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We discuss an ambiguity of the derivation of the Hawking radiation through the gravitational anomaly
method and propose modifications of this method such that it reproduces the correct thermal fluxes.
In this modified gravitational anomaly method, we employ the two-dimensional conformal field theory
technique.
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1. Introduction

Hawking radiation from black holes is one of the most impor-
tant effects in black hole thermodynamics and the quantum effect
of gravity [1,2]. There are several derivations of Hawking radiation
and recently one interesting method was proposed by Robinson
and Wilczek [3]. They considered the effective chiral theory near
the horizon and showed that the gravitational anomaly [4] in this
effective theory causes the energy flux at the radial infinity which
can be identified as Hawking radiation. This effective chiral the-
ory would be related to the effective theory on the membrane in
the membrane paradigm [5–8] and thus this derivation suggests
the association between the Hawking effect and the membrane
paradigm. This derivation would also connect the Hawking effect
with some phenomena in condensed matter physics.

This new interpretation of the Hawking effect was modified by
Iso, Umetsu and Wilczek [9,10]. Furthermore this method was sim-
plified by using the covariant currents [11] and the spectra of the
thermal distribution functions were also reproduced by consider-
ing the higher-spin currents [12–17]. Further developments and the
generalization to various black holes were also shown by many au-
thors [18–37].

However there is one problem with this derivation. Hirata and
Shirasaka [31] found a constant of integration which had not been
considered in the calculation of the gravitational anomaly method.
We will show that the flux is not fixed owing to this constant.

The purpose of this study is to modify the gravitational
anomaly method such that it reproduces the correct fluxes. We
will show that in the case of the U(1) current we can derive
the flux by considering the chiral current and in the case of the
energy–momentum tensor we can derive it by considering the
trace anomaly. In these derivations, we will employ the calcula-
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tion of the fluxes based on the two-dimensional conformal field
theory technique [10,13,38].

In Section 2, we show the ambiguity in the gravitational
anomaly method and we argue for the modifications in Section 3.
In Section 4, we apply this modification to the derivation of the
energy flux. Section 5 contains conclusions and discussions. In Ap-
pendix A, we summarize the basics of Reissner–Nordström black
holes.

2. Ambiguity in gravitational anomaly method

We show that the gravitational anomaly method has an ambi-
guity and discuss the problem with it. We investigate the deriva-
tion of the flux of the U(1) current from a 4-dimensional Reissner–
Nordström black hole as an example. It will be possible to gener-
alize this argument to other currents and black holes.

First we attempt to derive the flux through the gravita-
tional anomaly method [9,11]. We consider a matter field in the
Reissner–Nordström black hole background. (See Appendix A for
the Reissner–Nordström solution.) It is known that the matter field
near the horizon can be effectively described as massless fields in
two dimensions (t, r∗). Then the covariant U(1) current Jμ satisfies
the two-dimensional conservation law [14]

∇μ Jμ = − (cR − cL)

2

e2

2π
εμν Fμν. (2.1)

Here e is the electric charge of the matter and Fμν is the back-
ground field strength. εμν is the covariant antisymmetric tensor.
cL and cR are the central charges of the left and right modes,
which correspond to the in-going and out-going modes in the
black hole background, and cL = cR = 1 (cL = cR = 1/2) if the mat-
ter is a real boson (fermion). Note that the central charge of a
charged field is twice that of a real field, since it is a complex
field. Thus the right-hand side of this equation would vanish in all
these cases.
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In the gravitational anomaly method [3,9], the in-going modes,
which are classically irrelevant to physics outside the horizon, are
eliminated near the horizon and we divide the outside of the hori-
zon into two: the near horizon region (r+ < r < r++ε) and the out
region (r+ + ε < r < ∞).1 Here r+ is the radius of the outer hori-
zon and ε is an appropriately small parameter. In the near horizon
region, the effective theory is chiral since the in-going modes do
not contribute. It means that the current in this region satisfies
the conservation equation (2.1) with cL = 0 and thus the current
is anomalous. On the other hand, in the out region, the effective
theory is still non-chiral (cL = cR ). Then the U(1) current can be
described as

