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1. INTRODUCTION 

A group is said to be polycyclic-by-finite, or a PF-group for short, if it 
has a polycyclic normal subgroup of finite index. Equivalently, PF-groups 
are exactly the groups which have a series of finite length whose infinite 
factors are cyclic. By a well-known theorem of P. Hall every PF-group is 
finitely presented-and in fact PF-groups form the largest known section- 
closed class of finitely presented groups. It is this fact that makes 
PF-groups natural objects of study from the algorithmic standpoint. 

The general aim of the algorithmic theory of PF-groups can be described 
as the collection of information about a PF-group which can, in principle 

* During the final stage of work on this article the authors were visitors at the Mathemati- 
cal Sciences Research Institute in Berkeley. 
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at least, be obtained by machine computation. Somewhat more precisely, 
the information sought should be capable of being coded by partial 
recursive functions or, equivalently, be obtainable from the output of 
a Turing machine. 

Polycyclic groups were introduced by K. A. Hirsch in [ 14 J-[17], and 
their central position in infinite group theory has long been recognized. 
Under these circumstances it seems remarkable that there has been no 
systematic study of their algorithmic properties. In fact the literature seems 
to contain only the solutions of the generalized word problem (Mal’cev 
[24]) and conjugacy problems (Formanek [lo], Remeslennikov [25], 
Grunewald and Segal [ 13]), and some results about polycyclic presenta- 
tions due to Baumslag, Cannonito, and Miller [3];’ we mention also a 
fragmentary unpublished dissertation of N. Maxwell which gives algo- 
rithms to construct certain subgroups of PF-groups, for example, the 
Fitting subgroup. In addition Baumslag, Cannonito, and Miller [S] have 
given an algorithm to construct the homology of a PF-group with coef- 
ficients in a finitely generated module. 

The present work is an attempt to remedy the situation by giving a 
systematic account of the algorithmic theory of PF-groups. It should be 
pointed out that our algorithms are algorithms in the classical sense, and 
so will rarely satisfy the strict constructivist. Nor have we made any 
attempt to produce practical algorithms that might lead to computer 
implementation. We feel however that this is an important topic which 
merits investigation. 

Finally, the reader is reminded that no satisfactory algorithmic theory 
exists for finitely presented soluble groups; for Kharlampovic [ 19]-see 
also Baumslag, Gildenhuys, and Strebel [6]-has shown that even the 
word problem is in general insoluble for such groups. 

Terminological Note. For economy of expression we shall frequently 
say that “we can find x” if there is an algorithm or recursive procedure 
which produces X. If X is a subgroup of a PF-group with a given presenta- 
tion, it is understood that the algorithm furnishes a finite set of generators 
for X. The phrase “given a PF-group G” will always mean that G is given 
by means of a specific finite presentation. 

Results 

As is to be expected, the algorithms which we describe lie at various 
depths. Those in Section 2 are mainly elementary and most depend only 
on solubility of the generalized word problem for PF-groups, itself an 

’ To this list should be added the solution of the isomorphism problem for finitely 
generated nilpotent groups due to Grunewald and Segal, Ann. of Marh. 112 (1980), 5855617. 
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elementary result. Under this category are algorithms to find the terms of 
the lower central series and derived series, and to find the soluble radical. 

In Section 3 we prove a fundamental theorem which is the key to 
obtaining information about subgroups of PF-groups. 

THEOREM (3.4). There is an algorithm which, on being given a PF-group 
G and a finite subset X of G, produces a finite presentation of the subgroup 
(X> in the generators X. 

Almost all subsequent results rest ultimately on this. The proof is accom- 
plished by constructing a so-called consistent polycyclic presentation in a 
polycyclic group. Consequences of (3.4) are algorithms to find the Hirsch 
number and the maximum finite normal subgroup of a PF-group; and to 
find a normal poly-infinite cyclic subgroup of finite index. 

The algorithms developed in Section 4 and later sections depend on 
some constructive commutative algebra, namely an algorithm which 
produces a finite presentation of the unit group of an algebraic number 
field; this is essentially the work of BoreviE and SafareviE [S]. The first 
main result obtained on this basis is 

THEOREM (4.1). There is an algorithm which, on being given a finite 
subset X of GL(n, Z), decides if (X) is a PF-group, and if so, finds a finite 
presentation of it. 

In view of the well-known theorem of Auslander [ 1 ] and Swan [34] 
that every PF-group is isomorphic with a subgroup of some GL(n, Z), a 
PF-group can always be given by specifying finitely many elements of 
GL(n, Z) as generators. Then (4.1) makes it possible to apply to a 
PF-group given in this manner any of the algorithms developed for 
PF-groups defined by a finite presentation. Other consequences of the 
constructive commutative algebra are algorithms to find the Fitting 
subgroup, the centre, and the FC-centre of a PF-group (Theorems 5.1, 5.2, 
and 5.5). 

Derivations from a PF-group G to a ZG-module which is finitely 
generated as an abelian group play a prominent role in Section 6, being 
instrumental in the production of algorithms that perform some standard 
group theoretic constructions. In the following results it is assumed that a 
PF-group G is given, together with two finite subsets X and Y. Write 
H= (X) and K= (Y). 

THEOREM (6.3). We can find H n K. 

THEOREM (6.5). We can find the centralizer C,(H). 
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THEOREM (6.8). We can find the normalizer N,(H). 

Among applications of these results are: (i) an algorithm to find 
the normal core of a subgroup (6.4); (ii) the solution of a generalized 
conjugacy problem applicable to finite sets of elements and subgroups 
(6.9). 

Finite subgroups of PF-groups are featured in Section 7. Recall that 
Mal’cev [23] showed that the finite subgroups of a polycyclic group fall 
into finitely many conjugacy classes. The same is true of PF-groups. This 
opens up the possibility of obtaining information about the finite 
subgroups of a PF-group, even although they may be infinite in number. 

THEOREM (7.1). There is an algorithm which, when given a PF-group G, 
produces finite subsets A’,, X,, . . . . X, such that the (Xi) are finite non- 
conjugate subgroups whose conjugates account for all the finite subgroups 
of G. 

It is apparent that from this we can tell if a PF-group is torsion-free. 
Another application of (7.1) is 

THEOREM (7.7). There is an algorithm which, when given a PF-group G 
and a finite subset X of G, decides if (X> is permutable in G. 

Here H = (X) is said to be permutable in G if and only if HK = KH for 
all subgroups K. The final section is entirely devoted to proving 

THEOREM (8.1). There is an algorithm which, on being given a PF-group 
G, finds the Frattini subgroup q(G) of G. 

Perhaps because of the highly non-constructive form of the definition of 
the Frattini subgroup this has proved to be the most difficult algorithm to 
produce. The proof of (8.1) calls for the construction of the Frattini sub- 
module of a module over a PF-group which is finitely generated as an 
abelian group. We have not been able to find results of this character in the 
literature of constructive commutative algebra. 

It is tempting to conclude from these results that there is an algorithm 
to solve any well-posed problem about PF-groups. However, this is by no 
means the case. Indeed some years ago Remeslennikov [26] observed that 
there is no algorithm to decide of a finitely generated nilpotent group G 
whether G/P can be mapped epimorphically onto G/Q where P, Q are 
given subgroups of the centre of G. This rests on the insolubility of 
Hilbert’s Tenth Problem. For more insolubility results of this kind see the 
forthcoming paper of Segal [31]. 

In conclusion we mention that the paper of Segal just referred to 
contains a solution of the isomorphism problem for PF-groups, as well as 
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a variety of algorithms relating to automorphisms of a PF-group. Segal’s 
paper may be regarded as a continuation of the present work. 

Some Open Questions. Are the algorithms to decide if a PF-group is 
residually nilpotent or residually finite-p? Is there an algorithm to find the 
minimum number of generators of a PF-group? 

2. BASIC ALGORITHMS 

We begin by recalling the positive solutions of the word problem and 
generalized word problem for PF-groups. 

PROPOSITION (2.1). There is an algorithm which, when given a PF-group 
G and an element g of G (as a word in the generators), decides if g equals 
the identity. 

PROPOSITION (2.2). There is an algorithm which, when given a PF-group 
G and elements g, g, , . . . . g, of G, decides ifgE (g,, . . . . g,). 

The usual way to prove these results is by means of what may be called 
the local-global principle. Take the case of (2.1), and keep in mind that G 
is residually finite [16]. Two recursive procedures are set in motion. The 
first constructs all finite groups in increasing orders-say by means of their 
group tables-and finds the finitely many homomorphisms 8, from G into 
each finite group, using the finite presentation of G. It tests to see if g”’ 
equals the identity and stops if this ever fails to hold. The second procedure 
simply enumerates all consequences of the defining relators and looks for 
the word g; it stops if g appears. Either the first procedure stops and g # 1 
or the second stops and g = 1. 

Proposition (2.2) can be proved in the same way, using the fact that the 
subgroup (g, , . . . . g,) is closed in the prolinite topology (Mal’cev [24]; for 
a simple proof see [30, Chap. 1, Exercise 111). Thus if g 4 (g, , . . . . g,), this 
can be detected modulo a normal subgroup of finite index. 

PROPOSITION (2.3) [lo, 253. There is an algorithm which, when given a 
PF-group G and elements x, y of G, decides if x and y are conjugate in G. 

