
S

J
B

a

A
R
R
A

K
G
M
A
M

1

c
s
e
c
2
e
r
s
S
t
b
o
d
m
m
m
fi
c

o
m
t
m
a

h
0

Social Networks 43 (2015) 16–27

Contents lists available at ScienceDirect

Social  Networks

jo u r n al hom ep age: www.elsev ier .com/ locat e/socnet

pectral  goodness  of  fit  for  network  models

esse  Shore ∗, Benjamin  Lubin
oston University, Questrom School of Business, United States

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 24 July 2014
eceived in revised form 3 April 2015
ccepted 9 April 2015

a  b  s  t  r  a  c  t

We  introduce  a new  statistic,  ‘spectral  goodness  of fit’ (SGOF)  to measure  how  well  a  network  model
explains  the structure  of  the pattern  of ties  in  an  observed  network.  SGOF  provides  a  measure  of  fit
analogous  to the  standard  R2 in  linear  regression.  Additionally,  as  it takes  advantage  of  the  properties  of
eywords:
oodness of fit
odel selection

pplications of spectral graph theory

the  spectrum  of  the  graph  Laplacian,  it is  suitable  for comparing  network  models  of diverse  functional
forms,  including  both  fitted  statistical  models  and  algorithmic  generative  models  of  networks.  After
introducing,  defining,  and providing  guidance  for  interpreting  SGOF,  we  illustrate  the  properties  of the
statistic with  a number  of examples  and  comparisons  to existing  techniques.  We  show  that  such  a  spectral
approach  to  assessing  model  fit  fills  gaps  left  by  earlier  methods  and  can  be  widely  applied.

©  2015  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
odels of network structure

. Introduction

Models of network structure play several important roles in
ontemporary science. Parametric statistical models of network
tructure and dynamics allow inferences to be made about depend-
ncies among network ties, network position, and nodal and dyadic
ovariates (Frank and Strauss, 1986; Anderson et al., 1992; Snijders,
001; Schweinberger and Snijders, 2003; Handcock, 2003; Doreian
t al., 2005; Hunter and Handcock, 2006; Steglich et al., 2010). Algo-
ithmic generative models illustrate how complex macroscopic
tructure can arise from simple and often local rules (Watts and
trogatz, 1998; Vázquez, 2003; Saramäki and Kaski, 2004). Despite
he importance and diversity of research within both the model-
ased inference and generative algorithms categories, one aspect
f network modeling research that has been relatively slow to
evelop is that of assessing goodness of fit, or how well a given
odel describes the empirical data being modeled. Moreover, the
ethods that are commonly used to assess fit within one type of
odel may  be uncommon or unavailable in another, making it dif-

cult to integrate research techniques and results across scholarly
ommunities.

The purpose of this paper is therefore to define a new measure
f goodness of fit that substantially fills the gaps left by current
ethods. In particular, leveraging the features of the spectrum of
he graph Laplacian, we define a new goodness of fit statistic that
easures the percent improvement a network model makes over

 null model in explaining the structure in the observed data. As
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E-mail address: jccs@bu.edu (J. Shore).
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such, we provide a goodness of fit measure that can be applied
across modeling techniques.

1.1. Existing methods

Commonly used existing methods for assessing goodness of fit
can be roughly classified into two overlapping groups: one based
on comparing structural statistics from networks simulated from
a fitted model to structural statistics from the observed network
(Hunter et al., 2008; Schweinberger, 2012), and the other based on a
model’s likelihood function, exemplified by the Akaike Information
Criterion (Hunter et al., 2008). Some methods (for example, the
score test) are both likelihood- and structural statistics-based.

1.1.1. Comparison of structural statistics
The most commonly used method of assessing goodness of fit

is the structural statistics approach, which is implemented in soft-
ware for estimating Exponential Random Graph Models (ERGMs)
as well as dynamic actor-oriented models (also known as ‘Siena’
models). Although not done in a hypothesis testing framework,
important algorithmic models (e.g. Watts and Strogatz, 1998) have
also been described in terms of how well the algorithm reproduces
structural statistics in observed networks.

In this approach, after fitting a model, it is necessary to generate
a large number of simulated networks based on that model. At that
point comparisons can be made between the observed and the sim-
ulated networks. The modeler might ask if the observed number of

closed triads (or distribution of closed triads over the nodes) could
have been drawn from the distribution defined by the simulated
networks, or if the observed degree distribution could have been
drawn from the distribution of degree in the simulated networks,

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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r any number of other questions of fit between statistics describ-
ng the observed and simulated networks. If the structures in the
bserved network are very unlikely to have been generated by the
tted model, the modeler can reject the hypothesis that the model
ts well. One such test—the score test—is frequently used in ERGMs
nd in certain cases can be interpreted as the uniformly most pow-
rful unbiased test of the hypothesis that an omitted parameter for

 given structural statistic is equal to zero (Holland and Leinhardt,
981).

The structural-statistical approach has many advantages. By
pecifying different statistics to compare, the approach can be
eadily adapted to different specific questions of model fit. For
xample, one researcher may  have a theoretical reason to empha-
ize the length of geodesics, while another may  focus on triadic
losure. Moreover, the statistics being examined need not be those
sed to fit the model; for example, one could use a community dis-
overy algorithm (e.g. Newman and Girvan, 2004) to compare the
istribution of community sizes in the observed network to those

n simulated networks. The results of such an analysis are also easy
o interpret and lend themselves to graphical representation and
nspection (as in Hunter et al., 2008).