Jμ = Jμ(O )Θ+(r) + Jμ(H)H(r), (2.2)

where we have employed step function Θ+(r) = Θ(r − (r+ + ε))

and H(r) = 1 − Θ+(r). Jμ(O ) denotes the current in the out region

and Jμ(H) denotes the current in the near horizon region. These
currents satisfy

∇μ Jμ
(O )

= 0, (2.3)

∇μ Jμ(H) = −cR
e2

4π
εμν Fμν, (2.4)

respectively. Now we consider the total current Jμ
(total) including

the contribution from the near horizon in-going modes. This cur-
rent should satisfy the conservation equation (2.1) with cL = cR

and it can be described as

Jμ
(total) = Jμ + K μH(r) + jμ

(total). (2.5)

Here jμ
(total) is a possible additional current which satisfies

∇μ jμ
(total) = 0 and K μ is the contribution of the in-going modes

which satisfies

∇μK μ = cL
e2

4π
εμν Fμν. (2.6)

In addition, these currents should satisfy

Jμ(O ) = Jμ(H) + K μ (2.7)

at r = r+ + ε such that ∇μ Jμ
(total) = 0. Since the black hole back-

ground is static, the current does not depend on time. Then we
can solve Eqs. (2.3), (2.4) and (2.6) by integrating them,2

J r
(O ) = jr

(O ), (2.8)

J r
(H) = cR

e2

2π
At(r) + jr

(H), (2.9)

K r = −cL
e2

2π
At(r) + kr, (2.10)

where we have used εrt = −1. Here jr
(O ), jr

(H) and kr are integral
constants. Especially jr

(O ) will correspond to the flux which is ob-
served at the infinity. The existence of the integral constant kr was
pointed out by Hirata and Shirasaka in [31] but they took kr = 0 in
their calculation. This constant will cause the ambiguity as we will
argue later.

1 Since the two-dimensional description is effective near the horizon only, we
cannot take r a large value. However we use this description even if r � r+ . It is
known that the fluxes which are derived through this approximation are equivalent
to the 4-dimensional fluxes without the gray body factor.

2 We evaluate these equations by using the Schwarzschild coordinates. However
these coordinates are not appropriate for the calculation of the Hawking effect and
we should employ the tortoise coordinate. However we can obtain the same result
and we use the Schwarzschild coordinates since the expressions of equations are
simpler.
Refs. [9,11] impose the following two conditions:

J r = 0 at r = r+, jr
(total) = 0. (2.11)

These conditions were supposed to correspond to the Unruh vac-
uum [10], which we will discuss in the next section. Then the
integral constants satisfy,

jr
(H) = −cR

e2

2π
At(r+), (2.12)

jr
(O ) = −cR

e2

2π
At(r+) + kr, (2.13)

where we have considered Eq. (2.7). Thus we obtain J r =
−cR e2 At(r+)/2π + kr at the infinity and the flux is not fixed. The
correct flux, which is expected in the black hole thermodynam-
ics, is J r = −cR e2 At(r+)/2π and it is obvious that kr causes the
ambiguity. Surely we can remove this ambiguity by imposing the
additional condition kr = 0 as in [31]. However the physical mean-
ing of this condition is not clear. We can find a similar ambiguity
in the derivation of the energy flux also.

3. Modification of gravitational anomaly method

We discuss the modifications of the gravitational anomaly
method by considering the chiral current J 5μ . We can solve the
anomalous conservation equation of J 5μ in the (t, r) coordinates
as we calculated in the previous section, but the light-cone coor-
dinate (u, v) (A.8) are much useful and we will use them.

Before considering the gravitational anomaly method, we re-
view the derivation of the flux based on the two-dimensional
conformal field theory technique [10,13,38] since this derivation
illuminates our problem.

