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In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin 
Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the 
gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless 
fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
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1. Introduction

The unitary representations of the Poincaré group in four space-
time dimensions were first examined by E. Wigner in [1]. For 
massless particles, there is a class of representations, the so-called 
“continuous-spin” particles, for which the eigenstates of different 
helicities are mixed under Lorentz transformations, similarly to the 
class of massive particles. In 3 + 1 dimensions, there exists only 
two types of CSP: the bosonic case where the spectrum of eigen-
values of the helicity operator is all the integers, and the fermionic 
case where the spectrum span all the half-integers. The helicity is 
defined, more covariantly, as W 2|h〉 = −ρ2|h〉 where h is the he-
licity, W μ is the Pauli–Lubanski vector and the real parameter ρ
(with the dimension of a mass) determines the degree of mixing 
of eigenstates. The eigenstates can be labeled by either integer or 
half-integer eigenvalues h, depending on the representation type. 
In the ρ → 0 limit, the helicity-eigenstates reduce to the famil-
iar ones that are Lorentz invariant, in the sense that they do not 
mix under Lorentz boosts (see e.g. [2] for more review). Recently, 
it was argued that CSPs might evade the Weinberg no-go theo-
rem on covariant soft emission amplitudes and could thus mediate 
long-range interactions [2].
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As first pointed out by A.M. Khan and P. Ramond in [3], one 
suggestive way to think about a CSP is as the limit of a massive 
particle where its mass m goes to zero while its spin s goes to 
infinity with their product being fixed (m → 0 and s → ∞, with 
ms = ρ). This group-theoretical observation was translated at the 
field-theoretical level in [4] where Fronsdal-like equations of mo-
tion for bosonic CSPs and Fang–Fronsdal-like ones for fermionic 
CSPs where obtained from the above limit of the corresponding 
equations [5,6] for massive higher-spin particles (see e.g. [7] for a 
review) and shown to be equivalent to Wigner’s equations [8] (see 
also [9] for more details).

More recently, P. Schuster and N. Toro presented a local covari-
ant action for bosonic CSPs, formulated with the help of an auxil-
iary Lorentz vector ημ localized to the unit hyperboloid η2 = −1
[10]. This localization on a hyperboloid improved their initial pro-
posal [11] and allows to recover precisely the equations of [4] as 
Euler–Lagrange equations. See also the recent analysis of V. O. Riv-
elles [12].

Until now, the gauge field theory of fermionic CSPs was missing 
from the literature at the level of the action. To describe supersym-
metric CSP multiplets [13] or cross-interactions between bosonic 
and fermionic CSPs, it is unavoidable to construct an action of this 
type. The layout of the letter is as follows. In section 2, a local 
covariant action of fermionic CSPs is proposed and we elaborate 
on its different aspects. In section 3, taking ρ = 0, Fang–Fronsdal 
equations for half-integer helicities will be obtained [6]. We con-
clude and present open problems in section 4.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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We will work in the “mostly minus” signature and focus on 
spacetime dimension four but the higher (D � 4) and lower1 di-
mensional generalizations are straightforward.

2. Local and covariant action

We propose an action for the free fermionic CSPs as

S f ree =
∫

d4x d4η
[
δ′(η2 + 1)� (γ · η − i)(γ · ∂x)�

+ δ(η2 + 1)� ��
]
, (1)

where γ μ are gamma matrices, δ′(a) = d
da δ(a) and � = ∂η · ∂x +ρ .

The gauge field �(η, x) is a spinor field, of which the spinor in-
dex has been omitted. It is assumed that � is analytic in ημ . From 
the action, it is clear that �(η, x) has mass dimension 3/2, as it 
should. When ρ = 0, the helicity eigenstates factorize into a tower 
of states with half-integer eigenvalues. The action is written in an 
enlarged spacetime where inhomogeneous Lorentz transformations 
act on xμ (x′ = 	x + a) and homogeneous Lorentz transformations 
act on an auxiliary 4-vector coordinate ημ (η′ = 	η) as well. The 
delta functions in (1) illustrate that the η dependence of �(η, x)
is localized to a unit hyperboloid in η-space, an internal space that 
encodes spin. Note that no dynamics is carried out in η-space. The 
action is invariant under the gauge transformation

δ�(η, x) =
[
(γ · ∂x)(γ · η + i) − (η2 + 1)�

]
ε(η, x)

+ (η2 + 1)(γ · η − i)χ(η, x), (2)

where ε(η, x) and χ (η, x) are arbitrary spinor gauge transforma-
tion parameters and there is no constraint on them. The χ sym-
metry is the analogue of the one in [10,12] which allows us to 
remove the triple gamma-trace part of the gauge field.