PROPOSITION (2.4) [13]. There is an algorithm which, when given a 
PF-group G and finite subsets X and Y of G, decides if (X) and ( Y) are 
conjugate in G. 

Both results follow quickly by the local-global method once it is shown 
that two elements (subgroups) which are not conjugate in a PF-group G 
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have non-conjugate images in some finite image of G. For the latter see 
[ 10, 25, 131 or [30, Chap. 41; the proofs involve non-trivial algebraic 
number theory. 

We come now to an extremely simple result that is used constantly. 

LEMMA (2.5) (The Normal Closure Lemma). There is an algorithm 
which, when given a PF-group G and finite subsets X, Y of G, ,finds the 
normal closure of X in (X, Y). 

Proof: Let Y= {y,, . . . . y,,}, and define subsets X, recursively by 

X,=X and x,+, = x, ” ij (xp ” x;“, I). 
,= I 

If Hi = (X,), then H, <H, < ., and by the maximal condition there is an 
i for which Hi= Hi+,. Clearly H, is the normal closure of X in (X, Y). 
Now H;= H;,, if and only if X ,+, L H,. For i=O, 1,2 ,... use (2.2) to 
decide if this inclusion holds; eventually such an i will appear. 

COROLLARY (2.6). There are algorithms which, when given a PF-group G 
and a finite subset X of G, find the terms of the derived series and the lower 
central series of (X). 

If x= {XI, . ..) x,,) and y,((X>)= (Y,, . . . . Y,>, then Yi+l((x>) is the 
normal closure of the set of all [x,, yk] in (X). By (2.5) we can find this. 
Thus the result for the lower central series follows by induction on i. The 
assertion for the derived series is an immediate consequence. 

COROLLARY (2.7). There is an algorithm which, when given a PF-group 
G, produces a recursive enumeration of the normal subgroups of finite index 
in G. 

Proof: Enumerate homomorphisms Oi from G into all the finite groups, 
and find a finite presentation of each Im 19,. Then Ker 0, is the normal 
closure in G of the defining relators as words in the generators of G. By 
(2.5) we can find a finite set of generators for Ker Bi. All normal subgroups 
of finite index are found by this procedure. 

PROPOSITION (2.8). There is an algorithm which finds the soluble radical 
of a given PF-group G. 

Proof: Using (2.7), enumerate pairs (N, i) where N is a normal sub- 
group with finite index in G and i is a natural number. For each pair find 
N”‘, the ith term of the derived series, using (2.6), and decide if N(j)= 1 
using (2.1). Eventually we shall discover a pair (IV, i) such that IV(‘) = 1. 
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Find a finite presentation of the finite group G/N by adding the generators 
of N to the relators of G. Find the soluble radical of G/N by enumeration, 
say S/N. Then S is the soluble radical of G. 

COROLLARY (2.9). There are algorithms which decide if a given 
PF-group G is soluble, supersoluble, or nilpotent. 

Proof: Find the soluble radical S and decide if S = G (using (2.2)). Thus 
we can decide if G is soluble and hence polycyclic. As for the other proper- 
ties, we can invoke theorems of Baer [2] and Hirsch [lS] which assert 
that if a polycyclic group is not supersoluble (nilpotent), then some finite 
quotient is not supersoluble (nilpotent): the local-global method can then 
be used. Alternatively we could appeal to algorithms of Baumslag, 
Cannonito, and Miller [4] which apply to finitely presented soluble 
groups. 

PROPOSITION (2.10). There is an algorithm which, when given a PF-group 
G and a natural number m, finds the mth power G” = (g” 1 g E G). 

ProoJ: Using (2.8) find the soluble radical S of G. By enumerating 
finite subsets and using (2.2) find a set of generators {x, , . . . . x,} of S such 
that x;” E (x,, . . . . x,~ , ) for i < j, i, j= 1, . . . . n. Such a subset exists since S 
is polycyclic. Find IG : SI. Then /G : G”I < m” IG : SI = 1, say. Enumerate 
the finitely many normal subgroups of index at most 1, as in (2.7). Pick out 
from these the subgroups N such that GIN has exponent dividing m. The 
smallest such subgroup is G”. 

PROPOSITION (2.11). There is an algorithm which, when given a PF-group 
G and a finite subset X of G, decides whether (A’) is subnormal in G. 

Proof Let H = (X). Recall the theorem of Kegel [IS] that H is sub- 
normal in G if and only if HN/N is subnormal in G/N for all normal sub- 
groups N of finite index in G. Also recall the series of successive normal 
closures of H in G; this is the descending series {Hi 1 i = 0, 1, . ..} with 
H,=G and H,+,= (HHz), the normal closure of H in H,. The subgroup 
H is subnormal in G if and only if some Hi equals H. 

Two procedures are set in motion. The first constructs homomorphisms 
from G to all finite groups and checks to see if the image of H is subnor- 
mal: if not, it stops. The second procedure finds successively H,, H,, . . . 
using (2.5), and tests to see if H = H,, using (2.2). If this happens, the 
procedure stops. If the first procedure stops, H is not subnormal: if the 
second procedure stops, H is subnormal. 
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3. POLYCYCLIC PRESENTATIONS 

By a polycyclic presentation n we mean a finite presentation of a group 
in generators x,, x2, . . . . x, with defining relations of the following forms: 

(i) x,‘! = v,,(x, , . . . . x, _ ,) and .x,7-’ = l(,(x,, . ..) x,--,) where 1 <i< 
j<n; 

(ii) xF=u,(xl ,..., xi-.,) where l<e,<co, and ldidn. (If e;=co, 
the relation is vacuous.) 

Here, of course, uzj, I?:,, ui are words. This is a slight adaptation of the 
definition in [3]. Clearly a group has a polycyclic presentation if and only 
if it is a polycyclic group. 

For i = 1, 2, . . . . n - 1, let z, be the sub-presentation obtained from n by 
omitting generators x,, , , . . . . x,, and deleting all relations involving these 
elements. Then n, is also a polycyclic presentation. Let G and H, be the 
groups presented by 7~ and rti, respectively. Also let Gi= (x1, . . . . x,). Thus 
1 = G,, u G, -=I .. u G,,+ , Q G, = G is a series in G with cyclic factors. 
There are obvious homomorphisms Hi + H, + , and epimorphisms Hi + G, 
which make the following diagram commute: 

l=H,+H,+ ... +H,,-,-+H,,=G 
1 1 1 1 

l=G,qG,c; ... 4 G,.. / 4 G,=G. 

LEMMA (3.1). With the above notation, the ,following statements about 
the presentation z are equivalent: 

(i) the maps H, + Hi+, are monomorphisms; 

(ii) H, and Gi are isomorphic for all i; 

(iii) the maps H, -+ G, are isomorphisms. 

Proof Easy diagram chases show that (i) implies (ii) and (iii) implies 
(i). The hopfian property of polycyclic groups shows that (ii) implies (iii). 

A polycyclic presentation will be called consistent if it has the properties 
of (3.1)-the term “honest” is used in [3]. Evidently every polycyclic group 
has a consistent polycyclic presentation. 

PROPOSITION (3.2). There is an algorithm which can decide if a given 
polycyclic presentation n is consistent. 

This is part of Theorem 4.3 of [3]. We briefly review the proof, taking 
the opportunity to correct a slight omission. 

Proof We use the notation introduced above. By induction on n > 1 it 
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can be assumed that the presentation rc, ~ I is consistent. Then rc will be 
consistent if and only if the assignments xi++ u,,(xl, . . . . x,~ ,) and 
Xi++ Ujn(X*, ...) X,- 1 ) determine automorphisms of H,- , the first of which 
fixes u,(x,, . . . . x no ,), its e, th power being just conjugation in H,-, by 
%(X, 3 ..., x, ~ I), . m case e, # cc. The solution of the word problem allows 
us to decide if these conditions hold. 

The next result is concerned with the construction of a consistent 
polycyclic presentation from an arbitrary finite presentation of a polycyclic 
group. 

THEOREM (3.3). There is an algorithm which, when a polycyclic group G 
is given, finds a consistent polycyclic presentation of G. 

Proof: Recall that, given two finite presentations of a group, there is a 
finite sequence of elementary Tietze transformations which, when applied 
to the first presentation, produces the second one [22, 1.51. Observe also 
that the set of all finite sequences of elementary Tietze transformations is 
recursively enumerable. Starting with the given finite presentation of G, 
apply finite sequences of Tietze transformations, and, when a polycyclic 
presentation appears, use (3.2) to test it for consistency. Eventually a 
consistent presentation will be found by this procedure. 

One would expect a consistent polycyclic presentation to be the most 
appropriate vehicle for the production of practical algorithms for a 
polycyclic group. For example, such algorithms exist to solve the word 
problem and the generalized word problem [3, Sect. 43. 

Finite Presentations of Subgroups of PF-Groups 

The next theorem is fundamental in the algorithmic study of subgroups 
of PF-groups. A version of it appears in [3, Theorem 4.31; it has also been 
found by N. Maxwell. 

THEOREM (3.4). There is an algorithm which, when given a PF-group G 
and a finite subset X, finds a finite presentation for (X> in the generators 
x. 

Proof Let H= (X). By (2.8) we can find the soluble radical S of G. 
Since IG : S] is finite, the Reidemeister-Schreier procedure can be used to 
produce a finite presentation of S. Use (3.3) to produce a consistent 
polycyclic presentation of S, with generators s,, . . . . s,, say. Let Si = 
(3 I, ..., s,); we suppose the si to be labelled so that 1 = So 4 S, 4 ... 
u s, = s. 