On the other hand, this method also has limitations. Even if the
heoretical focus of a given researcher is on a single structural issue,
ay, modeling geodesics, the overall fit of the model to the whole
etwork is still important. A model that accurately reproduces the
istribution of geodesics but does not reproduce the overall struc-
ure of the network is probably inferior to one that captures the
eodesic distribution and the overall structure simultaneously.

The difficulty in the subgraph-statistical approach is that it is not
lear how to measure the overall structure of the network, except
n terms of a list of its statistics. This approach necessarily decom-
oses the goodness of fit of a whole model into multiple goodness of
t tests on specific features of the model. Theoretically, this is prob-

ematic; practically, the validity of the goodness of fit assessment
epends heavily on which statistics are specified by the researcher
or examination. In a sense, in order to construct a valid goodness of
t test, the researcher is required to know a priori what the impor-
ant statistics are for a given observed network; this is sometimes

 nonsensical requirement, as goodness of fit tests are often under-
aken exactly because the research does not know whether a given
et of statistics (those described by the model parameters) are a
ood description of a network. The pragmatic solution is to use

 commonly accepted set of statistics (Hunter et al. (2008) pro-
ides a good argument for one such set), but the possibility remains
hat important aspects of structure are not considered in such a
oodness of fit test.

Additionally, assessing model fit in terms of subgraph statistics
oes not provide a means of selecting between two  models that are
oth rejected or both not rejected. Finally, it is difficult to compare
ublished results from different studies when they do not report
he same subgraph statistical tests or analysis.

.1.2. Akaike Information Criterion
Likelihood-based approaches, exemplified by the Akaike Infor-

ation Criterion (AIC) and its cousin, the Bayesian Information
riterion (available for example, to users of the ergm package in

 Handcock et al., 2014; Hunter et al., 2008), fills some of the gaps
eft by hypothesis tests on structural statistics.

There are several limitations of the AIC and related methods
s well. First, many models do not have an AIC that can be easily
omputed, including ERGMs that are conditioned on having the
xact number of edges present in the observed network, as well

s models of networks that were not estimated from a statistical
odel at all (cases that we consider in more detail below).
Second, the likelihood from parametrized models is calculated

n terms of the probability of the observed data conditional on the
orks 43 (2015) 16–27 17

parameter estimates. This means that while the AIC can readily
compare the fit of nested models, it is difficult to interpret when
the models are not nested because the scale of the AIC depends on
the parametrization of the model.

Third, like the structural-statistics approach to which it is
related, one cannot know if there are omitted variables that would
have improved the fit of the model.

1.2. Spectral goodness of fit

Given these tools already available to network modelers, a
desirable measure of goodness of fit would have the following prop-
erties:

• it would be straightforward to compute for all models
• it would not require the modeler to know the true model or which

structural statistics are important in the observed network
• It would allow comparison of a wide range of models, includ-

ing non-nested models, those without easily computed likelihood
functions or even without statistical parametrizations

Here, we propose such a statistic: spectral goodness of fit (SGOF).
In many ways, SGOF is analogous to the R2 used in standard lin-
ear regression. Both SGOF and R2 have the properties just listed in
part because they compare synthetic data (simulated networks for
SGOF, predicted values for R2) to observed data rather than work-
ing on the fitted models themselves. For SGOF these gains come at
the expense of an important limitation (discussed at greater length
in Section 5, which is that it is only a measure of goodness of fit for
unlabeled (permutation-invariant) graph properties.

Throughout the rest of this article we make several assumptions.
We consider only undirected networks explicitly, although we dis-
cuss extensions to directed networks in the final section, below.
Additionally, in proposing to assess goodness of fit, we  assume that
a researcher has data on an observed network and has fit (or oth-
erwise chosen) a model of network structure to that data. We  do
not make any assumptions about the functional form of that model
or even whether the model is parametric at all, but we  do assume
that the researcher can generate simulated networks based on the
‘fitted’ model.

1.3. Computer code

We have made computer code for calculating SGOF and visu-
alizing the results of the analysis available as an R package,
spectralGOF.

2. The spectrum of the graph Laplacian

2.1. Definitions and notation

Networks are frequently represented as square adjacency matri-
ces (which we  will denote by A), such that if there is a link from
node u to node v, then Auv > 0. For the purposes of this article, we
are considering only undirected networks, so Auv = Avu, ∀u, v. We
also leave analysis of signed networks (in which edges can have a
negative weight) for future work.

The Laplacian matrix is a transformation of the adjacency matrix
given by L = D − A, where D is the ‘degree matrix,’ containing the row
sums of A on its diagonal and zeros elsewhere. The spectrum of L is
the ordered multiset of eigenvalues, �, such that 0 = �1 ≤ �2 · · · ≤ �n.

There is one Laplacian eigenvalue (hereafter, for brevity, ‘eigenval-
ues’ and ‘spectrum’ always refer to the eigenvalues of the Laplacian)
equal to zero for every connected component in the network
(Brouwer and Haemers, 2011). Therefore, �1 is always 0. Further,
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he sum of all eigenvalues is equal to the total weight of all edges
n the network:

n

i=1

�i =
n∑

u=1,v=1

Auv (1)

.2. The spectrum of the Laplacian as a representation of network
tructure

The spectrum is a “graph invariant,” meaning that if two
etworks are isomorphic,2 then they have the same spectrum.
he spectrum is also a compact representation of a great deal of
tructural information, and spectral techniques (sometimes includ-
ng analysis of both the spectrum and its associated eigenvectors)
ave thus been used extensively to characterize the structure of
omplex networks (Pothen et al., 1990; Newman, 2006) and to
ompare and recognize complex objects in other applications such
s facial recognition in computer vision (Turk and Pentland, 1991;
elkin and Niyogi, 2003). The properties of the Laplacian spectrum
ave been studied extensively (see Mohar and Alavi, 1991; Chung,
997; Brouwer and Haemers, 2011 for relatively accessible math-
matical overviews) and a full treatment is well beyond the scope
f this article. However, to provide context for our definition of
he spectral goodness of fit statistic, we here provide some basic
ntuition for the connection between the spectrum and network
tructure.

