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a b s t r a c t

The rectangular defect of a trianglewith side lengths a, b and c is a2+b2−c2 where a, b ≤ c .
For a given integer dwe examine the set PIT(d) consisting of all primitive integral triangles
with rectangular defect equal to d. There are simple transformations τ1, τ2 and τ3 which
produce new elements of PIT(d) from any triangle with defect d. They determine a partial
ordering on PIT(d) in which applying any τi moves upward. We will show that the poset
PIT(d) has finitely many components and that each of these components is isomorphic to
one of two rooted trees T orT (where T is the regular rooted tree of valence three andT is
a subtree of it). It follows that the minimal elements of PIT(d) form a finite set from which
any triangle in PIT(d) can be uniquely obtained by applying a finite sequence of the τi’s.

In order to prove these statements we will analyze a larger poset Σ(d) which contains
copies of both PIT(d) and its inverse −PIT(d) as subposets. The elements of Σ(d) are
equivalence classes of solutions to the equation

x21 + x22 + x23 − 2x2x1 − 2x2x3 = d.

The key result will assert that the complement of ±PIT(d) in Σ(d) is a finite poset,
denoted by Core(d). The proof of this key result is very different according to whether d
is nonpositive (the obtuse case) or d is positive (the acute case), and the two cases must
be analyzed separately. In the obtuse case we will see that the components of Core(d) are
singletons while in the acute case they are poset segments or poset circuits (these are the
finite connected posets in which each element has at most two neighbors). For all values
of d the analysis of Σ(d) will produce algorithms for constructing both Core(d) and the
minimal elements of PIT(d).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let∆(a, b, c) denote a triangle in the Euclidean planewith side lengths a, b and c where c ≥ a and c ≥ b.1 The rectangular
defect of ∆(a, b, c) is the real number

d = a2 + b2 − c2. (1.1)
By the law of cosines, d = 2ab cos(γ ) where γ is the interior angle of ∆(a, b, c) opposite the side of length c. As γ is the
largest interior angle in ∆(a, b, c), the defect is respectively positive, zero, or negative according to whether ∆(a, b, c) is an
acute triangle, a right triangle, or an obtuse triangle. Thus the defect provides a crude measure of how close a triangle is to
being a right triangle. A precise geometric interpretation is illustrated in Fig. 1: Let ∆ = ∆(a, b, c) be a triangle with defect
d, and let A, B and C be the vertices of ∆ opposite the sides of length a, b and c respectively. Choose a point A′ in the plane
so that CA′ is perpendicular to CA and |CA′

| = |CA| = b. Then |d| = 4Area(∆′) where ∆′ is the triangle with vertices A′, B
and C . (While the choice of the vertex A′ is not unique, the area of ∆′ is independent of that choice.)

E-mail address: amiller@math.ou.edu.
1 Congruent triangles are always considered to be the same in this work. In writing ∆(a, b, c) it is assumed that the third coordinate c is the maximal

side length of the triangle however the other two side lengths are unordered. So ∆(b, a, c) = ∆(a, b, c) with this notation.
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Fig. 1. Geometric interpretation of rectangular defect.

Table 1
The root triangles with defect between −10 and 10.

d Root(d)

10 ∆(5, 7, 8), ∆(11, 17, 20), ∆(15, 19, 24)
9 ∆(3, 4, 4), ∆(3, 5, 5), ∆(3, 7, 7), ∆(3, 8, 8), ∆(7, 9, 11), ∆(11, 12, 16), ∆(13, 18, 22)
8 ∆(5, 8, 9), ∆(8, 13, 15), ∆(12, 15, 19)
7 ∆(4, 4, 5), ∆(8, 8, 11), ∆(10, 14, 17)
6 ∆(5, 9, 10), ∆(9, 11, 14)
5 ∆(4, 5, 6), ∆(7, 10, 12)
4 ∆(2, 3, 3), ∆(2, 5, 5), ∆(6, 7, 9)
3 ∆(4, 6, 7)
2 ∆(3, 3, 4)
1 ∆(1, 1, 1), ∆(1, 2, 2)
0 ∆(3, 4, 5)