In the presence of background currents, linear interactions can 
be given by

Sint = −i

∫
d4x d4η δ′(η2 + 1)

[
�(η, x)(γ · η − i)σ (η, x)

−σ (η, x)(γ · η + i)�(η, x)
]
, (3)

where σ and σ are spinor sources.
The gauge invariance of Sint leads to two continuity-like condi-

tion[
δ(η2 + 1)(γ · η − i)�

]
σ (η, x) = 0, (4)

σ (η, x)
[←−

� δ(η2 + 1)(γ · η + i)
]

= 0, (5)

for each source, where 
←−
� means that � operates to the left. Using 

(1) and (3), it is straightforward to obtain a covariant equation of 
motion for the field �[
δ′(η2 + 1)(γ · η − i)(γ · ∂x) + δ(η2 + 1)�

]
� (6)

= i δ′(η2 + 1)(γ · η − i)σ .

As will be shown in the next section, this equation of motion 
describes a single fermionic CSP. In this approach, there is no con-
straint on the gauge field, contrarily to the Fang–Fronsdal formu-
lation (see [15] for a local unconstrained formulation of massless 
higher-spin fields).

1 There is a version in three spacetime dimensions of CSPs which can be thought 
as a massless generalization of anyons [14].
One of the main purposes of this paper is to present a local and 
covariant action for the fermionic CSPs which reproduces fermionic 
higher-spin massless particles in the ρ → 0 limit (called “helic-
ity correspondence” in [10]). To demonstrate this connection, we 
shall transform our equations to those in ω-space, the conjugate 
space of the η-space. In ω-space, we will show that our equa-
tion of motion is equivalent to the Fang–Fronsdal-like equation [4], 
which was obtained from the massive Fang–Fronsdal equation and 
is equivalent to the Wigner equations [8].

3. Relation to the Fang–Fronsdal equation

We perform a Fourier transformation in ημ to express the 
Grassmann variables in the ω-space as

�(ω, x) ≡
∫

d4η eiη·ωδ′(η2 + 1)(γ · η + i)�(η, x), (7)

σ (ω, x) ≡
∫

d4η eiη·ωδ′(η2 + 1)(γ · η − i)σ (η, x), (8)

ε(ω, x) ≡
∫

d4η eiη·ωδ(η2 + 1)(γ · η + i)ε(η, x). (9)

Notice that the fields in the left-hand-sides are unconstrained 
while the ones in the right-hand-side are constrained. More pre-
cisely, the equations (7) and (9) can be understood as the general 
solutions of the triple gamma-trace condition

(γ · ∂ω + 1) (∂ω · ∂ω − 1) �(ω, x) = 0, (10)

and the gamma-trace condition

(γ · ∂ω + 1)ε(ω, x) = 0, (11)

which are equivalent to the ones in [4] (up to a multiplication by 
the matrix iγ 5 as explained below). Let us point out that the fields 
in the left-hand-sides of (7) and (9) do not uniquely determine 
the fields �(η, x) and ε(η, x) in the right-hand-side, but only up 
to some gamma-trace terms. In particular, the arbitrariness in the 
field �(η, x) is nothing but the χ symmetry in (2). In other words, 
the field �(ω, x) is not affected by the χ symmetry. As one can 
check, the change of variables (7)–(9) converts some of the gauge 
symmetries of the original fields (e.g. the χ symmetry) into con-
ditions imposed on the new fields (e.g. gamma-trace constraint). 
This fact is closely related to the standard conversion of first-class 
constraints into second-class ones.

Multiplying the equation (2) by δ′(η2 + 1)(γ · η + i) to the left, 
we obtain

δ′(η2 + 1)(γ · η + i)δ�(η, x) = �
[
δ(η2 + 1)(γ · η + i)ε(η, x)

]
.

(12)

Now, Fourier transforming (12) over the auxiliary variable η, the 
gauge transformation takes the form of

δ�(ω, x) = (ω · ∂x + iρ)ε(ω, x), (13)

where a constant factor has been absorbed in the gauge field. This 
is exactly the gauge transformation of the Fang–Fronsdal-like equa-
tion, proposed in [4]. Let us stress that the χ symmetry is absent 
in (13).

The continuity condition (4) appears in ω-space as
[
(γ · ∂ω + 1)(γ · ∂x) − (ω · ∂x + iρ)

(
∂2
ω − 1

)]
σ (ω, x) = 0. (14)

The equation of motion (6) turns into

i
[
(γ · ∂x) − (ω · ∂x + iρ)(γ · ∂ω + 1)

]
�(ω, x) = σ (ω, x). (15)
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A gauge invariant equation of motion equivalent to (15), with 
σ = 0, was obtained in [4] from the massless high-spin limit of 
the equation for fermionic massive particles, but no action leading 
to this equation of motion was presented. To see the equivalence 
between (15) and the equation written in [4], we can multiply (15)
by the matrix iγ 5 to the left (with σ = 0) and get
[
(� · ∂x) − (ω · ∂x + iρ)(� · ∂ω + i �5)