Find a finite presentation of HS/S in the xS, x E X; if the relators are 
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rll . . . . rl, then Hn S is the normal closure in H of rl(x), . . . . rr(x). Use the 
Normal Closure Lemma to find a finite set of generators for H n S = HO. 

A finite presentation of the cyclic group S/S,-, is at hand, so we can use 
it to find a finite presentation of HO/H, n S,-, . Just as above, we find a 
finite set of generators for H, n S,, ~, . Induction on n > 0 yields a finite 
presentation for H, n S, _ , , Combining the presentations for H, n S, ~ , , 
WHonLl~ and H/H, in the standard manner (see [30, Chap. 8, 
Lemma lo], we obtain a finite presentation of H. This may now be trans- 
formed in the usual way into a finite presentation in the generators X. 

There are numerous applications of (3.4); one of the most frequently 
used is 

PROPOSITION (3.5). There is an algorithm which, when a PF-group G and 
a finite subset X of G are given, finds h( (X)), the Hirsch number of (A’). 

Proof Find a finite presentation of (X) using (3.4), and then find a 
consistent polycyclic presentation of the soluble radical of (X) by (2.8) 
and (3.3). Then h( (X)) equals the number of infinite exponents in the 
latter presentation. 

COROLLARY (3.6). There are algorithms which, when a PF-group G and 
a finite subset X of G are given, decide tf (X) is finite and I$ 1 G : (X) 1 is 
finite. 

For (X) is finite if and only if h( (X)) = 0, and 1 G : (X) 1 is finite if and 
only if h( (X)) = h(G). 

LEMMA (3.7). There is an algorithm which, when given a PF-group G, 
decides tf G is infinite and, tf so, finds a non-trivial free abelian normal 
subgroup of G. 

Proof The first part follows from (3.6). Assume G infinite. Enumerate 
finite subsets of G, form the subgroup generated by each one, and test 
for commutativity, and normality (using (2.1) and (2.2)). If both hold, 
determine if the Hirsch number of the subgroup is positive. Eventually 
the procedure will produce an infinite abelian normal subgroup A. Find a 
presentation of A using (3.4), and use it to compute the order t of its 
torsion subgroup. (Here we are invoking a standard procedure for finitely 
generated abelian groups.) Then A’ is a subgroup of the type sought. 

LEMMA (3.8). There is an algorithm which, when given PF-groups G and 
H and a homomorphism 8: G + H (by means of its effect on the generators 
of G), finds Ker 8. 

4X1:142:1-9 
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ProoJ Find a finite presentation of Im 0 by (3.4), and hence of G/Ker 6. 
The Normal Closure Lemma produces a finite set of generators for Ker 19. 

COROLLARY (3.9). There is an algorithm which, when given a PF-group 
G andfinite subsets X and Y such that ( Y) u (X, Y), finds (2’) n ( Y). 

Proof Let H=(X) and K=(Y). Define 8: H-+HK/K by h’=hK. 
Thus Ker 0 = HA K. The result follows from (3.4) and (3.8). 

PROPOSITION (3.10). There are algorithms which, when given a PF-group 
G, can (i) decide if G is a poly-infinite cyclic group, and (ii) construct a poly- 
infinite cyclic normal subgroup of finite index. 

Proof: A finite presentation of G/G’ is at hand, so we can find the 
torsion-subgroup T/G’. Decide if T= G using (2.2). If so, then G is not 
poly-infinite cyclic unless G = 1. If T# G, find a finite presentation of T. 
Now h(T) <h(G), and G is poly-infinite cyclic if and only if T is. But this 
can be decided by induction on h(G). 

For the second part, enumerate normal subgroups of finite index in G 
and test each one to see if it is poly-infinite cyclic. A well-known theorem 
of Hirsch [ 151 guarantees that such a subgroup will appear eventually. 

The next algorithm finds the maximum finite normal subgroup; this 
frequently used result was found by Maxwell. 

THEOREM (3.11). There is an algorithm which, when given a PF-group G, 
finds its maximum ,finite normal subgroup. 

ProoJ Let T denote the maximum finite normal subgroup of G. If 
h(G) =O, then T= G. Otherwise use (3.7) to find a non-trivial torsion-free 
abelian normal subgroup A of G. We have a finite presentation of G/A 
and h(G/A) < h(G), so by induction on h(G) we can find the maximum 
finite normal subgroup of G/A, say T,,/A. Clearly Td C,(A) = C, say. 
By (3.4) we can find a finite presentation of the finite group T,,/A, and, by 
determining which of its elements centralize every generator of A, we 
are able to find CIA, and hence C. Now C/Z(C) is finite, so by Schur’s 
Theorem C’ is finite, and this can be found by (2.6). Clearly T/C’ is exactly 
the torsion-subgroup of C/C’, and this can be found from a finite presenta- 
tion of C. Consequently we can find T. 

4. POLYCYCLIC-BY-FINITE SUBGROUPS OF GL(n,L) 

We begin by quoting a result from constructive algebraic number theory 
upon which most subsequent theorems depend. 
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PROPOSITION (4.1). There is an algorithm which, when an algebraic 
number field K is given, finds a finite presentation of the group of units oj 
the ring of algebraic integers in K. 

Here K is regarded as given if an irreducible polynomial fin Q[t] such 
that K 2: Q [t]/( f) is specified. Proposition (4.1) is essentially due to 
BoreviE and SafareviE [S]; see also [ 121. 

The main result to be established in this section is 

THEOREM (4.2). There is an algorithm which, when a finite subset X of 
GL(n, Z) is specified, decides !f G = (X) is a PF-group, and tf so, finds a 
.finite presentation of it. 

Two preliminary results will be proved first. 

LEMMA (4.3). There is an algorithm which, when given a finite subset X 
of GL(n, Z) such that G = (X) is a PF-group, finds the following: 

(i) a triangularizable normal subgroup T with finite index in G; 

(ii) a finite presentation of T/U where U is the unipotent part qf T; 

(iii) a ,finite presentation of U. 

Proof The first step is to enumerate the normal subgroups of G with 
finite index. To do this enumerate finite subsets S of G and positive integers 
m. Test to see if T= (S) is normal in G, using the solution of the mem- 
bership problem in PF-subgroups of GL(n, Ztthis depends on the fact 
that such subgroups are closed in the congruence topology (see [30, 
Chap. 4, Theorem 51). Then enumerate up to m cosets of Tin G and check 
to see if their union V satisfies Vx = V for all x in X. This is possible by 
the solution of the membership problem. When this occurs G = V. 

At the same time enumerate algebraic number fields K and non-singular 
n x n matrices c( over K, and test to see if CI- ‘ta is (upper) triangular for 
each generator t of T. The Lie-KolchinMal’cev Theorem on soluble linear 
groups [30, Chap. 2(c)] guarantees that a (T, K, c() will appear such that 
CI ~ ‘TM is triangular over K. 

Next use (4.1) to find a finite presentation for the group of units D of K. 
Let rr: T+ D x ...,, x D be the map associating with x in T the diagonal of 
CI ~ ‘xc(. Then z is a homomorphism whose kernel equals U. We know the 
images under rc of the generators of T, so we can find a finite presentation 
of Im n, and hence of T/U. From the latter find a finite set of generators 
for U, using the argument of the Normal Closure Lemma (2.5), and 
solubility of the membership problem in PF-subgroups. 

Finally, cl-‘Ucc is a subgroup of U(n, Z), the group of all n x n upper 
unitriangular matrices over Z. But it is easy to write down a finite presenta- 
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tion of U(n, Z); then (3.4) allows us to find a finite presentation of tl_ ‘Uol, 
and hence of U. 

The following elementary result is also needed in the proof of (4.2); it is 
related to a theorem of Jordan and Schur on periodic subgroups of linear 
groups of characteristic 0 (see [9, Theorem 36.141). 

LEMMA (4.4). Let G be a PF-subgroup of GL(n, Z) with soluble radical 
S. Then IG : S/ <f(n) wheref: P + P is a computable increasing function, P 
being the set of positive integers. 

Proof: Let G act on a free abelian group M of rank n in the natural 
way. If n = 1, the result is obvious with f( 1) = 1. Let n > 1 and argue by 
induction on n. If M is ZG-rationally reducible, there is a ZG-submodule 
B of M with M/B torsion-free, h(B) = n,, h(M/B) = n2, and 0 <n, <n. By 
induction on n, if S,/C,(B) and S,/C,(M/B) are the soluble radicals of 
G/C,(B) and G/C,(M/B), respectively, then IG : Sil < f(n,). Let N= 
S, n Sz; then IG : N( < f(n,) f(n,), and it is easy to see that N is soluble. 
Let b,=max{f(n,)f(n,)(O<n,<n, n,+n,=n}; then lG:Nlbb,. 

Suppose now that h4 is rationally irreducible, so G is abelian-by-finite. 
Let A be a maximal abelian normal subgroup of G with finite index. We 
show that IG : AJ d b, where b, is computable from n. Recall that finite 
subgroups of GL(n, Z) have order at most d(n), where d is an increasing 
function of n that can be written down explicitly (see [9, 36.141). Let 
C = C,(A). Then C’ is finite, by Schur’s Theorem; hence the elements of 
finite order in C form a normal subgroup U of G with order at most d(n). 
Let D = C,(U); then IC : DI < d(n)!. 