−1 ∆(2, 2, 3)
−2 ∆(3, 5, 6), ∆(7, 7, 10)
−3 ∆(2, 3, 4), ∆(5, 6, 8)
−4 ∆(3, 6, 7), ∆(6, 9, 11), ∆(10, 11, 15)
−5 ∆(2, 4, 5), ∆(8, 10, 13)
−6 ∆(3, 7, 8), ∆(9, 13, 16), ∆(13, 15, 20)
−7 ∆(2, 5, 6), ∆(11, 14, 18), ∆(3, 3, 5), ∆(5, 7, 9), ∆(9, 9, 13)
−8 ∆(3, 8, 9), ∆(12, 17, 21), ∆(16, 19, 25), ∆(4, 5, 7), ∆(7, 8, 11)
−9 ∆(2, 6, 7), ∆(14, 18, 23)
−10 ∆(3, 9, 10), ∆(15, 21, 26), ∆(19, 23, 30)

A triangle ∆(a, b, c) is integral if each of its side lengths a, b and c are integers, and it is primitive if in addition we have
gcd(a, b, c) = 1. Note that the defect of an integral triangle is itself an integer. Our intent in this paper is to examine the set
PIT(d) which consists of all primitive integral triangles whose defect equals d for a given integer d. To study this set one is
led to consider the transformations

τ1(a, b, c) = (a − 2b + 2c, 2a − b + 2c, 2a − 2b + 3c),
τ2(a, b, c) = (a + 2b + 2c, 2a + b + 2c, 2a + 2b + 3c), and
τ3(a, b, c) = (−a + 2b + 2c, −2a + b + 2c, −2a + 2b + 3c)

(1.2)

which are easily seen to preserve both the maximality of third coordinates and the defect of ∆(a, b, c). As a consequence
these transformations can be used to generate new elements of PIT(d) from old ones. They also determine a partial ordering
on PIT(d) by declaring ∆(u) to be less than ∆(τju) for each j = 1, 2 and 3. Our main results will show that each primitive
integral triangle with defect d can be uniquely obtained from aminimal element of the poset PIT(d) by applying a sequence
of transformations from {τ1, τ2, τ3}, and we will establish that the set Root(d) of minimal elements in PIT(d) is finite and
nonempty for all values of d. For example, the ‘root triangles’ whose defects have absolute value at most ten are displayed
in Table 1.

Of course the special case of integral right triangles, which have defect d = 0, has been extensively studied. These
triangles correspond to positive ‘Pythagorean triples’ which are triples of positive integers (a, b, c) satisfying a2 + b2 = c2.
Here it is well known that PIT(0) forms a regular rooted tree T of valence three (as shown in Fig. 3), and Root(0) consists of
the single right triangle ∆(3, 4, 5). This means that every primitive integral right triangle can be obtained from ∆(3, 4, 5)
by applying a unique sequence of transformations from {τ1, τ2, τ3}. For example, applying τ3τ1τ3τ2τ

3
1 to∆(3, 4, 5) produces

the primitive integral right triangle ∆(12 360, 7009, 14 209). The identification of PIT(0) with T has been discovered
and/or examined by many different authors including Berggren [3], Barning [2], Hall [5], Alperin [1], McCullough [9] and
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Fig. 2. The number of root triangles with defect d between −500 and 500.

Lonnemo [8]. In [2] Barning also described the primitive integral triangles with defects d = ±1, which he calls ‘almost
Pythagorean’. He showed that PIT(−1) is a rooted treeT (as seen in Fig. 3) and that PIT(1) is the disjoint union of T andT.
So Root(−1) and Root(1) have one and two elements respectively, as indicated in Table 1. In fact all values of d for which
Root(d) has cardinality one or two are included in this table. More generally, the data in Fig. 2 suggests that the number of
root triangles in PIT(d) grows without bound as a function of |d|.