]
�(ω, x) = 0, (16)

where �μ = iγ 5γ μ and �5 = γ 5. These new matrices �’s satisfy 
the same Clifford algebra as the original matrices γ ’s and the ob-
tained equation is the one in [4].2

Via a gauge-fixing procedure similar to the one in [4], one can 
show that the equation (15) without source describes a single 
fermionic CSP. In fact, we can impose the gauge

(γ · ∂ω + 1)�(ω, x) = 0, (17)

and get from (15) with σ = 0:

i(γ · ∂x)�(ω, x) = 0. (18)

In turn, the equations (17) and (18) imply that

(∂ω · ∂x)�(ω, x) = 0 . (19)

As explained in [4], these three equations (17)–(19) are equivalent 
to Wigner’s equations [8] which are known to describe a single 
fermionic CSP.

To make contact between the above equations and the corre-
sponding Fang–Fronsdal equations, one can first rescale3 the aux-

iliary variable (and the gauge parameter) as follows: ω → ρ
1
2 ω in 

(13)–(15) and then put ρ = 0. For instance, (15) reads in terms of 
the rescaled variable as

i
[
(γ · ∂x) − (ω · ∂x + iρ

1
2 )(γ · ∂ω + ρ

1
2 )

]
�(ω, x) = σ (ω, x), (20)

which in the ρ → 0 limit leads to the Fang–Fronsdal equation

i
[
(γ · ∂x) − (ω · ∂x)(γ · ∂ω)

]
�(ω, x) = σ (ω, x). (21)

Similarly, one gets from (14) in the same ρ → 0 limit[
(γ · ∂ω)(γ · ∂x) − (ω · ∂x)∂

2
ω

]
σ (ω, x) = 0. (22)

The spinor field � can be considered of the form

�(ω, x) = ψ(x) + ωμψμ(x) + 1

2
ωμωνψμν(x) + · · · , (23)

where ψ is a spinor (Dirac) field of helicity 1
2 , ψμ is a vector-

spinor (Rarita—Schwinger) field of helicity 3
2 , ψμν is a symmetric 

tensor-spinor field of helicity 5
2 , etc. We will have the same defini-

tion for the spinor field σ as above. For ε we can write

ε(ω, x) = ε(x) + ωμεμ(x) + 1

2
ωμωνεμν(x) + · · · , (24)

where ε is the gauge parameter of the helicity 3
2 gauge field and so 

on. By assuming the fields analytic in ω-space, the Fang–Fronsdal 
formulation of half-integer spin gauge fields can conveniently be 
elaborated as follows:

According to (13) at ρ = 0, one can see that the Dirac field 
is not a gauge field, but all other massless fields transform under 

2 Notice that the mostly plus signature was used in [4] and is responsible for a 
distinct i factor.

3 X. B. is grateful to J. Mourad for discussions on the corresponding rescaling in 
the bosonic case.
the gauge symmetries. The gauge transformations for s = 3
2 , 52 , · · · , 

take the standard form [6]

δψμ = ∂με,

δψμν = ∂μεν + ∂νεμ, (25)

...

The equation of motion (21), for s = 1
2 , 32 , 52 , · · · reduce to

i (γ · ∂)ψ = σ ,

i
(
(γ · ∂)ψα − ∂αψ ′) = σα,

i
(
(γ · ∂)ψαβ − ∂αψ ′

β − ∂βψ ′
α

)
= σαβ,

...

which are exactly Fang–Fronsdal equations for half-integer higher-
spin gauge fields [6]. The Fang–Fronsdal notation for trace has been 
used (γ -trace ε′

νρ ··· ≡ γ μεμνρ ···).
Ultimately, the continuity conditions (for s = 3

2 , 52 , · · · ) can be 
extracted from (22)

∂μσμ = 1
2γ μ∂μσ ′,

∂νσμν = 1
2

(
γ ν∂νσ

′
μ + ∂μσ ′′), (26)

...

which indeed correspond to the ones in [6].

4. Conclusions and discussion

In this letter, we proposed a local, covariant and gauge-
invariant, action (1) to describe fermionic CSPs. As is standard in 
higher-spin literature, an auxiliary Minkowski space (η-space here) 
was used to encode spinning degrees of freedom. However, there 
is no dynamics within the η-space. We rewrote, in the conjugate 
ω-space, the gauge symmetries and the equation of motion, and 
related them to the ones in [4]. Finally, taking a suitable ρ → 0
limit, the Fang–Fronsdal equations for fermionic higher spin gauge 
fields were correctly obtained.

The fermionic CSP action proposed here, together with the 
bosonic CSP action of Schuster and Toro action, may open a new 
window to probe supersymmetric CSPs, or investigate Yukawa-like 
interactions of CSPs. We let the canonical and path integral quan-
tizations of fermionic CSPs for future work.
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