As we have already noted, the number of components is
eflected in the spectrum by the number of zeros. The magnitude of
he smallest non-zero eigenvalue is related to the minimum num-
er of ties (how much total weight) that would have to be cut
i.e., removed from the network) to divide the network into two
isconnected components and is known as the “algebraic connec-
ivity” of a network (Fiedler, 1973). The magnitudes of the next
mallest eigenvalues represent the relative modularity of the next-
ost macroscopic community structure of a network. Donetti et al.

2006) illustrate this logic as follows. Imagine a network comprising
our totally disconnected components. Its spectrum would contain
our eigenvalues equal to zero. If we perturb this network by con-
ecting the components with a small number of ties (Cvetković
t al., 1997), such that they are no longer disconnected, then rather
han having one eigenvalue equal to zero for each component, we
ould have one small eigenvalue for each modular cluster (Donetti

t al., 2006), one of which would be zero (as there would be one
omponent, and thus one eigenvalue equal to zero). The more
eight that was added between the components, the larger the

igenvalues would become.
The sizes of successively larger eigenvalues provide informa-

ion on successively finer divisions of the network into smaller
ub-communities. In general, a common interpretation of the mag-
itudes of eigenvalues of the Laplacian is one of correspondence to
he relative weight removed by a series of minimum cuts of the
etwork (for a more detail, see, e.g. Bollobás and Nikiforov, 2004).
he largest eigenvalue therefore contains information about the
umber of ties incident to the single most highly connected node
Schur, 1923; Brouwer and Haemers, 2011). In general, the small
igenvalues contain information about the macroscopic structure

f the network, while the large eigenvalues contain information
bout microscopic structure.

2 Isomorphic networks have the same structure. They could be represented by
he same adjacency matrix after permuting the rows and columns and disregarding
ny “labels” or names of the nodes.
orks 43 (2015) 16–27

2.3. Normalizing the spectrum

The shape of the spectrum describes how the aggregate tie
strength in a given network is organized relative to other networks
with the same density (total tie weight). Given this, in the definition
of the spectral goodness of fit (SGOF) statistic below, we  normalize
all spectra to sum to unity.

�̂i = 1∑
j�j

�i (2)

An increase in the density of A that is accomplished by multi-
plying all entries in A by a non-zero scalar constant also does not
change �̂. In other words, such a change only alters the size and not
the shape of the original spectrum, �. On the other hand, an increase
in the density of A accomplished by adding new ties or increasing
the strength of certain ties and not others, both increases the sizes
of � and changes its shape: and it results in a changed �̂ as well.

3. Spectral goodness of fit

3.1. Spectral distance

Given the structural information contained in the spectrum, the
Euclidean distance between two spectra is frequently used as a
measure of the structural similarity of two matrices (Cvetković,
2012). The Euclidean spectral distance (ESD) can be written as

||�̂A − �̂
B||, where the normalized full spectra of graphs A and B are

given by �̂
A

and �̂
B

respectively, and the double bars denote the
vector norm.

We wish to apply this notion of distance to our network mod-
els, but such models do not have spectra themselves. However, if
networks can be generated from the model (e.g. by simulation),
spectra for these generated networks can then be calculated. It is
the distance between these spectra and the observed spectrum that
we will consider. If we have, say, Nsim = 1000 simulated networks,
we can calculate the mean spectral distance between the simulated
networks and the observed network, as well as other distributional
statistics, such as the 5th and 95th percentiles of the spectral dis-
tance between simulations and the observed network.

Formally, after normalizing the spectra as above, let us call the
absolute value of the difference between the ith observed eigen-
value and the ith eigenvalue from the kth simulated network an
‘error.’

�k,i =
∣∣�̂obs

i − �̂simk
i

∣∣ (3)

In this context then, ESD is the square root of the sum of squared
errors.

ESDobs,simk
= ||�̂obs − �̂

simk || =
√∑

i

(�k,i)
2 (4)

The mean Euclidean spectral distance, ¯ESD,  is then defined as arith-
metic mean of the ESDs from each of the individual simulated
networks.

¯ESDobs,sim = 1
Nsim

Nsim∑
k=1

ESDobs,simk
(5)

3.2. Definition of null model
For network models we  propose that goodness of fit be mea-
sured as an improvement in fit relative to a naive null model. It is
therefore necessary to calculate the errors under the naive model
and the fitted model for some number of simulated networks.
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ifications of a model of the degree distribution of the E. coli genetic
regulatory network (Shen-Orr et al., 2002), both in the ERGM frame-
work.
J. Shore, B. Lubin / Socia

The natural null model for dichotomous networks is the density-
nly model, also known as the Bernoulli model or Erdős-Rényi
odel, simulations from which are random networks with the

ame expected density as the observed network. For the remainder
f this article, we adopt the density-only model as a null model.