Denote by T the torsion-subgroup of A. Then ITI <d(n) and 
IG : C,( T)I 6 d(n)!. Now it is also true that h(A) 6 n - 1; this is because A 
is essentially a completely reducible subgroup of GL(n, Q) and the Hirsch 
number of the unit group of an algebraic number field of degree m is at 
most m - 1. A routine argument yields /G : Cl d d(n)! d(n - l)(d(n))” ! = 
e(n), say. Hence IG : DI d e(n) d(n)!. Now D/Z(D) embeds in 
Hom(D/Z( U), Z(U)) in an obvious way, and Z(D) = A by maximality 
of A. Therefore IG: Al <e(n)d(n)! d(n)“p”d’“‘= b,, say. (Since D is 
nilpotent, it is in fact enough to bound IG : 01.) 

Finally put f(n) = max(b,, 6,). 

Proof of Theorem (4.2). We show first how to decide if G is a PF- 
group. If p is a prime, the mapping x H x (mod p) is a homomorphism 
from G to GL(n, p), with image G(p) and kernel K(p) say. If G is a 
PF-group, then (4.4) shows that each G(p) is soluble-by-finite of order 
<f(n). Conversely, assume that each G(p) has this property. Note that G 
is finitely generated and fip K(p) = 1; in addition recall that a soluble 
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linear group of degree n has derived length at most some e(n). Conse- 
quently G is soluble-by-finite, and hence it is a PF-group by a theorem of 
Mal’cev [23]. 

Two procedures are now set in motion. The first finds a finite presenta- 
tion for each G(p) and uses it to determine if G(p) is soluble-by-finite of 
order <f(n). The procedure stops if this fails to be true. 

The second procedure attempts to construct a polycyclic subgroup of 
finite index in G. Enumerate finite subsets {x,, . . . . xn} of G and positive 

integers 1, and check to see if xX/” E(X ,,..., xjp,) for j=2 ,..., in, 
i=l , . . . . j- 1. This is possible by the solution of the membership problem 
for PF-subgroups. If the subset (x,, . . . . xn} passes this test, enumerate up 
to I cosets of (x, , . . . . x,) and determine if the union of these cosets equals 
G. The procedure stops if such a subset appears. 

If the first procedure stops, G is not a PF-group; if the second stops, G 
is a PF-group. Assuming that G is a PF-group, we find subgroups U and 
T of G, as in (4.3) and finite presentations of T/U and U. Since G/T is 
finite, we can construct a transversal to Tin G, and hence a finite presenta- 
tion of G/T. By a standard method we obtain a finite presentation of G. 

COROLLARY (4.5). There is an algorithm which, when given a PF-group 
G, a finitely generated abelian group M, and an explicit ZG-module structure 
for M (by means of the action of the generators of G on those of M), finds 

C,(M). 

Proof Find the order t of the torsion-subgroup of M, and note that 
M, = tM is torsion-free. Find a basis for M,, and use this to associate with 
each generator of G a matrix in GL(n, Z). These matrices generate a sub- 
group of GL(n, Z) that is isomorphic with G/C&M,,). By (4.2) we can find 
a finite presentation of G/C&M,); then, in the usual way, we go on to 
obtain a finite set of generators for C&M,). In addition we can find 
C&M/M,) by enumerating normal subgroups with finite index in G. 
Finally Co(M) = C,(M,) n C&M/M,) can be found by (3.9). 

5. THE FITTING SUBGROUP, THE CENTRE, AND THE FC-CENTRE 

As a further application of (4.3) we establish 

THEOREM (5.1). There is an algorithm which, on being given a PF-group 
G, finds its Fitting subgroup Fitt(G). 

Proof The first step is to find a normal nilpotent subgroup N such that 
G/N is abelian-by-finite. To do this enumerate normal subgroups H of 
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finite index in G; in each case find H’, using (2.6) and test it for nilpotence 
(using (3.4) and (2.9)). Since PF-groups are nilpotent-by-abelian-by-finite 
(Mal’cev [23]; see also [30, Sect. 2, Theorem 4]), such an H will even- 
tually appear. Put N = H’. 

Next Fitt(G/N’) = Fitt(G)/N’ by a well-known result of P. Hall. Since we 
can find a finite presentation of G/N’, we may asume that N is abelian. 
Apply (3.10) to find a poly-infinite cyclic normal subgroup K of finite index 
in H. Let A = K’, a free abelian group, and find h(A) = n, say. Choose a 
basis for A. Then K/C,(A) is isomorphic with an abelian subgroup of 
GL(n, Z) with an explicit finite set of generators. Let F= Fitt(K). Now 
F/C,(A) is exactly the unipotent subgroup of K/C,(A). By (4.3) we can 
find a finite set of generators for F/C,(A); thus by (4.5) we can find a finite 
set of generators for C,(A) and so for F. 

Finally we show how to find Fitt(G). Use (3.11) to find the maximum 
finite normal subgroup of G/F, say T/F. Now Fitt(G) n K = F, so F< 
Fitt(G) < T. Thus all we need do is list the finitely many subgroups L 
satisfying F d L < T, test each such L to see if it is normal in G, and then 
test for nilpotency. The largest such subgroup will be Fitt(G). 

On the basis of this result we show how to find the centre. 

THEOREM (5.2). There is an algorithm which, on being given a PF-group 
G, finds its centre Z(G). 

Proof Consider first the case where G is nilpotent. We can clearly 
assume that G is infinite. Use (3.7) to find an infinite abelian normal sub- 
group A r. Find C, = C&A ,) using (4.5), and decide if A, = C, If not, then 
I= C,/A , n Z(G/A , ) # 1. By induction on the Hirsch number we can find 
Z(G/A,), and then I. Find a non-trivial element a, A, of Z, and put 
A, = (a,, A, ), an abelian normal subgroup of G. Find C, = C,(A,) and 
decide if A, = Cz; if not, repeat the procedure. This process produces an 
ascending chain of abelian normal subgroups which must terminate, say at 
A=A,; then A=C,(A), so Z(G)<A. 

Let x1, x2, . . . . x, be the generators of G, and write Bi = C,(x,). Then 
Z(G) = B, n . . . n B,. Find a basis for A using (3.4), and then find Z(G) 
by solving a finite set of linear equations over Z. 

The general case is now easy. Use (5.1) to find the Fitting subgroup F; 
then find a finite presentation of F, and find B = Z(F) by the procedure 
described in the first paragraph. But Z(G) = C,(G), which can be found by 
once again solving linear equations over Z. 

COROLLARY (5.3). There is an algorithm which, when given a PF-group 
G, finds the successive terms of the upper central series of G, and hence the 
hypercentre. 
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The FC-centre is approached through the following lemma. If M is a 
ZG-module, define the FC-submodule FC(M) of M to be the set of all a in 
M such that IG : Cc(a)1 is finite. Evidently this is a submodule of M. 

LEMMA (5.4). There is an algorithm which, when given $nitely generated 
abelian groups G and M, the latter being torsion-free, and an explicit 
ZG-module structure for M, finds FC(A4). 

Proof Let x,, . . . . x, be the generators of G in the presentation, and put 
F= FC(M). If a E F, then a(x; - 1) = 0 for some least r, > 0. Now aZ(xj) 
is a 27(x,)-submodule with Z-rank at most r = h(M); also xi induces an 
automorphism in the submodule with order ri. Hence r,<d(r) for some 
function d. Put e = (d(r))!. Then F< fly=, C,,,,(x;). The converse inclusion 
holds too, so F= n?=, C,(xy). This can be found in the usual way by 
finding a basis for M. 

THEOREM (5.5). There is an algorithm which, when given a PF-group G, 
finds the FC-centre FC(G). 

Proof. Find the maximum finite normal subgroup T using (3.11). Then 
Tb F = FC(G) and clearly FC(G/T) = F/T. A finite presentation of G/T is 
at hand, so we can pass to G/T, i.e., assume that T = 1. Now F is centre-by- 
finite, being a finitely generated FC-group, so F’ is finite and therefore F 
is abelian. Thus Fd Fitt(G). 

Let XE F and let y belong to the second centre of Fitt(G). Then 
[x, y”] = 1 for some m > 0; hence 1 = [x, y]” and [x, y] = 1. Conse- 
quently F< Z(Fitt(G)). 

Now G/Fitt(G) has an abelian normal subgroup H/Fitt(G) with finite 
index. Moreover we can find Fitt(G) by (5.1), and hence H. Without loss 
we can suppose that H = G, i.e., G/Fitt(G) is abelian. Finally F equals the 
FC-submodule of the Z(G/Fitt G)-module Z(Fitt(G)). Find finite presenta- 
tions for G/Fitt(G) and Z(Fitt(G)); then apply (5.4) to find F. 

6. CENTRALIZERS, INTERSECTIONS, AND NORMALIZERS 

The section begins with an algorithm to find centralizers of elements in 
modules over group rings. 

PROPOSITION (6.1). There is an algorithm which, when giuen a PF-group 
G, a finitely generated abelian group M, an explicit ZG-module structure for 
M, and an element a of A4, finds C,(a). 

