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ABSTRACT 

A brief proof is given of a generalization of Sperner's lemma to certain finite partially 
ordered sets. 

Sperner's lemma [4] states the following: In the Boolean lattice of 
subsets of a set T with n elements, any set S of pairwise non-comparable 
elements has at most ~Cm elements, where m ---- [n/2], Thus a largest such 
S is the set of all m-element subsets of T. The theorem below states a 
generalization of Sperner's lemma to a useful type of partially ordered 
set. For the case in which the partially ordered set is in addition a geometric 
lattice, this theorem has been proved by Dilworth (unpublished), via the 
Unimodal Property. For the same case, Harper [2] has shown how the 
theorem can be obtained as a consequence of the Normalized Matching 
Property for regular bipartite graphs. The much briefer direct proof 
supplied by this note stems from Lubell's proof of Sperner's lemma [3]. 

THEOREM. Let Q be a finite partially ordered set with universal bounds O, 
1 and with a rank function p, such that for each k >~ 0 all elements of  rank k 

(i) are covered by the same number ak of  elements of  rank k ~- l, and 

(ii) cover the same number bk of elements of rank k -- 1. I f  e(k) is the 
number of  elements of rank k in Q, then any set S of  pairwise non-comparable 
elements in Q has at most M elements, where M = maxk e(k). 

PROOF: For each k, let E(k) be the set of elements of Q of rank k. 
For x ~ Q, let p(x) be the probability that a randomly chosen maximal 
chain of Q will pass through x. In other words, let p(x) = s(x)/t, where t 
is the number of all maximal chains of Q and s(x) is the number of those 
which pass through x. 
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(1) A first observation: For any given k, p(x) is the same for all x ~ E(k). 
Indeed, if p(x) -- k, s(x) is the product of the number bk "'" bl of maximal 
chains of the interval [O, x] and the number ak "'" an-1 of maximal chains 
of the interval [x, I]. (Here n = p(I).) Thus p(x) = bk "'" blak"" an_l/t, 
which is constant on E(k). 

(2) A second observation: p(x) ~ 1/M. For a given k, each maximal 
chain of Q passes through exactly one element of E(k). Addition of 
probabilities for mutually exclusive events then gives 1 = Z~E~p(x ) .  
Since there are e(k) summands, the common value of the p(x), x ~ E(k), 
must be lie(k). Thus p(x) = lie(k) >/ I/M. 

(3) Finally, we note that each maximal chain of Q passes through at 
most one element of S. Therefore, the probability that a given maximal 
chain passes through some dement of S is again obtained by addition and 
is Z,~sp(x). Since this probability cannot exceed 1, we have 

1 > ~ p(x) > ~, I lM  =- IS  I/M, 
�9 ~S x~S 

i.e., [ S I ~< M, as required. 
The above result applies to finite Boolean algebras, finite projective 

geometries, finite affine geometries, and many other geometric lattices 
[1, Ch. IV]. It is still a matter of conjecture whether the conclusion is true 
for all finite geometric lattices [2]. 
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