In certain cases, other null models may  be justified. The critical
actor is specifying the null model such that it produces networks
n the same “class” as the observed network. Directed networks
hould be have a directed null model (a directed Erdős-Rényi
andom graph); weighted networks should have a weighted null
odel (this could be done by randomly permuting the observed
eights, for example, but also see Krivitsky (2012) for a parametric

pproach) and so on.
Another situation where the Erdős-Rényi model would not be

ppropriate as a null model is the case where the observed network
as constant degree by construction. This could occur if measure-
ent of the observed network was by means of a survey instrument

hat specified the number of alters each respondent was to nom-
nate (‘name five people you discuss important matters with’). In
his case a degree-regular random graph (one in which each node
as the same degree) would be the appropriate null model. For typ-

cal cases, however, the Erdős-Rényi model should be the default
hoice for the null model.

.3. Definition of SGOF

To calculate the spectral goodness of fit (SGOF), we simply divide
he mean Euclidean spectral distance under the fitted model by
he mean Euclidean spectral distance under the null model, and
ubtract the result from one.

GOF = 1 −
¯ESDobs,fitted

¯ESDobs,null

(6)

.4. Variability of SGOF

Although we use the mean of the ESD in the construction of our
ummary statistic, it is also important to consider (1) the standard
rror of the mean SGOF and (2) the variability in SGOF for simulated
etworks.

A small standard error provides evidence that sufficient simu-
ated networks have been obtained to get a reliable estimate of the

ean. As a rule of thumb, we recommend using 100 simulations
or exploratory modeling and at least 1000 simulations for pub-
ished results. However we also suggest that if the standard error of
he mean is greater than 0.01, more simulated networks should be
btained to ensure reliability. By paying attention to such standard
uality measures of our estimate of the mean, we  can ensure that
e are drawing appropriate conclusions from our SGOF statistic.

Additionally, given that almost all network models are stochas-
ic in nature, they will produce a distribution of networks. Different

odels will have different variability in this distribution, and it is
ossible for a fitted model with a reasonably high mean SGOF to
till produce simulated networks that are poor approximations of
he observed data some of the time. Consequently, it is important
o be able to get a quantitative sense of the range of networks a
iven model produces. We  can use SGOF in service of this goal by
imulating a large number of networks and then calculating SGOF
ith the 5th and 95th percentile results for ESDobs,sim. Below, we

eport these in parentheses after the mean SGOF calculated using
q. (6). This inter-quantile interval provides an indication of the

ispersion of goodness of fit, a property inherent to the model. It is

mportant to keep in mind that this variability in SGOF represents
ariability in the simulated networks generated by a model, and
ot uncertainty in the fit of the model to the observed data.
orks 43 (2015) 16–27 19

Concretely, if an observed network is not highly structured (that
is, close to random), the inter-quantile range for the null model’s
SGOF will be very wide, extending, say, from −0.5 to 0.5, reflect-
ing the fact that the observed network is not far from random. For
observed networks with a great deal of structure, this interval for
the null model’s SGOF will be narrow, extending for example only
from −0.001 to 0.001.

3.5. Interpretation of SGOF

The SGOF measures the amount of observed structure explained
by a fitted model, expressed as a percent improvement over a
null model, where structure means deviation from randomness.
The observed spectrum will be distant from the spectrum of the
null model in as much as the observed network has structure
that is non-random. The SGOF is thus a summary measure of the
percent of the observed structure that is explained by the fitted
model.

3.5.1. Bounds for SGOF
Like R2, SGOF is bounded above by one, when the fitted model

exactly describes the structural data. Likewise, an SGOF of zero
means no improvement over the null model. Finally, as with R2,
SGOF can be unboundedly negative3 if the spectrum of the fit-
ted model is more distant from the observed spectrum than is the
spectrum of the null model. If the SGOF is negative, it is there-
fore evidence that the null model (an Erdős-Rényi random graph)
is a better approximation of the observed network than the fitted
model under consideration. This is likely to occur in cases where
the observed network is not highly structured (and thus very sim-
ilar to the null model), and the fitted model is (incorrectly) highly
structured. If the observed network is not structured, then while

¯ESDobs,fitted � 0, ¯ESDobs,null will be a small positive number. Thus by
Eq. (6), SGOF will become a negative number of very large magni-
tude. However, for ordinary cases involving an observed network
that contains structure, and this structure can be explained by
a sensible model specifications, SGOF will fall between zero and
one.

4. Applications and comparisons to existing methods

In this section, we  illustrate the spectral goodness of fit method
with several examples chosen to highlight its strengths and weak-
nesses with respect to existing methods.

4.1. Comparison with structural statistics: E. coli

It is frequently the case that a researcher does not ever discover
the ‘true’ model underlying the formation of an observed network,
but rather is only able to approximate the truth with several theo-
retically plausible candidate models. In such cases it is useful to
have quantitative evidence about model goodness of fit to help
adjudicate the decision. Structural statistical tests can sometimes
play this role, but as mentioned above, it may  also be the case that
all models under consideration are rejected (or supported) by the
test, and more information is therefore needed.

This example considers such a situation by comparing two spec-
3 In normal practice, however, the fitted model for R2 is an ordinary least squares
linear regression with a free intercept parameter; in this typical case, R2 is bounded
below by zero.
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Using the ergm package in R, after fitting the models, we
ssessed their goodness of fit in the manner described by Hunter
t al. (2008), using the gof function with its default settings. This
oodness of fit routine assesses the probability that the distribu-
ions of degree, transitive closure and mean geodesic lengths over
he nodes in the observed network could have been generated by
he fitted model. Results from the gof analysis show that both of
he proposed model specifications produce distributions of struc-
ural statistics that diverge from the observed values. Accordingly,
he p-values for the goodness of fit diagnostics (not shown) indicate
ejection of the models.