The two-dimensional chiral current is defined by J 5μ = εμν Jν ,
where the covariant antisymmetric tensor is εuv = 2e−ϕ in the
(u, v) coordinates and ϕ is the background metric (A.8). J 5μ satis-
fies the anomalous conservation equation (the chiral anomaly) [14],

∇μ J 5μ = (cL + cR)

2

e2

2π
εμν Fμν. (3.14)

By taking the Lorentz gauge ∂u Av + ∂v Au = 0 for the background
gauge field, we can solve this equation and (2.1) as

Ju = ju + cR
e2

π
Au, J v = jv + cL

e2

π
Av . (3.15)

Here ju and jv are integral constants. Strictly speaking, ju and jv

should be holomorphic functions with respect to u and v , respec-
tively. However since the background is time independent, we can
take them as constants. Note that Ju ( J v) corresponds to the out-
going (in-going) current.

We can derive the fluxes by imposing the following boundary
conditions:

1. Regularity condition: Ju = 0 at the horizon.
2. No in-going flux at the infinity: J v = 0 at r = ∞.

The first condition means that the free falling observer does not
observe the singular flux at the horizon. It is known that these
conditions are corresponding to the Unruh vacuum. (Note that
the Boulware vacuum corresponds to the condition Ju = J v = 0
at r = ∞ and the Hartle–Hawking vacuum corresponds to Ju =
J v = 0 at the horizon [39].) Then the integral constants are fixed
as

ju = −cR
e2

Au(r+), jv = 0. (3.16)

π
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Thus we obtain the correct flux at the infinity,

J r(r → ∞) = Ju(r → ∞) − J v(r → ∞)

= −cR
e2

2π
At(r+). (3.17)

This is the derivation of the flux associated with the U(1) current
through the conformal field theory technique.

Now we discuss the gravitational anomaly method by consider-
ing this derivation. As we argued in the previous section, we take
cL = 0 in the near horizon region. It implies that the in-going cur-
rent (3.15) is modified as

J v = J (O )vΘ+(r) + J (H)v H(r), (3.18)

J (total)v = J v + K v H(r) + j(total)v , (3.19)

J (O )v = j(O )v + cL
e2

π
Av , J (H)v = j(H)v , (3.20)

K v = kv + cL
e2

π
Av . (3.21)

Here j(total)v , j(O )v , j(H)v and kv are integral constants. J (H)v is the
in-going current in the near horizon and J (O )v is in the out region.
K v denotes the contribution of the in-going modes. Similarly the
out-going current becomes

Ju = J (O )uΘ+(r) + J (H)u H(r), (3.22)

J (total)u = Ju + Ku H(r) + j(total)u, (3.23)

J (O )u = j(O )u + cR
e2

π
Au, J (H)u = j(H)u + cR

e2

π
Au, (3.24)

Ku = ku . (3.25)

Here j(total)u, j(O )u, j(H)u and ku are integral constants. Then it
is obvious that J (H)u and J (H)v satisfy Eqs. (2.1) and (3.14) with
cL = 0 in the near horizon region. By considering the conservation
equations of the total currents, the integral constants satisfy

j(O )v = j(H)v + kv , j(O )u = j(H)u + ku, (3.26)

as in (2.7). The relations between the integral constants in the pre-
vious section and in this section are as follows:

jr
(O ) = j(O )u − j(O )v , jr

(H) = j(H)u − j(H)v ,

jr
(total) = j(total)u − j(total)v , kr = ku − kv . (3.27)

In order to derive the flux, we consider the boundary conditions
for the currents. In [9,10], since they did not consider kμ , other
constants were supposed to satisfy j(O )u = j(H)u and j(O )v = j(H)v .
In this case, j(O )u and j(O )v are not distinguishable from j(total)u
and j(total)v respectively and they took them as jr

(O ) = j(O )u ,
jr
(total) = − j(total)v and j(total)u = j(O )v = j(H)v = 0 in our notation.

Then the conditions in (2.11) are corresponding to the Unruh vac-
uum. However we now consider kμ and these conditions are not
valid.

We impose the following conditions for the currents instead of
the condition (2.11). First we take

j(total)u = j(total)v = 0. (3.28)

The meaning of these conditions is as follows. In the out region,
Jμ(O ) associates with the excitation of the matter field. The ob-
server at the infinity observes this excitation and thus the observ-
able must be Jμ(O ) only. Thus we take these conditions and ignore
j(total)μ in our derivation.