Proof Consider first the case where G is abelian-by-finite. Find an 
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abelian normal subgroup N with finite index in G. Find finite presentations 
for N, and for the group (a) ZN. Then use (4.5) to find C,((a) ZN) = 
C,(a). Find a transversal to N in G by coset enumeration, say (t,, . . . . tk}. 
Now C,(a) n Ntj is non-empty if and only if at,-’ = ax for some x in N: 
this is decidable by the solution of the conjugacy problem for the semi- 
direct product N o( M. For each such i find by enumeration x, in N such 
that ax,t, = a. Then C,(u) n Nt; = C,(u) x,t,. Consequently C,(u) is 
generated by C,(u) and these x,t,. 

We return to the general case, arguing by induction on h(M). If 
h(M) = 0 and M is finite, we can find C,(M) and hence a finite presenta- 
tion of the finite group G/C,(M). This case has already been dealt with, so 
let h(M) > 0. Use (5.1) to find Fitt(G in M), and then find its projection N 
on G. Thus N is the largest nilpotent normal subgroup of G that acts 
nilpotently on M. Find a finite presentation of N and then find B = C,(N) 
by exploiting the equation B = M n Z(N D( M) and applying (5.2). If B is 
finite, then so is M. Assume that B is infinite; by induction hypothesis we 
can find C,(a + B) = H, say. 

Next write A = B+ (a), noting that A is a ZH-submodule of A4. Also 
we can find K = C,(B) by (4.5). There is an obvious homomorphism 
8: K-+ Hom(A/B, B) given by (a + B) k’ = u(k - 1); the kernel of f3 is 
exactly C,(u). Since we are able to find finite presentations of K and 
Hom(A/B, B), as well as an explicit description of 8, it is possible to find 
Ker 0= C,(u) by using (3.8). 

Let P = [a, K]. Suppose first that P is finite. Then K induces a finite 
group of automorphisms in A, so that K/C,(A) is finite. Also G/N is 
abelian-by-finite, whence so is HJK since H r, N < K. Therefore H/C,(A) is 
finite-by-abelian-by-finite, which is easily seen to imply that it is abelian- 
by-finite. Since a finite presentation of H/C,(A) can be found, we are in the 
situation of the first part of the proof, so C,(u) = C,(u) can be found. 

Finally assume that P is infinite. Then by induction we can find 
C,(u + P) = R, say. Now R = C,(u)K; for if h E H, then h E C,(u)K if and 
only if ah = uk for some k in K, i.e., u(h - 1) = u(k - l), which is a typical 
element of P. 

We now know that C,(u) satisfies C,(u)K= R and C,(u) n K= C,(u); 
moreover both R and C,(u) are known. To find C,(u) enumerate finite 
subsets S of H such that us = a for all s E S; then check if (S) K = R and 
(S)n K= C,(u) (here we use (2.1), (2.2), and (3.9)). When such an S 
appears, the subgroup it generates will equal C,(u) = C,(u). 

COROLLARY (6.2). There is an algorithm which, when given a PF-group 
G, a finitely generated abelian group M with an explicit ZG-module struc- 
ture, and a derivation 6: G + M (by means of its effect on the generators of 
G), finds the kernel of 6. 
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Proof: Define a new ZG-module L = MO (a) where a has infinite 
order and the module structure is given by 

(x, an) .g = (xg + g”n, an); 

here x E M, n E Z, and gE G. Thus the ZG-module structure of L is 
explicitly describable. Obviously Ker 6 = C,( (0, a)), which can be found by 
(6.1). 

The corollary can be applied with advantage to the intersection of an 
arbitrary pair of subgroups. 

THEOREM (6.3). There is an algorithm which, when given a PF-group G 
and finite subsets X and Y of G, finds (X) n ( Y). 

Proof. Let H = (X) and K= ( Y). The proof is by induction on h(G), 
which can be assumed positive. Find a non-trivial free abelian normal sub- 
group A of G. By (2.2) we can decide if A < H. If this is the case, then we 
can find H n KA = (H n K)A, by the induction hypothesis. We can also 
find Kn A by (3.9). Enumerate finite subsets U of G such that A n Kd 
(U)<HnK and check to see if (U)A=(HnK)A, all of which is 
possible by (2.2). When such a U appears, it will generate H n K. 

Assume now that A $ H. Apply the method of the first paragraph to the 
pairs (HA, K) and (H, KA). In this way we can find 

P=HAnK and Q=HnKA. 

Then P n Q = H n K; also, if G* denotes HA n KA, then G* = PA = QA, so 
that PnAqG* and QnAaG *. If either P n A or Q n A is non-trivial, 
we can substitute it for A and use the argument of the first paragraph to 
find P n Q (it will be necessary to find a finite presentation for G*). 

Now assume that Pn A = 1 = Q n A. If x E P, then xx6 E Q for some 
xd E A; here 6: P -+ A is a derivation. Clearly x E P n Q if and only if 
xEKer6, so HnK=PnQ=KerS, which can be found by (6.2). 

COROLLARY (6.4). There is an algorithm which, when given a PF-group 
G andfinite subsets X and Y of G, finds HK = nke K Hk where H = (X) and 
K= ( Y). In particular the algorithm can find the normal core H, of H in G. 

Proof: The point to note here is that by a theorem of Rhemtulla [27], 
H, is the intersection of finitely many conjugates of H in K. To find H, 
enumerate finite subsets S of K and form H, using (6.3). Now H, = H, if 
and only if (Hs)Y = H, for each y in Y. We can decide if this is true by 
using (2.2). Therefore we can find H,. 
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As a consequence of (6.3) we are now in a position to construct arbitrary 
centralizers. 

THEOREM (6.5). There is an algorithm which, when given a PF-group G 
and finite subsets X and Y of G, finds C, r>( (X)). 

Prooj: In view of (6.3) it suffices to find C,(x) for a given x in G. Argue 
by induction on h(G) > 0. Find a non-trivial free abelian normal subgroup 
A of G. If XE A, then we can find C,(x) by (6.1). Suppose that X$ A. By 
induction hypothesis we can find C,(xA) = D, say. A derivation 6: D + A 
is defined by the rule d” = [d, x], (dE D). Then C,(x) = C,(x) = Ker 6, 
which can be found by (6.2). 

We turn now to the problem of finding normalizers, beginning with a 
result on modules. 

LEMMA (6.6). There is an algorithm which, when given a PF-group G, a 
finitely generated free abelian group A4 with an explicit ZG-module structure, 
and a subgroup MO of M, finds N,(M,). 

Proof: Find the order t of the torsion-subgroup of M/M,. Then 
Mt +Mo/M, is Z-torsion-free. Replace A4 by Mt + M,, i.e., assume that 
M/M, is Z-torsion-free. Now find a Z-basis {a,, . . . . a, 1 for M, and extend 
it to one for M, say (a,, . . . . a,, . . . . a,,}. Let E = A M’, the rth exterior power 
of M, regarded as a ZG-module via diagonal action. Note that this module 
structure can be described explicitly. Then E, = A Mb is the infinite cyclic 
group generated by h = a, A a, A . ’ A a,. We can find H= C,(h) by 
(6.1). It is a routine exercise in linear algebra to show that Hd N&M,). 
Thus if g E N,(M,), then either g E H or else bg = -b. Now solubility of the 
conjugacy problem allows us to decide if b and -b are conjugate in G D( M. 
If not, then N,(M,) = H: Otherwise find g such that bg = -b; then again 
it is routine to show that b E N,(M,), so that N,(M,) = (g, H). 

The next result shows how to find a basis for the derivation group 
Der(G, M) when G is a finitely presented group and M a finitely generated 
free abelian group. 

PROPOSITION (6.7). There is an algorithm which, when given a finitely 
presented group G, a finitely generated free abelian group M, and an explicit 
ZG-module structure for A4, ,finds a basis ,for the finitely generated free 
abelian group Der(G, M). 

Proof Let G= (x,, . . . . x,/r,, . . . . r,) be the given finite presentation of 
G. Let F be the free group on {f,, . . . . f,,} and R the kernel of the 
homomorphism 8: I;+ G in which fy = xi. Thus Im 8 = G and R is the 
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normal closure in F of {Y,, . . . . r,,,}, where the ri are now words in f. Find a 
Z-basis {ui} for M, and note that A4 becomes a ZF-module via 8. Certainly 
Der(F, M) ‘v MO ... @M, (n summands), via the map 6 H (ff, . . . . ff). 
Thus we can find a basis of Der(F, M). 

Now 0: F-+ G induces a monomorphism 

8*: Der(G, M) + Der(F, M); 

moreover 6 in Der( F, M) belongs to Im 8* if and only if rii = 0 for all r in 
R. This condition is equivalent to rf = . = rf = 0 since R acts trivially 
on M. 

Let ff = xi aid, where d, E L. The conditions rf = 0, i = 1,2, . . . . n, are 
equivalent to the d, forming a solution vector of a finite set of homogeneous 
linear equations over Z. Using standard procedures, we find a Z-basis for 
the solution space of this system, which will then provide a Z-basis for 
Tm 8*. Thus we obtain a Z-basis of Der(G, M). 

THEOREM (6.8). There is an algorithm which, when given a PF-group G 
andfinite subsets X and Y of G, find.s N,.,( (X)). 

Proof Let H= (X). By (6.3) it suffices to show how to find No(H). 
Argue by induction on h(G) and let h(G) > 0. Find a non-trivial free 
abelian normal subgroup A of G, and then find Hn A. By induction 
hypothesis we can lind No( HA/A) = G, . Now find finite presentations for 
G, and A, and use (6.6) to find N,,(Hn A) = G,, say. 