Table 1 indicates this and gives values for the SGOF for these
odels, along with small network visualizations for reference.
lthough all the models are rejected by structural hypothesis tests,

here are marked differences in how well these models fit. Specif-
cally, the “curved exponential family” version of the model (for

ore detail, see Hunter and Handcock, 2006) provides a much
etter fit to the data than the other model without the curved
xponential family specification. In fact, at −0.014, the SGOF of this
odel indicates that it is no better than the null model as an overall

escription of the structure of the observed data.
The simple lesson here is that goodness of fit based on structural

tatistics cannot easily distinguish between similar models when
ll of the models are either accepted or rejected. Visual inspec-
ion of the graphical output can often help in this regard, but it
s not hard to come up with examples where it cannot. In these
ases it would be good to have a measure of goodness of fit that
an provide a principled means of model choice. The AIC is thus

 more comparable measure of goodness of fit to the SGOF we
ropose here, and the following examples make the comparison
xplicit.

.2. Comparison with AIC: star graph plus dyad

We  next consider an example consisting of a 102-node graph
onstructed by hand to serve as an imaginary observed network.
00 of the 102 nodes form a star graph, and the remaining two are a
omplete dyad, disconnected from the rest of the network. In addi-
ion to the network ties, there is an observed attribute, indicated
y the color of the nodes in the visualization. The attribute values
ave been measured by our hypothetical researcher, but they were
ot part of the process that generated the network ties. For this
xample, we compare the SGOF to AIC from fitted models in the
rgm package (Table 2).

After the null model, the next model is one fitted with a term for
omophily among red nodes in addition to the density term. The
isualization shows that such a model produces a pattern of ties
hat is very similar to the null model, but a greater proportion of ties
mong red nodes, similar to the observed network. It is here that
ne major difference between SGOF and AIC can be seen. The SGOF
ndicates negligible improvement over the null model because the
attern of ties is only a negligible improvement over the null model.
eanwhile the AIC shows a substantial improvement, from 988.4

o 957.27, because the parameters of the fitted model, including a
spurious by construction) homophily effect, have a higher likeli-
ood than the parameters of the null model, even after accounting

or the number of parameters with Akaike’s formula. The AIC is sen-
itive to how well the model’s parameters fit the data as a whole,
ncluding non-structural data.

The third and fourth models are both ERGMs fit to the data with
 k-star parameter (tendency toward nodes with degree k) in addi-
ion to the density parameter, but they differ in how the k-star

arameter is specified. The first of the two parametrizes the net-
ork with a tendency toward 2-stars, while the second of the two
arametrizes the network with a tendency toward 3-stars. Note
hat the k-stars are induced subgraphs, so although there are no
orks 43 (2015) 16–27

nodes with degree two, there are

(
99
2

)
= 4851 two-stars, each

centered on the same node; likewise there are

(
99
3

)
= 156, 849

three-stars in the observed network. Because of these differences in
statistic counts, the estimated parameters are likewise different in
the fitted models, with the parameter for 2-star tendency and 3-star
tendency estimated at 0.1283 and 0.0026, respectively. Reductions
in AIC differ because the parameter estimates are different and the
underlying “data” (i.e. observations of 2-stars versus 3-stars) are
even different.

Yet, both of these models reliably produce simulated networks
that are very close to the observed network. Indeed, the simulated
networks produced by the 2-star model are indistinguishable from
those produced by the 3-star model. Those depicted in the visu-
alization differ from the observed network only in that the two
nodes that are not part of the star graph are not connected with a
tie. Consequently, the SGOF for both of these models is very high at
0.978 (0.961, 0.99). According to the AIC, however, the two  mod-
els are very different: the 3-star model is only a little better than
the null model, with an AIC of 868.14, while the 2-star model is
characterized as superior, with an AIC of 552.88, despite generating
essentially the same network. Unlike the SGOF, the AIC depends on
the model specification, so it can be extremely difficult to interpret
when models are not nested.

4.3. Second comparison to AIC: Faux Mesa High

The previous example was  artificially constructed to illustrate
the differences between AIC and SGOF. In this subsection, we give
an example of a more typical social network using the “Faux Mesa
High” data set of Hunter et al. (2008), adapted from the Add Health
surveys (Harris and Udry, 2008). Similar to the star-graph exam-
ple, above, after the null model we fit an ERGM model using
only homophily effects on the observed covariates, which describe
Race, Sex and Grade of the respondents. We  go on to fit a model
using only the “Geometrically Weighted Degree” (GWD) of Hunter
and Handcock (2006) (which is a flexible approach to modeling
degree distributions), followed by a model with both the GWD  and
homophily effects. The final model we consider differs in type: the
preferential attachment model of Barabási and Albert (1999). Visu-
alizations of the networks created by these models, as well as their
AIC and SGOF statistics are shown in Table 3.

In this example, the homophily on the three covariates makes
significant improvements in both SGOF and AIC, because unlike
the star graph, there is almost certainly a real homophily effect
in the original data. Likewise, both SGOF and AIC indicate that the
model with both GWD  and homophily is superior to the models
with just one of those two  types of effects. The lessons from Faux
Mesa High are, however, otherwise consistent with those from the
star graph. AIC indicates that the homophily-only model is superior
to the GWD-only model. However, from the point of view of gener-
ating a pattern of ties alone, the SGOF indicates that the GWD-only
model is superior to the homophily-only model. Again, the reduc-
tions in AIC due to modeling homophily are hard to compare to
reductions in AIC due to modeling GWD, because the likelihood
is calculated on different statistics. In contrast, because the SGOF
compares whole simulated networks to the whole observed net-
work, it does not depend on model specification. For models that
are better than a null model (for unweighted networks, this is an
Erdős-Rényi random graph), it will always fall between 0 and 1.
In Table 4 we  compare the best ERGM from Table 3 and
compare it to models that are algorithmic in nature rather than
statistical. For all of these models we use the implementation in
the igraph package (Csardi and Nepusz, 2006). We  consider the
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Table  1
Comparison of spectral goodness of Fit to structural hypothesis testing for the E. coli genetic regulatory network.

