wall part. In the injection molding of a plastic cup, such connecting
parts are known as typical zones containing sink marks because
thicker voxel zone shrinks more than thin walls. By using the
thickness voxel visualization, a designer can detect possible sink
marks in the early shape design stage. Fig. 14 shows a close-up
view of the sample part E shown in Fig. 13. Very fine and precise
thickness voxel visualization is realized. For displaying the
pictures, a window of 768 x 768 pixels is used. By using the

modified ray casting program with the improvements voxel
described in Section 5.3, the required time for displaying a picture
is less voxel than 200 ms, which is sufficiently short for viewing
the thickness from various direction and positions at a near-
interactive rate.

Table 1 lists the time required for computing the distance field
(DF) for internal voxels of sample models. As shown in the table,
the distance field in the case of a uniform resolution with nearly 80
million voxels is computed within a few minutes, sufficiently fast
for practical use. We execute the distance field computation using
a system based on our previous method [13] under the same
condition. The performance of the new method is at most 10%
better than our previous method, especially for computing the
distance field of complex models with near 2 million polygons
(sample models D and E).

Fig. 15 shows some examples of the clearance visualization
results. Here, red is assigned to zero clearance and blue is assigned
to clearance D, which corresponds to the expansion value of the
bounding box defined for the conversion of the polyhedral model
to the voxel model. As shown in the figure, the narrow zones
between the impeller blades in sample B, the narrow zones
between the ribs in sample D, and the corner areas in sample E are
painted red, as expected. Table 2 lists the required time for
computing the distance field for the clearance visualization. Even
though the distance computation of external voxels requires more
time than that for internal voxels, it is sufficiently fast for practical
applications.

7. Conclusions

This paper proposed a novel thickness/clearance visualization
algorithm based on the distance field. Our method visualizes the
thickness/clearance of 3D objects by using the points densely
covering the visible surfaces of the objects. For each point, a
maximum inscribed or circumscribed sphere contacting the surface
at that point was computed, and it was painted with a unique color
corresponding to the thickness/clearance value. The radius of the
maximum contacting sphere was determined by our modified ray
casting algorithm with the distance field. Further, some methods
for improving the rendering speed were proposed. By using the
improved method, thickness/clearance visualization at a near-
interactive rate was achieved.

In addition, a parallel algorithm for constructing the distance
field of a solid model using the GPU was developed. This algo-
rithm is fast, precise, and applicable to complex models with num-
erous polygons and high-resolution voxels. In the distance field
construction, the shortest distance between a point and the surface
polygons of the model was computed many times. Similar sets of
polygons are usually selected as close polygons for close voxels.
Using this spatial coherence, the proposed parallel algorithm was
designed to compute distances between a cluster of close voxels
and the polygons selected by the culling operation with hierarchical
AABB tree.

Conflict of interest

None declared.

194 M. Inui et al. / Journal of Computational Design and Engineering 2 (2015) 183—194

References

[1] Beiter KA, Ishii K. Geometry-based index for predicting sink mark in
plastic parts. Technical Report: ERC/NSM-P-91-61, Columbus (OH):
Engineering Research Center for Net Shape Manufacturing, The Ohio
State University; 1991; 140 p.

[2] Cocks D. Die cast components: aid to efficient design. London:
Development Association Zinc; 1983.

[3] Sinha B. Efficient wall thickness analysis methods for optimal design of
casting parts [Internet], Mumbai (India); 2007. Available from: (http:/
geomcaliper.geometricglobal.com/images/file/EfficientWall ThicknessAna
lysis_GeomCaliper.pdf)[cited 2007].

[4] SOLIDWORKS [Internet], Waltham (MA); 2015. Available from: ¢http://
www.solidworks.com/) [cited 22.01.2015].

[5] Dassault Systemes [Internet]. Velizy-Villacoublay, France; 2015. Avail-
able from: (http://www.3ds.com/)[cited 22.01.2015].

[6] GlobalAutoRegs [Internet]. UN Regulations; 2015. Available from:
(http://www.globalautoregs.com/unece) [cited 13.04.2015].

[7] Japan Automobile Standards Internationalization Center (JASIC) [Inter-
net]; 2014. Available from: (http:/www.jasic.org/e/index_e.htm)[cited
27.09.2014].