Suppose first that H n A # 1. Then we can find No2(H/H n A). But this 
is just NJ H)/H n A, so we can find NJ H) in this case. 

Assume now that H n A = 1, so that G, = G, = N&HA). If gE G,, then 
H” is also a complement of A in HA. Therefore it determines a derivation 
gd from HA/A to A, and there is a function A: G, -+ Der(HA/A, A) = D. 
A routine computation reveals that A is a derivation; here the ZG,-module 
structure of D is given by (x)“” = ((~9~‘)“)” where x E HA/A, g E G,, 6 ED. 
By (6.7) we can find a Z-basis for D once finite presentations of HA/A and 
A have been found. Finally Ker A = NGI( H) = No(H), and this can be 
found by (6.2). 

We conclude with an application of the main results of this section which 
generalizes (2.3) and (2.4). 

THEOREM (6.9) (The Generalized Conjugacy Theorem). There is an 
algorithm which, when given a PF-group G, together with finite subsets X, 
x 1, ..., xm, y, , ..., Y,,, , and elements a,, . . . . a,,, b,, . . . . b, of G, decides if there 
is an element h of (X) such that (Xi)h = ( Yi) and a: = bi for all 
i = 1, . . . . m, j = 1 , . . . . n. 
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ProoJ: Let H = (X), A, = (X,), Bi = ( Y,). We argue by induction on 
m + n. If m + n = 0, there is nothing to decide, so assume m + n > 0. Sup- 
pose that in fact m > 0; if n > 0, the argument is similar. By induction 
hypothesis we can assume that we have found an element h of H such that 
Ah=B,anda,h=b,wherei=l,..., m-l,j=l,..., n.Put 

m ~ 1 
D= n NdAj) n fi C,(Qi), 

i= 1 /=I 

which is taken to be H if m = 1 and n = 0. This can be found by (6.3), (6.5), 
and (6.8). Then the set of all elements H that conjugate Ai to Bi, 
i= 1, . . . . m - 1, and ai to b,, j= 1, . . . . n, is exactly Dh. Next we can also 
assume that A,,, and B, are conjugate in G by (2.4), and find x in G such 
that Ai = B,. The set of all elements in G that conjugate A, to B, is then 
Ex where E = N,(A,). 

The problem is now to decide if Dh n Ex is non-empty, i.e., if hx - ’ E DE. 
This decidable in view of the profinite closure of DE in G (Lennox and 
Wilson [ 2 1 ] ), 

Remark. Theorem (6.9) can also be proved by a local-global argument: 
see [31, Theorem B]. 

7. FINITE SUBGROUPS OF PF-GROUPS 

Our initial aim in this section is to prove 

THEOREM (7.1). There is an algorithm which, when given a PF-group G, 
produces finite subsets X1, X,, . . . . X, such that the (Xi) are finite non- 
conjugate subgroups whose conjugates account for all the finite subgroups 
of G. Hence this algorithm can decide if G is torsion-free. 

The main tool used in the proof is an algorithm to decide if certain 
group extensions split. 

PROPOSITION (7.2). There is an algorithm which, when given a finite 
presentation of a group E and a finite subset that forms a basis of a free 
abelian normal subgroup M of E, decides if E splits over M. 

Proof Let xi, . . . . x, be the given generators of E. By adding the basis 
elements of M to the relators in the presentation of E we obtain a finite 
presentation of G = E/M in generators x, M, . . . . x,M; let r,, . . . . r, be the 
defining relators of this presentation. Thus ri(x) E M. Suppose that F is the 
free group on a set {f,, . . . . fn} and let 8: F + E be the epimorphism such 
that f y = x,. Then, if R is the preimage of M under 6, we have F/R 2: G and 
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R = (r,, . . . . r,)‘: Note that R,, = R/R’ is a ZG-module by conjugation, and 
M becomes a ZF-module via 0. Clearly 8 induces a ZG-homomorphism 
cp: R,, -+ M in which (rR’)q = r(x). 

We recall a standard result from the cohomology of groups-for this and 
other facts cited see [ll, Sect. 31. There is an exact sequence of groups 

Hom,,(Z,/Z,f,, M) -5 Hom,,(ZR/Z,Z,, M) - H2(G, M) - 0, 

where I, is the augmentation ideal of ZF, Z, is the kernel of the canonical 
homomorphism ZF + ZG, and p is restriction. Now fR,lI,F, = hG R,, via 
(r-l)+I,I,+rR’, r E R. Thus cp can be regarded as an element of the 
middle term of the exact sequence, and E splits over M if and only if 
VEImp. 

Next ZF/ZFIR is the free ZG-module on the (x, - 1) + Z,Z,. Therefore 
Hom,,(Z,/Z,ZR, M) is free abelian of finite rank with an explicit basis. 
Also ZR/Z,ZR is generated as a ZG-module by the (r, - 1) + Z,Z,, so that 
Hom,,(ZR/Z,Z,, M) can be identified with a subgroup of D = MO .. @M, 
(I summands), via the map 8 H ((r, - 1 + Z,Z,)Q). The situation now is 
that we have a specific element cp and a specific subgroup Im p of D, both 
expressible in terms of the natural finite basis of D. Consequently we can 
decide if cp E Im p. 

Proof of (7.1). Argue by induction on h(G). If h(G) = 0, then G is finite 
and we simply choose a representative of each conjugacy class of sub- 
groups of G. Let h(G) > 0. 

By (3.7) we can find a non-trivial free abelian normal subgroup A of G. 
By induction on h(G) we can find finite subgroups UJA, . . . . U,/A whose 
conjugates account for all the finite subgroups of G/A. If F is a finite sub- 
group of G, then U,=FRA and FgnA= 1 for some gEG and 1 <i<r. 

The first step is to find a finite presentation of each Ui; then one decides 
if Ui splits over A, using (7.2). For each U, that splits over A we can find 
a complement X, of A by enumeration. Next it is easy to see that H ‘(Xi, A) 
is finite, i.e., D/I is finite, where D = Der(Xi, A) and I= Inn(X,, A). A finite 
basis can be found for D in view of (6.7). Also Z N A/C,(X,), and it is 
evident that we can furnish a finite set of generators for Z and express them 
in terms of the basis of D. A finite transversal to I in D is then obtained 
by coset enumeration, let us say { 6,1 j = 1, . . . . k(i)}. 

Define H, = (xx6y 1 x E Xi}. Then H, is a complement of A in Ui and 
each complement of A in U, is conjugate to some H,. It is clear that the 
conjugates of the finite subgroups H,, j= 1, . . . . k(i), i= 1, . . . . r, account for 
all finite subgroups of G. To complete the proof examine the H, for 
conjugacy and discard any conjugates found. 

A number of rather immediate consequences follow. 
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COROLLARY (7.3). There is an algorithm which, when given a PF-group 
G, produces finite subsets X,, . . . . X, such that (X, ), . . . . (X,) are non- 
conjugate finite subgroups whose conjugates exhaust all maximal finite 
subgroups of G. 

Indeed, if the finite subgroups found in (7.1) are G, , . . . . Gk, we simply 
discard any G, which is conjugate to a proper subgroup of a G,, j # i. The 
conjugates of the remaining G,‘s are the maximal finite subgroups of G. 

COROLLARY (7.4). There is an algorithm which, when given a PF-group 
G, finds its cohomological dimension cd(G). 

For if G is torsion-free, cd(G) = h(G), and otherwise cd(G) = co (see [7, 
Sects. 4 and 71). The result now follows from (7.1) and (3.5). 

If G is a PF-group, we can find the subgroup generated by all the 
elements of finite order by using (7.1) together with the Normal Closure 
Lemma. A more difficult problem is to find the subgroup 

generated by all the elements of infinite order. Note that IG : G,I is finite 
since G has a torsion-free normal subgroup of finite index. 

THEOREM (7.5). There is an algorithm which, when given a PF-group G, 
finds the subgroup G,. 

Proof: If G is finite, then G, = 1. So let h(G) > 0 and find a non-trivial 
free abelian normal subgroup A of G. 

(a) Consider first of all the special case where G/A is a finite cyclic 
group of order d. We can assume d > 1 and proceed by induction on d. By 
(3.11) we can find the maximum finite normal subgroup F of G. Obviously 
(G/F), = G, F/F, so G/F may be substituted for G; assume from now on 
that F= 1. By (4.5) we can find C= C,(A); now C/A is finite, so C’ is finite 
and therefore C is abelian. If A # C, the result will follow by induction on 
d. Assume that A = C. Find by enumeration an x such that G = (x, A). 

Suppose G, # G. Then xa has finite order for all a in A, and so 
1 = (xa)d= xda’ where v is the endomorphism of A mapping a to 
al+x+--‘+xd-‘, Hence ,I/= 1 and v=O. 

Conversely, suppose that v = 0. Since X“E A, we have 1 = (xd)” = (x”)‘, 
and thus xd= 1. If i is any integer that is prime to d, then 1 + xi + 
x2’+ . . . + xcd- ‘Ii = v = 0 in End A. Therefore (xia)d = 1 for all a in A. It 
follows that if v = 0, an element of G with infinite order must have the form 
x’a where a E A and there is a prime p dividing i and d; thus an element of 
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G with infinite order must belong to (xp, A ), for some prime p 
dividing d. 