Secondly we take

ku = 0. (3.29)
This condition means that Ku does not contribute to the out-going
flux since Ku is the contribution from the in-going modes.

In addition to these conditions, we impose the boundary con-
ditions corresponding to the Unruh vacuum:

Ju = 0 at r = r+, J v = 0 at r = ∞. (3.30)

Then we obtain the flux at the infinity,

jr
(O ) = j(O )u = j(H)u = −cR

e2

π
Au(r+). (3.31)

This equation implies that the origin of the flux at the infinity is
j(H)u in the near horizon chiral theory. Thus the Hawking effect
can be regarded as the contribution of the near horizon anoma-
lies. Note that kr , which causes the ambiguity of the flux in the
previous section, has not been fixed. Even though we could obtain
the correct flux since we have derived the in-going and out-going
currents at the infinity separately.

Here we summarize the derivation of the modified gravitational
anomaly method.

1. Divide the outside of the horizon into two and take cL = 0 in
the near horizon and cL = cR in the out region.

2. Solve the conservation equations (2.1) and (3.14) in each re-
gion.

3. Impose the conditions (3.28) and (3.29) on the integral con-
stants.

4. Impose the boundary condition (3.30) corresponding to the
Unruh vacuum.

Through this procedure, we can derive the flux from the anoma-
lies in the near horizon. In addition, we can easily show that if
we impose the boundary conditions corresponding to the Boulware
vacuum or the Hartle–Hawking vacuum instead of the Unruh vac-
uum, the correct flux can be derived through the same procedure.3

4. Derivation of energy flux through modified gravitational
anomaly method

In this section, we consider the derivation of the energy flux
through the modified gravitational anomaly method. As in the
derivation of the U(1) current, the anomalous conservation equa-
tion of the energy–momentum tensor is not sufficient to derive
the energy flux at the infinity and we need to consider the trace
anomaly equation also. These equations are given by,

∇μTμν = Fμν Jμ − cR − cL

96π
εμν∇μR, (4.32)

T μ
μ = cL + cR

48π
R, (4.33)

where R denotes the two-dimensional Ricci scalar [14]. We can
solve these equations as,

Tuu = tuu + 2Au ju + cR e2

π
A2

u + cR

24π

(
∂2

uϕ − 1

2
(∂uϕ)2

)
, (4.34)

T v v = tv v + 2Av jv + cLe2

π
A2

v + cL

24π

(
∂2

v ϕ − 1

2
(∂vϕ)2

)
. (4.35)

Here tuu and tv v are integral constants and ϕ is the background
gravity (A.8).

3 In the case of the Hartle–Hawking vacuum, the boundary condition of the in-
going modes at the horizon is imposed on the total current J (total)v rather than
J v in order to reproduce the correct flux. It implies that the effective chiral theory
near the horizon is not essential in this case.
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Now we regard the near horizon theory as chiral and divide
the outside of the horizon. Then we can obtain the currents. The
in-going current becomes

T v v = T(O )v vΘ+(r) + T(H)v v H(r), (4.36)

T(total)v v = T v v + K v v H(r) + t(total)v v , (4.37)

T(O )v v = t(O )v v + 2Av j(O )v + cLe2

π
A2

v

+ cL

24π

(
∂2

v ϕ − 1

2
(∂vϕ)2

)
, (4.38)

T(H)v v = t(H)v v + 2Av j(H)v , (4.39)

K v v = kv v + 2Avkv + cLe2

π
A2

v + cL

24π

(
∂2

v ϕ − 1

2
(∂vϕ)2

)
, (4.40)

and the out-going current becomes

Tuu = T(O )uuΘ+(r) + T(H)uu H(r), (4.41)

T(total)uu = Tuu + Kuu H(r) + t(total)uu, (4.42)

T(O )uu = t(O )uu + 2Au j(O )u + cR e2

π
A2

u

+ cR

24π

(
∂2

uϕ − 1

2
(∂uϕ)2

)
, (4.43)

T(H)uu = t(H)uu + 2Au j(H)u + cR e2

π
A2

u

+ cR

24π

(
∂2

uϕ − 1

2
(∂uϕ)2

)
, (4.44)

Kuu = kuu + 2Auku . (4.45)

Here t(total)v v , t(total)uu , t(O )v v , t(O )uu , t(H)v v , t(H)uu , kv v and kuu are
integral constants. These constants satisfy t(O )v v = t(H)v v +kv v and
t(O )uu = t(H)uu + kuu .