[8] Moller T, Haines E. Real-time rendering. Natick (MA): A K Peters; 1999.

[9] nVIDIA. CUDA compute unified device architecture programming guide
[Internet], Santa Clara (CA); 2007. Available from: (http:/developer.
download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Program
ming_Guide_1.0.pdf)[cited 2007].

[10] Subburaj K, Patil S, Ravi B. Voxel-based thickness analysis of intricate
objects. International Journal of CAD/CAM 2006;6(1).

[11] Giblin PJ, Kimia BB. A formal classification of 3D medial axis points
and their local geometry. IEEE Transaction on Pattern Analysis and
Machine Intelligence 2004;26(2)238-51.

[12] Lu SC, Rebello AB, Miller RA, Kinzel GL, Yagel R. A simple
visualization tool to support concurrent engineering design. Computer-
Aided Design 1997;29(10)727-35.

[13] Inui M, Umezu N, Kobayashi K. Parallel distance field computation with
GPU and its application for evaluating part thickness. In: Proceedings of
ISCIE/ASME 2014 International Symposium on Flexible Automation;
2014 July 14-16; Hyogo, Japan; Article No. 40.

[14] Latombe JC. Robot motion planning. Boston (MA): Kluwer Academic
Publishers; 1991. 651 p.

[15] Spitz SN, Spyridi AJ, Requicha AAG. Accessibility analysis for planning
of dimensional inspection with coordinate measuring machines. /EEE
Transactions on Robotics and Automation 1999;15(4)714-27.

[16] Morimoto K, Inui M. A GPU based algorithm for determining the
optimal cutting direction in deep mold machining. In: Proceedings of
IEEE International Symposium on Assembly and Manufacturing; 2007
July 22-25; Ann Arbor (MI); p. 203-8.

[17] Demiralp C, Marai GE, Andrews S, Laidlaw DH, Crisco JJ, Grimm C.
Modeling and visualization of inter-bone distances in joints. In: IEEE
Visualization, Work in Progress Sessions; 2001 October 21-26; San
Diego (CA); p. 24-5.

[18] Dick C, Burgkart R, Westermann R. Distance visualization for interactive
3D implant planning. IEEE Transaction of Visualization and Computer
Graphics 2011;17(12)2173-82.

[19] Jones MW, Baerentzen JA, Sramek M. 3D distance fields: a survey of
techniques and applications. IEEE Transaction on Visualization and
Computer Graphics 2006;12(4)581-99.

[20] Rosenfeld A, Pfaltz JL. Sequential operations in digital picture proces-
sing. Journal of the ACM 1966;13(4)471-94.

[21] Cuisenaire O. Distance transformations: fast algorithms and applications
to medical image processing [Ph.D. Thesis]. Louvain-la-Neuve (Belgi-
que): Universite Catholique de Louvain; 1999; 213 p.

[22] Rhodes F. Discrete Euclidean metrics. Pattern Recognition Letters
1992:13(9)623-8.

[23] Danielsson PE. Euclidean distance mapping. Computer Graphics and
Image Processing 1980;14(9)227-48.

[24] Mullikin JC. The vector distance transform in two and three dimensions.
CVGIP: Graphical Models and Image Processing 1992;54(6)526-35.

[25] Zhao H. A fast sweeping method for Eikonal equations. Mathematics of
Computation 2004;74(250)603-27.

[26] Chang B, Cha D, Ihm I. Computing local signed distance fields for large
polygonal models. Computer Graphics Forum 2008;27(3)799-806.

[27] Payne BA, Toga AW. Distance field manipulation of surface models.
Computer Graphics and Applications 1992;12(1)65-71.

[28] Gu'eziec A. Meshsweeper: dynamic point-to-polygonal mesh distance
and applications. IEEE Transactions on Visualization and Computer
Graphics 2001;7(1)47-61.

[29] Sigg C, Peikert R, Gross M. Signed distance transform using graphics
hardware. In: Proceedings of IEEE Visualization; 2003 October 19-24;
Seattle (WA); p. 83-90.

[30] Okabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. New York NY: John Wiley & Sons;
1992. 696 p.