Observed network

SGOF Struc. h-test AIC Simulated network

Null model 0 (−0.021, 0.024) Reject 6355.11

Geom. weighted degree −0.014 (−0.033, 0.009) Reject 6271.42

Geom. weighted degree (curved exp. family) 0.247 (0.17, 0.336) Reject 6013.68
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ote: All ERGMs include the terms specified above, plus an “edges” parameter.

atts–Strogatz lattice model of small world networks (Watts and
trogatz, 1998), the Barabási-Albert preferential attachment model
Barabási and Albert, 1999) in its default specification and in a hand-
uned specification, and the ‘configuration model’ (Newman et al.,
001). These models are based on a generative algorithms, rather
han parameters fitted to data that could be used to easily com-
ute a likelihood function. Although in theory one could calculate

 likelihood for algorithmic models by generating many simulated
etworks and counting the fraction of these that were identical
o the observed network, this procedure is not feasible in practice
ecause it could take years of computing time to carry out. There-
ore, in the table, we have indicated that the AIC for these models
s effectively incomputable with a question mark.

The SGOF is straightforward to calculate, however, as it is for
ny model that generates networks with the same number of nodes
s the observed network, regardless of conditions put on the sam-
le space or how (or whether) the model was estimated. As such,
he SGOF makes it possible to compare models that cannot be com-
ared on the basis of the AIC or other likelihood-based methods.

Examining the SGOFs from Table 4, we  see that the
atts–Strogatz lattice model of small world networks, and the

efault preferential attachment model both produce networks that
re much worse approximations of the pattern of ties in Faux Mesa
igh than the null model—an Erdős-Rényi random graph. This is

ot a surprising outcome, given that they were not “fitted” to the
bserved data in any way apart from having the same number of
odes. A hand-tuned version of the preferential attachment, how-
ver, can produce a fit that is only slightly inferior to the best ERGM
with respect to the unlabeled graph. The configuration model is
slightly different in nature. This model creates random graphs with
the exact degree distribution of the observed graph. Given that the
degree distribution is guaranteed to be the same as the observed
data it is not surprising that the SGOF is high, at 0.77. Since the
degree distribution of the simulated networks is fixed, there is also
less variability in SGOF: the 5th and 95th percentile values for SGOF
are very close to the mean.

4.3.1. AIC versus SGOF
In practice the AIC and the SGOF are complementary in that they

provide answers to different modeling questions. A researcher may
wish to compare nested models, examine the fit of nodal or dyadic
covariates in explaining the observed labelled graph, or assess the
parsimony of the model. In these cases, the AIC is required. On the
other hand, the researcher may  wish to compare non-nested mod-
els, compare models for which the likelihood function is impractical
to compute, or know how well a model that includes both struc-
tural effects and nodal and dyadic covariates explains the unlabeled
pattern of ties alone. In these cases the SGOF is preferred.

4.4. Visualization of SGOF

As with other statistical methods, a fuller qualitative under-

standing of the SGOF can be gained through visualization. Fig. 1
plots spectral fits for the “GWD and Homophily” and the “Preferen-
tial attachment” models from Table 3, using the plotSGOFerrors
function in the spectralGOF package.
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Table 2
Comparison of spectral goodness of fit to AIC for a nearly star graph.

Observed network

SGOF AIC Simulated network

Null model 0 (−0.01, 0.016) 988.4

Red node homophily 0.005 (−0.007, 0.023) 957.27

2-Star tendency 0.978 (0.961, 0.99) 552.88

3-Star tendency 0.978 (0.961, 0.99) 868.14
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ote: All ERGMs include the terms specified above, plus an “edges” parameter.

Each panel of the figure is a visualization of spectral error based
n three spectra: the observed spectrum, the null model spectrum
hat is closest to the observed spectrum (by mean Euclidean dis-
ance), and the fitted model spectrum that is closest to the observed
pectrum (again by mean Euclidean distance). The first and the sec-
nd are the same in both panels and are plotted as grey and black
oints respectively. The fitted model spectrum differs between
anels, and is plotted using orange points.

The spectral errors (differences among the observed, null and fit-
ed model spectra) are indicated by colored bars as follows. When
he fitted model’s spectrum lies between the null and the observed
pectra, the fitted model has improved the fit. The distance between
he null and the fitted spectrum is error that has been “explained”
nd is indicated in light green. The error that still remains unex-
lained (error that is present under the null and the fitted models)

s indicated in blue.
There are also parts of the plots where the fitted and null spec-

ra are on opposite sides of the observed spectrum. In these cases,
he fitted model has “explained” the error between the null and
he observed, but introduced new error on the other side of the
bserved spectrum. This new error is indicated in red.
Turning to the specific models in Fig. 1, we see that the two
ts differ considerably. In general, the spectrum of the fitted ERGM
top) lies between the observed spectrum and the null spectrum,
ndicating that the observed network is more structured (farther
from random) than are networks simulated from the fitted ERGM.
In contrast, portions of the spectrum of the preferential attach-
ment model (bottom) are more distant from the null spectrum than
is the observed spectrum. The preferential attachment model has
explained more error than the ERGM (represented by more green
area in its visualization), but it has also introduced structure not
present in the observed network, producing more new error (more
red area in the visualization), and resulting in a lower net SGOF.