The following procedures are to be set in motion. Find the action of v 
on a basis of A and decide if v is zero. If v # 0, then G, = G. If v = 0, then 
for each prime p dividing A find G(p) = (x”, A ), , which is possible by 
induction on d. Thus we can find G, = (G(p) I p divides d). 

(b) In the general case argue by induction on h(G) > 0. Certainly 
A<G,, and by induction hypothesis we can find (G/A), = L/A, say, and 
hence L. It remains to deal with elements g of infinite order such that gA 
has finite order. By (7.1) we can find up to conjugacy the finite cyclic sub- 
groups of G/A, say (g;, A )/A, i = 1, . . . . k. Thus g is conjugate modulo A to 
an element of some ( gi, A). By (a) we can find (g,, A ) ~ = Ki, say. Put 
K= (K,, . . . . K,)o, and find K by the Normal Closure Lemma. Finally 
G, = C-L 0. 

We shall now use (7.5) to give an algorithm to decide if a subgroup 
of a PF-group is permutable. First we cite two known properties of 
permutable subgroups. 

PROPOSITION (7.6). Let H be a permutable subgroup of a group G. Then 
the following hold: 

(i) zf G is finitely generated, then 1 Ho : HI is finite [20]; 

(ii) zf G satisfies the maximal condition, then H is subnormal in G 

c331. 

THEOREM (7.7). There is an algorithm which, when given a PF-group G 
and a finite subset X of G, decides if (X) is permutable in G. 

Proof Let H= (X). Note that if H is permutable, then by (7.6), 
1 HG : HRI is finite for all g E G, and by Rhemtulla’s theorem [27], it follows 
that IHG : H,l is finite, where Ho is the core of H in G. 

The first step is to find H,, using (6.4). Now His permutable in G if and 
only if H/H, is permutable in G/H,. We can therefore assume that H, = 1. 
Next, if H is permutable, then by (7.6) H is finite and subnormal, so H is 
contained in the maximum finite normal subgroup F. ‘Find F, using (3.11), 
and decide if H d F. If not, then H is not permutable. So assume that 
H< F. 

We show next that if H is permutable, then G, normalizes H. Suppose 
that g in G has infinite order; then (g, H) = (g) H = (g) H <n>, and since 
H<g> < F, it follows that H<“) = H. Find G, using (7.5), and decide if it 
normalizes H. We can assume this is so, otherwise H is not permutable. 

It remains to decide if H permutes with every finite subgroup of G. By 
(7.1) we can find a finite set of representatives of the conjugacy classes of 
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finite subgroups of G, say C,, . . . . C,. Then we find the finitely many con- 
jugates of H in G, by enumerating the subgroups of F and testing each for 
conjugacy to H, let these be H, , . . . . H,. Then H is permutable in G if and 
only if H,C, = C,H, for i = 1, . . . . I, j= 1, . . . . k. This can certainly be decided 
since the H,C, and C,H, are finite subsets. 

8. THE FRATTINI SUBGROUP 

This entire section is taken up with the proof of 

THEOREM (8.1). There is an algorithm which, when given a PF-group G, 
finds the Frattini subgroup q(G). 

A number of preliminary results are needed, some of which are of 
independent interest. 

PROPOSITION (8.2). There is an algorithm which, when given a PF-group 
G, a finitely generated abelian group M, and an explicit ZG-module structure 
for M, finds a finite presentation of M as a ZG-module. 

Proof. (a) Let R = ZG and let a,, a,, . . . . a,,, be the given group 
generators of M. Then we can find finite group presentations for (a,)R and 
M/(a,)R. Now it is sufhcient to find finite R-presentations of (a,)R and 
M/(a,)R. Therefore, using induction on m, we reduce to the case where 
M= (a)R. 

(b) Case: M is Z-torsion-free. Let J be the annihilator of a in R, so 
that M 2: R R/J. We show how to find a finite set of generators for the right 
ideal J. First find a basis for M, and hence for R/J. Enumerate finite sub- 
sets X of R, test each to see if ax = 0 for all x in X, and then decide if 
R/(X)R is a finitely generated abelian group. The last step is possible by 
[4, Lemma 2.11. Eventually we shall find such a subset X. Let J0 = (X) R; 
thus I,, < J. 

We have a finite R-module presentation for R/IO. By the argument of [S, 
Theorem 2.141 (see also [29, Proposition 2]), we can find a finite group 
presentation of R/J,; then we can use this to find the torsion-subgroup 
JO/JO. Evidently JO is a right ideal of R and JO Q J because R/J is E-torsion- 
free. Find h( R/J,); if it equals r = h(M), then J = JO. Otherwise find u1 in 
J\J, by enumerating elements u, of R, testing to see if au, = 0, and then 
to see if u1 4 JO. Put J, = J, + u1 R. Find a finite group presentation of 
NJ, > and then find its torsion-subgroup J,/J,. Thus JO < J, <J. 
If h(R/J,) = r then J, = J. Otherwise find u2 in J\J1, and repeat the 
argument. Since h(R/J,) > h(R/J,) > ..., we shall, by repetition of this 
procedure, find a Jk that coincides with J. 
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(c) The general case. Find the torsion-subgroup T of M, and then 
find C,(T) by enumerating normal subgroups of index < 1 T( ! in G. Then 
find finite presentations of T and G/Co(T). It is easy to obtain a finite 
A-module presentation of T, while (b) allows us to find such a presentation 
of M/T. The result now follows easily. 

If A4 is a module over a ring R, define the Frattini submodule 

cp,(W or cp(W 

to be the intersection of all the maximal submodules of A4 (with the usual 
stipulation that q,(M) = A4 if no maximal submodules exist). 

LEMMA (8.3). Let there be given a finitely presented group G, a finitely 
generated abelian group M and an explicit ZG-module structure for M. Also 
let there be given a subgroup M, with finite index in M, and assume that M, 
is a ZG-submodule. If a finite set of group generators for (Pan is known, 
then there is a untform recursive procedure which finds a finite set of group 
generators for q,,(M). 

Proof Using the presentation of M, we first find m = IM : M,I. Define 

cp’“‘bw 

to be the intersection of all the maximal ZG-submodules of A4 which have 
index prime to m (of course, if N is a maximal submodule of M, then M/N 
is a finite elementary abelian p-group for some prime p). Clearly 
cp’“‘(M,)/cp(M,) is exactly the set of all elements of M,/(p(M,) with order 
dividing m. Find a finite presentation of MO/cp(M,), and hence find 
cp’“‘(M0). 

Suppose that N is a maximal submodule of M with index prime to m. 
Then M=N+M, and M/NzzG MO/M, n N. Hence N, = M, n N 
is a maximal submodule of MO. Conversely, if L is a maximal sub- 
module of MO with index prime to m, then M/L = MO/L@ L*/L where 
L* = {a E MI am E L}, a maximal submodule of M with index prime to m. 
The mappings N + N, and L + L* are mutually inverse; therefore 
q’“‘(M) n MO = cp’“‘(M,,), and hence cp’“‘(M)/cp’“‘(M,) is the subgroup 
of all elements of M/~J’“‘(M,) of order dividing m. This can be found. 
Finally, find the maximal submodules of the finite module M/Mm, say 
MJMm, . . . . M,/Mm; then q(M) = M1 A . . . n M, n q’“‘(M), which can 
certainly be found. 

The principal module theoretic tool needed in the proof of (8.1) is 

PROPOSITION (8.4). There is an algorithm which, when given finitely 

4x1 142'1-10 
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generated ahelian groups G and M, together with an explicit ZG-module 
structure for M, finds a ,finite set of group generators for cp,,(M). 

Proof: (1) The proof is by induction on h(M), which can be assumed 
positive. It suffices to deal with the case where M is Z-torsion-free. For we 
can certainly find the order t of the torsion-subgroup of M; then Mt is 
Z-torsion-free and M/Mt is finite. By (8.3) it is enough to find cp(Mt). 
From now on we assume that M is torsion-free. 

Use the given presentation to express G as a direct product of n cyclic 
groups. From this we obtain an explicit surjective ring homomorphism 
from R=Z[t,, . . . . t2,,] to ZG where n is the number of generators of G. 
Thus we can make M into an R-module in an explicit fashion, and 
(~,zdM) = cp,(W 

(2) We can ,find the associated set of prime ideals Ass,(M) of M. 
Moreover, tf P E Ass R(M), then P is a maximal ideal of infinite index in R. 
Let M, be a cyclic ZG-submodule which is rationally irreducible. If M/M, 
is infinite, it contains a cyclic rationally irreducible ZG-submodule MI/M,. 
Repetition of this procedure leads to a chain of ZG-submodules 0 = M, < 
M, < . < M, where M/M, is finite and each M,+ ,/ML is a cyclic 
rationally irreducible ZG-module. Thus Mi+ JM, N R RIPi where the ideal 
Pi is maximal of infinite index in R, and so is prime. 

Suppose now that Q E Ass.(M), so Q = Ann,(a) is prime for some a # 0 
in M. Now ale M, for some I > 0, and Q = Ann,(af). If alE M,, ,\M,, 
then aP, P, . . Pi = 0, whence P, P, . Pi c Q and P, L Q for some j. Since 
R/Q cannot be finite, Q = P,. Thus Q is maximal of infinite index in R. 