[31] Hoff KE, Culver T, Keyser J, Lin M, Manocha D. Fast computation of
generalized voronoi diagrams using graphics hardware. In: Proceedings
of ACM SIGGRAPH; 1999 August 8-13; Los Angles (CA); p. 277-86.

[32] Sud A, Manocha D. Fast distance field computation using graphics
hardware. UNC Computer Science Technical Report: TR03-206, Chapel
Hill (NC): University of North Carolina; 2003; 26 p.

[33] Sud A, Govindaraju N, Gayle R, Manocha D. Interactive 3D distance
field computation using linear factorization. In: Proceedings of the
Symposium on Interactive 3D Graphics and Games; 2006 Mar 14-17;
Redwood City (CA); p. 117-24.

[34] Frisken SF, Perry RN, Pockwood AP, Jones TR. Adaptively sampled
distance fields: a general representation of shape for computer graphics.
In: Proceedings of ACM SIGGRAPH; 2000 July 23-28; New Orleans
(LA); p. 249-54.

[35] Kim YJ. Exact and adaptive signed distance fields computation for rigid
and deformable models on GPUs. [EEE Transaction on Visualization and
Computer Graphics 2014;20(5)714-25.

[36] Bastos T, Celes W. GPU-accelerated adaptively sampled distance fields.
In: Proceedings of IEEE International Conference on Shape Modeling
and Applications; 2008 June 4-6; Stony Brook (NY); p. 171-8.

[37] Watt A, Policarpo F. The Computer Image. Boston MA: Addison-
Wesley; 1998. 784 p.

[38] Levoy M. Efficient ray tracing of volume data. ACM Transaction on
Graphics 1990;9(3)245-61.

[39] Ney DR, Fishman EK, Magid D, Drebin RA. Volume rendering of
computed tomography data; principles and techniques. /IEEE Computer
Graphics and Applications 1990;10(2)24-32.

[40] Liu S, Wang CCL. Fast intersection-free offset surface generation from
freeform models with triangular meshes. /IEEE Transaction on Automa-
tion Science and Engineering 2011;8(2)347-60.

[41] Hard JC. Sphere tracing: a geometric method for the anti-aliased ray
tracing of implicit surfaces. The Visual Computer 1996;12(10)527-45.

[42] OpenGL Architecture Review Board. OpenGL(R) Reference Manual:
The Official Reference Document to OpenGL. Boston (MA): Addison-
Wesley; 1999; 704 p.

http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref2
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref2
http://geomcaliper.geometricglobal.com/images/file/EfficientWallThicknessAnalysis_GeomCaliper.pdf
http://geomcaliper.geometricglobal.com/images/file/EfficientWallThicknessAnalysis_GeomCaliper.pdf
http://geomcaliper.geometricglobal.com/images/file/EfficientWallThicknessAnalysis_GeomCaliper.pdf
http://www.solidworks.com/
http://www.solidworks.com/
http://www.3ds.com/
http://www.globalautoregs.com/unece
http://www.jasic.org/e/index_e.htm
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref8
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref10
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref10
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref11
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref12
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref12
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref12
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref14
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref14
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref15
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref18
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref19
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref19
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref19
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref20
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref20
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref22
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref22
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref23
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref23
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref24
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref24
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref25
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref25
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref26
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref26
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref27
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref27
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref28
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref28
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref28
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref30
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref30
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref30
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref30
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref35
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref35
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref35
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref37
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref37
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref38
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref38
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref39
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref39
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref39
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref40
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref40
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref40
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref41
http://refhub.elsevier.com/S2288-4300(15)00038-X/sbref41

	Thickness and clearance visualization based on distance field of 3D objects
	Introduction
	Related studies
	Thickness/clearance definitions and analysis
	Distance field computation and visualization

	Contributions of the present study
	Parallel distance field computation
	Preparations
	Culling of unnecessary distance computations
	Parallel distance computations with GPU
	Use of spatial coherence

	Thickness/clearance visualization with distance field
	Point generation on visible surfaces
	Maximum inscribed sphere in distance field
	Performance improvements

	Computational experiments
	Conclusions
	Conflict of interest
	References