By imposing the condition t(total)uu = t(total)v v = 0 and kuu = 0
and the boundary conditions corresponding to the Unruh vacuum,
we obtain

t(O )uu = t(H)uu

= −2Au(r+) j(H)u − cR e2

π
A2

u(r+)

− cR

24π

(
∂2

uϕ(r+) − 1

2

(
∂uϕ(r+)

)2
)

= cR

192π

(
f ′(r+)

)2 + cR e2

π
A2

u(r+), (4.46)

t(O )v v = 0. (4.47)

Then the energy flux at the infinity is given by

T r
t(r → ∞) = Tuu(r → ∞) − T v v (r → ∞)

= cR

192π

(
f ′(r+)

)2 + cR e2

π
A2

u(r+). (4.48)

This result is coincident with the known result [9].

5. Conclusions and discussions

In this Letter, we have discussed the problem with the ambi-
guity of the gravitational anomaly method. We have shown that,
by considering the chiral current and the trace anomaly, the cor-
rect fluxes can be derived. Thus we can interpret the origin of the
fluxes as the anomalies in the near horizon.

Although we can derive the flux by using the conformal field
theory technique without employing the near horizon chiral the-
ory as we showed in Section 3, the gravitational anomaly method
is attractive since it would relate the Hawking effect to the mem-
brane paradigm and condensed matter physics.

Another derivation of the Hawking effect associated with the
gravitational anomaly method was proposed by Banerjee et al. [32,
34]. They omitted the separation of the outside of the horizon and
applied the anomaly equation (2.4) to the theory in the whole re-
gion of the outside. If we impose the condition J r

(H) = 0 at the
horizon, we can obtain the flux jr

(H) and they interpreted that
this flux is the Hawking radiation observed at the infinity. If we
admit this derivation, the ambiguity which we have discussed in
this article does not exist. However this derivation is physically
not correct, since the theory in the region apart from the horizon
is not anomalous and we cannot use (2.4) in this region. In ad-
dition, the expectation value of the current J r

(H) is not coincident
with the correct current at finite r because of the existence of the
anomalous term e2 At(r)/2π in (2.9). Thus we avoided using the
derivation [32,34] in this article.
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Appendix A. Reissner–Nordström black hole

We summarize the basics of Reissner–Nordström black holes.
The metric and the gauge potential of Reissner–Nordström black
holes with mass M and charge Q are given by

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2 dΩ2

2 , (A.1)

At = − Q

r
, (A.2)

where

f (r) = 1 − 2M

r
+ Q 2

r2
= (r − r+)(r − r−)

r2
(A.3)

and the radius of outer (inner) horizon r± is given by

r± = M ±
√

M2 − Q 2. (A.4)

It is useful to define the tortoise coordinate by solving dr∗ = dr/ f
as

r∗ = r + 1

2κ+
ln

|r − r+|
r+

+ 1

2κ−
ln

|r − r−|
r−

. (A.5)

Here the surface gravity at r± is given by

κ± = 1

2
f ′(r±) = r± − r∓

2r2±
. (A.6)

We define the light-cone coordinates, u = t − r∗ and v = t + r∗ .
u(v) are the out-going (in-going) coordinates and the metric in
these coordinates becomes as

ds2 = f
(
dt2 − dr2∗

) − r2 dΩ2 = f du dv − r2 dΩ2. (A.7)

If we restrict to see the two-dimensional (r, t) section, both of
these coordinates (A.7), have the forms of the conformal gauge

ds2 = eϕ(u,v) du dv, (A.8)

where ϕ = log f . In this coordinate, the gauge potential becomes
Au = Av = At/2.
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