4.5. SGOF as an objective function: collaborations among jazz
musicians

There are cases where one wishes to implement algorithmic
models that do not have an intrinsic method for fitting to observed
data. In this case, SGOF can be useful as an objective function in an
exploration of the algorithm’s parameter space. To illustrate this
type of application, we consider the network of jazz collaborations
described by Gleiser and Danon (2003).

One theoretically plausible algorithmic model of how collabo-
ration networks are formed is that of Saramäki and Kaski (2004).
In this model, one assumes some network exists at t0 to initialize

the model. In subsequent time points, new individuals arrive and
form ties to those already present by means of short random walks
from a randomly selected node serving as the point of entry into
the network.
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Table  3
Comparison of spectral goodness of fit to AIC for Faux Mesa High.

Observed network

SGOF AIC Simulated network

Null model 0 (−0.197, 0.202) 2287.742

Homophily on race, sex, grade only 0.223 (0.008, 0.445) 1890.922

GWD  Only 0.267 (−0.041, 0.556) 2244.7

GWD  and homophily 0.494 (0.236, 0.696) 1853.849
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ote: All ERGMs include the terms specified above, plus an “edges” parameter.

For musicians, the idea would be that after collaborating with
ome initial partner, one is likely to get to know one’s partner’s
artners, and so on. In addition to being theoretically plausible, this
lgorithm generates networks with skewed degree distributions
nd local clustering, as we observe in the jazz collaborations data
et.

To assess the fit of this model, one must first find the best values
or the model’s parameters, which we will do by appeal to SGOF.

hen implementing the algorithm, we identified two key param-
ters for fitting. The first is the mean number of edges to add with
ach new node added to the network. The second is how many
teps in a random walk a new node takes before forming new rela-
ionships to existing members of the network. We  generated 100
imulated networks for each of the using various combinations of
alues for these parameters, and then used these to compute an
GOF for each such parameter specification.
The results of this process are shown in Fig. 2, and indicate that
he best fit occurs when the average number of edges added per
ode is 9, and the random walk distance is a single step. Thus we
an not only use SGOF as a diagnostic tool, but also as a means
for identifying the parametric model settings that will be optimal
under our spectral criterion.

5. Future Extensions

5.1. Hypothesis testing

We have presented SGOF as a goodness of fit statistic, analogous
to R2. Using spectral distances, it is also possible to construct one
and two-sample hypothesis tests for the purposes of formal rejec-
tion of certain models in favor of others. Space does not permit a
full discussion of how such tests would be constructed; however,
the authors will present this material in a separate manuscript.

5.2. Directed graphs
While the properties of the Laplacian spectrum of undirected
graphs have been widely studied and applied, the spectral proper-
ties of directed graphs are less well-established. The present paper
has therefore focused on undirected, possibly weighted, networks
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Table 4
Faux Mesa High part 2: Comparing an ERGM to algorithmic models of structure.

Observed network

SGOF AIC Simulated network

GWD  and homophily 0.494 (0.236, 0.696) 1853.849

Watts–Strogatz model −1.323 (−1.374, −1.273) ?

Preferential attachment (default algorithm) −1.124 (−2.572, −0.171) ?

Preferential attachment (hand-tuned) 0.463 (0.132, 0.67) ?

Configuration model 0.77 (0.722, 0.809) ?
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otes: all ERGMs include the terms specified above, plus an “edges” parameter. A ‘?

o establish the SGOF, but further work should consider the differ-
nt properties of directed graphs. For now, we limit ourselves to
he following remarks.

The Laplacian matrix for directed networks has been defined
ifferently from that of undirected networks. In particular, Chung
2005) defines the Laplacian of directed networks as follows. First,
iven adjacency matrix, A, calculate a matrix, P, such that

Aij
(i, j) = ∑
kAik

. (7)

hen, treating P as the transition matrix of a Markov chain, calculate
he Perron vector, �, which is the all-positive left eigenvector of P
cates that the AIC is unknown because the likelihood is impractical to compute.

corresponding to the stationary distribution of the Markov chain
(for strongly connected graphs). Define  ̊ as the matrix with � on
the diagonal and zeros elsewhere, and I in the standard way  as the
identity matrix. Finally, the Laplacian for directed graphs is defined
as

L = I − ˚1/2P˚−1/2˚−1/2PT ˚1/2

2
. (8)

One feature of this definition is that L is undirected and therefore

has real-valued eigenvalues. Future work should consider the prop-
erties of this matrix from the point of view of goodness of fit, but
also consider alternative transformations of the adjacency matrix
for spectral analysis.
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ut  also introduces structure not present in the observed network, producing mo
eferences to color in this figure legend, the reader is referred to the web  version of

.3. Nodal attributes and fit to labeled aspects of graph structure

The desirable properties that the SGOF exhibits are a result of its
eliance on the graph Laplacian spectrum. However, this also intro-
uces an important limitation. SGOF can only assess goodness of fit
o unlabeled aspects of network structure. To illustrate, consider
n observed network characterized by homophily such that there
re two classes of nodes and a clear block structure comprising
any within-class ties and few between-class ties. A well-fitting

etwork model with a homophily parameter would produce simu-
ated networks with similar block structure to that of the observed

etwork, such that the blocks were determined by node class. In
ontrast, one could imagine a model that reproduced the block sizes
qually well, but produced blocks that mixed both types of nodes.
ince node attributes are labelled aspects of graph structure, the
ns more error than the ERGM (represented by more green area in its visualization),
w errors (red area) and resulting in a lower net SGOF. (For interpretation of the
rticle.)