Let a,, . . . . a,Y be group generators of M. Enumerate the elements of M, 
say bl, bZ, . . . . and for each i use (8.2) to find a finite ZG-presentation of 
(bi) ZG = (bj)R, and hence a finite R-module presentation of (bi)R. Thus 
we have a finite set of generators for the ideal Ann,(b,). By Seidenberg [32, 
Theorem 51, we can find (finite sets of generators for) the associated primes 
of Ann,(b,), and hence the primes in Ass,(b,R). Let 

S,= 6 AssR(bjR). 
j= I 

Let R, be the product of all the primes in Si. We now test to see if a, R, = 0 
for each j = 1,2, . . . . s. If so, then MR, = 0 and, if Q E Ass,(M), then Ri < Q, 
whence Q equals some element of S;. Hence Ass,(M) = Si. Note that it is 
guaranteed that such an i will appear. 

(3) We can find finite sets of group generators for the primary 
components M, of M where PEAss~(M). Here M, is the set of all 
elements of M that are annihilated by a power of P: this is an 
R-submodule. Let ui, . . . . u, be the generators found for the ideal P. Define 
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M[P] = {a E M( aP = O}. Then M[ P] is the set of elements of M that are 
annihilated by each ui. Pick a basis of M and represent the endomorphism 
of M induced by each u, by an integral matrix. The conditions au, = 0 are 
equivalent to a finite set of linear homogeneous equations over 72. By 
solving this system we find M[P]. Notice that M/M[P] is Z-torsion-free. 
Thus we can find the successive terms of the chain of submodules 
O=M,<M,< ... where Mj+ ,/M, = (M/M,)[ P]. We can also determine 
the smallest j such that M, = Mj+ ,; then M, = ,M;. 

(4) We may assume that M = M,, @ . . . @ M,, where Ass.(M) = 

{P , 3 . ..> Pd. IfM,,nC,., M,, # 0, there is an a # 0 in M such that aP, = 
0 = aQ where Q = n jfi P? for some e, > 0. Now R/P, + Q is finite since 
Q $ P,; thus aR is finite and a = 0. Therefore the sum S of the M, is 
direct. We argue now that M/S is finite. For there are positive integers dj 
such that MP;’ . . P$ = 0. Let Q, be the product of the P,4, j# i. Then 
RIP,+ Qi is finite, so Pi+ Qi contains a positive integer Ii, and 
l$sPF+Qi. Then I=l$.. .~$EQ,+ ... +Qk+Py...P;fk, so that 

Mlc_ i MQ;E i M,,=S 
i= I i= 1 

since MPY . P$ = 0. But M/MI is finite, so M/S is finite. In view of (8.3) 
we can replace M by S. 

(5) The final step. Since q(M) = @f= i cp(M,,) and we have found 
Mp,, we can suppose that Ass,(M) = {P}. Let B be a maximal submodule 
of M. Then P annihilates M/B, so MP & B and MP 6 q(M). Note that 
(p(M/MP) = (p(M)/MP, and that we have a finite set of generators for the 
ideal P, so we can find a finite set of group generators for MP. Therefore 
we can assume that MP = 0, or else the result is obtained by induction on 
h(M). We shall now argue that q(M) = 0. 

Write i? = R/P, a domain. Then M is a noetherian R-module, and 
M is also R-torsion-free. Let F be the field of fractions of i?, and put 
V= MBR F, a finite dimensional F-space. Let V0 be a subspace of 
codimension 1, and put M, = V, n M. Then 

L=M/M,=“M+ VO/V,< V/V,-“F. 

It follows that L is isomorphic with an ideal J of R. But cp(J) d cp(R) and 
q(B) = 0 since it is the Jacobson radical of the noetherian domain R. 
Therefore cp(J) = 0 and q(M) < cpp( V) = 0. 

Proof of (8.1). Let G be a PF-group. We can assume that G is infinite 
and argue by induction on h(G). 
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(1) We may assume that if we are in possession of a finite set of 
generators of a normal subgroup N of G and N < q(G), then N is finite. 
For, if N is infinite, then h(G/N) <h(G), and we have a finite presentation 
of G/N, so a finite set of generators can be found for rp(G/N) = (p(G)/N, 
and hence for q(G). 

(2) We may assume that G has no non-trivial finite normal subgroups. 
Use (3.11) to find the maximum finite normal subgroup T of G; thus a 
finite presentation of G/T is at hand. Suppose that we have found 
cp(G/T) = F/T, say, and write t = 1 TI. 

If M is a maximal subgroup of G not containing T, then G = MT and 
IG : MI = 1 T : Mn TI d t. Now we can find the finitely many maximal 
subgroups of this type by enumerating the subgroups of index 6 t and 
picking out the maximal ones. If these are M,, . . . . M,, then q(G) = 
F n M, n n M,, which can be found by (6.3). 

(3) We may assume that we have found two finite subsets generating 
free abelian subgroups H and A such that A a G, HA a G, /G : HA I is finite, 
and Hn A = 1. Since G is nilpotent-by-abelian-by-finite, we can lind a 
normal subgroup M of finite index in G such that B = M’ is nilpotent. Find 
finite presentations of B and B’, and then find cp( B/B’) = cp( B)/B’; this is 
certainly possible once the structure of B/B’ is known. But it is easy to see 
that q(B) d q(G). Thus, on the basis of (1) and (2), we can assume that 
q(B) = 1, which implies that B is free abelian. 

The next step calls for the computation of the Hirsch numbers of 
[B, J4], i= 1, 2, . . . . and the determination of the first i such that the 
quotient [B, ,M]/[B, ,+ ,M] is finite. Write 

A = [B, J4]. 

Then A is free abelian, A a G, and A/CA, M] is finite. Since M/A is nilpo- 
tent, we can apply [28, Theorem S] to deduce that there is a nilpotent sub- 
group K satisfying IM : KAI < co and Kn A = 1. Moreover we can actually 
find such a subgroup by enumerating subgroups K of M, computing 
h(KA), checking to see if h(KA) = h(M), and then finding Kn A and 
deciding if it is trivial. 

Having found K, we obtain a finite presentation of it, and then a finite 
set of generators for a torsion-free subgroup H, of finite index in K (apply 
3.10). Then 1G : HoAl is finite and H,n A = 1. Now define N to be the 
normal core of H,A in G. Then, if H = N n H,, we have IG : NI finite, 
N= HA a G, and Hn A = 1. It remains to explain why we can assume 
that H is free abelian. 

Suppose that H’ < q(N). Then there is a maximal subgroup L of N such 
that H’ $ L. Now [A, H’] <B’ = 1, so that H’ a HA = N. Therefore 



POLYCYCLIC-BY-FINITE GROUPS 147 

N = LH’ and H = H n (LH’) = (H n L) H’; however, H is nilpotent, so this 
leads to H = H n L, a contradiction. 

Put U= ( (H’)G). By the Normal Closure Lemma we can find a finite 
set of generators for U. But U < q(N) < q(G), so by (1) and (2) we may 
suppose that U = 1, and H is free abelian. 

(4) We can assume that q(N)= q&A)= 1. Since N/A is free 
abelian, q(N) <A. If L is a maximal subgroup of N which does not contain 
A, then L n A is a maximal LH-submodule of A. Hence q(N) = 
q(N) n A > q,,(A). Also, if B is a maximal ZH-submodule of A, then HB 
is a maximal subgroup of N; thus q(N) < A n HB = B and so q(N) = 
q,,(A). By (8.4) we can find cp( N). But q(N) d q(G), so we may assume 
that q(N) = 1 by (1) and (2). 

(5) Ifm= IG : NI, then q&)(A)= 1. Recall that q&),“,‘(A) denotes the 
intersection of all the maximal submodules of the ZG-module A whose 
index in A is prime to m. In the first place we observe that q$$A)/cp,,(A) 
is finite, so q&d(A)= 1 by (2) and (4). 

Let M be a maximal ZH-submodule of A, and assume that A/M is a 
p-group where p does not divide m. Denote the normal core of A4 in G by 
M,. Then A/M, is a finite elementary p-group. The subgroup H induces a 
finite abelian group of automorphisms H in A/M, ; here Ha G = 
G/C&A/M,) since N = HA a G. Furthermore H,, the p-component of H, 
acts nilpotently, and hence trivially, on A/M,. It follows that H is a 
PI-group and H induces a p/-group of automorphisms in A/M,. Also 
IG : NI is prime to p, so G induces a finite p’-group of automorphisms in 
A/M,. By Maschke’s Theorem (p&j(A) <Ml <M, and in consequence 
&?,“,‘(A) d cp$$4) = 1. 

(6) cp(G) = 1. By Schur’s Theorem G/HPA splits over N/HPA. Also 
N/HPA is a completely reducible ZG-module. Therefore q(G) n N is con- 
tained in HPA for all p not dividing n, which means that q(G) n N< A. 
Hence 

cp(G)nN=cp(G)nA. 

We claim next that GIAP splits over A/AP if p does not divide m. The 
reason is that G/N is a finite p’-group and N/AP visibly splits over AlAP, 
so a well-known extension of Schur’s Theorem applies. Let K(p)/AP denote 
a complement to A/AP in GJAP. 

Suppose that M is a maximal BG-submodule of A and that A/M is a 
p-group with m prime to p. Then K(p) M is maximal in G, and therefore 
q(G) n A < (K(p)M) n A = APM= M. It follows that q(G) n A < 
cpl;“,‘(A) = 1, by (5). Hence q(G) n N= 1 by the equation above, so q(G) is 
linite. By (2) we obtain finally that q(G) = 1. 
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