SGOF would not be able to distinguish between these two  models.
The SGOF only considers the permutation invariant pattern of ties.

Structural statistic- or likelihood-based tools, are therefore
recommended for examining goodness of fit to labeled graph prop-
erties. However, if such tools are not available or insufficient for
some reason, the SGOF could be adapted in certain cases to con-
sider nodal attributes. To use SGOF in the case of the block-model
just described, in addition to the standard SGOF one could calculate
an SGOF on three additional matrices: the matrix consisting of only
those edges connecting class A nodes, the matrix consisting of only
those edges connecting class B nodes, and the matrix consisting of

only those edges connecting a class A node to a class B node. The
SGOF from all three of these modified matrices will only be high
if the fitted model accurately reproduces the block structure as it
correlates with the nodal class attribute. The utility of this modified
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ig. 2. SGOF for different combinations of parameter values for an algorithm based
leiser and Danon (2003).

pplication of SGOF is likely to be limited to relatively simple cases
ith few attributes of interest, but future research may  find a more
exible approach to incorporating nodal attributes.

.4. Statistical properties of Laplacian eigenvalues

Under certain density conditions, the distribution of eigenval-
es of the null model follows the ‘semi-circle law’ (Wigner, 1955;
hung et al., 2003), but these conditions are restrictive enough that
e have chosen to calculate the null errors in the SGOF by simula-

ion rather than by reference to the semi-circle law. The statistical
roperties (e.g. consistency and efficiency) of the eigenvalues of
nsembles of networks other than the null model depend on the
etails of the model from which they are generated. As with the
ull model, the distribution of eigenvalues from certain narrowly
efined models have been studied (Farkas et al., 2001; Bolla, 2004;
hang et al., 2014). However, it is not clear from the present body of
esearch, what can be said about the statistical properties of these
pectra and thus of SGOF in the general case.

Since we cannot derive the statistical properties of the SGOF
nalytically, in order to provide one practical point of reference, we
ave conducted a simulation-based exploration of the properties
f 100-node density-only models, under a range of densities. These
imulations support the following tentative conclusions. The means
f individual eigenvalues are stable across sample sizes (where
ample size refers to the number of simulated networks from which
he mean spectrum is calculated). However, as is typically the case,
he standard error of the mean appears to be biased downwards for
mall samples. Likewise, the standard deviations and the 5th and
5th quantiles of individual eigenvalues from Erdős-Rényi random
raphs are asymptotically consistent, but biased downwards for
mall numbers of simulated networks. As we mentioned above, at
east 1000 simulations should be obtained for published results.

We strongly recommend examining the distribution of spectra
imulated from fitted models to establish that sufficient sample
izes have been obtained when calculating the SGOF. Future work
hould seek to derive more general conclusions about the statistical
roperties of spectral distances for network models.

.5. Co-spectral graphs

One possible limitation to the usefulness of SGOF is introduced
y the phenomenon of co-spectral graphs, or non-isomorphic

raphs with the same spectrum (Godsil and McKay, 1982; Harary
t al., 1971). Enumerations of co-spectral graphs (Brouwer and
pence, 2009; Cvetković, 2012; Haemers and Spence, 2004) indi-
ate that co-spectral graphs are most common among networks
aramäki and Kaski (2004) fitted to the network of Jazz collaborations described in

of nine nodes and decrease in frequency as the number of nodes
and edges increase. Given that most interesting networks are much
larger than nine nodes, and given the overall rarity of graphs with
co-spectral partners, we do not believe there is any a priori reason
to believe that the utility of SGOF is substantially limited by this
phenomenon, but future work should confirm this.

5.6. Adjacency spectra

We  have relied on the spectrum of the graph Laplacian to imple-
ment SGOF, as it has a long history of being used as a discriminating
signature for complex phenomena. It is also relatively easy to inter-
pret in terms of network structure as we  discussed in Section 2.2.
That said, future work may  reveal circumstances in which the adja-
cency spectrum is a more discriminating tool for goodness of fit. If
this occurs, SGOF could be combined with an adjacency spectrum-
based goodness of fit measure.

6. Conclusion

We  have proposed a new measure of goodness of fit for network
models based on the spectrum of the graph Laplacian: “spectral
goodness of fit” (SGOF), and provided code with which SGOF can
be easily implemented. The properties of SGOF fill gaps left by the
current set of goodness of fit indicators, making it complementary
to existing methods.

Unlike AIC, SGOF is always straightforward to calculate, does
not depend on model form, and allows comparison of non-nested
models as well as comparison between statistical and algorithmic
models of network structure.

Hypothesis tests based on structural statistics also have these
good properties, but it is hard to decide between models that are all
rejected or all accepted by the test, and they require the researcher
to know which statistics are important for a given network.

SGOF does not have these drawbacks. The scale of SGOF is also
easier to interpret than an AIC for network models. Analogous to the
standard R2, the SGOF statistic measures the percent improvement
in network structure explained over a null model. For fitted models
that are superior to the null model (usually an Erdős-Rényi random
graph), SGOF lies between 0 and 1.

In sum, SGOF is complementary to prior methods of assessing
goodness of fit. It fills major gaps left by other techniques, but it
does not dominate them in that it does have certain limitations of its

own. Most of all, we hope that SGOF’s strength of easily comparing
goodness of fit among dissimilar models will facilitate the use and
refinement of network models and results from outside of any given
researcher’s own  methodological tradition.
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