Our approach to studying PIT(d) is to identify it with a subposet Σ∆(d) of a larger partially ordered set Σ(d) whose
elements are equivalence classes of primitive integer solutions (x1, x2, x3) to the quadratic Diophantine equation

x21 + x22 + x23 − 2x2x1 − 2x2x3 = d. (1.3)

Eq. (1.3) is equivalent to (1.1) under the linear substitution x1 = c − a, x2 = c and x3 = c − b. At first glance (1.3) may not
look like an improvement over (1.1) but we will see that it is algebraically more versatile and carries significant geometric
content independent of (1.1). The left hand side of (1.3) is invariant under the three transformations σ1, σ2 and σ3 given by

σ1(x1, x2, x3) = (2x2 − x1, x2, x3),
σ2(x1, x2, x3) = (x1, 2x1 + 2x3 − x2, x3) and
σ3(x1, x2, x3) = (x1, x2, 2x2 − x3).

(1.4)

These transformations can be used to construct the aforementioned transformations τ1, τ2 and τ3 (see Eqs. (4.3)), but are
considerably easier to work with. They may be viewed as reflections on a geometric space,2 and the reflection group that
they generate is a right-angled Coxeter group. The associated Coxeter diagram is the treewith three vertices (and both edges
labeled ∞), and the Coxeter group is isomorphic to (Z2 × Z2) ∗ Z2.

The right-angled Coxeter group perspective creates an informative parallel with another well-studied quadratic
Diophantine equation, the ‘Descartes circle formula’, which may be expressed as

x21 + x22 + x23 + x24 − 2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4 = 0. (1.5)

In fact, the left hand sides of both (1.3) and (1.5) can be recognized as the quadratic forms determined by the standard
bilinear form associated with a Coxeter group. In the case of (1.5) the associated Coxeter diagram is the complete graph on
four vertices (with edges labeled by∞) and the Coxeter group is isomorphic toZ2∗Z2∗Z2∗Z2. Primitive integer solutions to
the Descartes circle formula have been extensively examined in a series of papers [7,4] by Lagarias, Mallows, Wilks and co-
authors (see also [10]). Although, in distinction from our setting, there are infinitely many ‘root’ solutions to (1.5). Another
distinction is that partial orderings necessarily play a central role in our investigations but were only hinted at in [4] through
the use of the term ‘root quadruple’. Nevertheless the results in sections 3 and 4 of [4] have particularly inspired some of the
calculations in the present paper. As in [4] these calculations are elementary and do not explicitly involve the right-angled
Coxeter group interpretation.

To prove our main results we will show that the poset Σ∆(d) is a disjoint collection of rooted trees isomorphic to T orT, and that Σ(d) can be constructed by attaching these rooted trees and their inverses to a finite subposet Core(d) ⊂ Σ(d).
Since no more than four rooted trees will be attached at a given element of Core(d), the collection of rooted trees in Σ∆(d)

2 As written they are affine reflections on R3 but they can also be realized as isometric reflections across the three sides of a right triangle with two ideal
vertices in the hyperbolic plane.
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must be finite. Therefore PIT(d) ∼= Σ∆(d) is a disjoint union of finitely many rooted trees, and its set of minimal elements
Root(d) is finite. The most difficult step in this process will be to verify that Core(d) is finite, and in addressing this it will
become clear that there is a significant dichotomy between the cases of obtuse triangles (where d ≤ 0) and acute triangles
(where d > 0). As evidence of the dichotomy, we shall see that when d ≤ 0 each component of Σ(d) is one of a finite
number of rooted trees or their inverses, and each component of Core(d) is a singleton. But when d > 0, no component of
Σ(d) is a rooted tree and there are infinitely many different isomorphism types for the components of Core(d). On the other
hand the components of Core(d) always have a particularly nice form. For example, when d > 4 they are always ‘interval’
or ‘circuit’ posets (see Theorem 6.3). In both of the cases d ≤ 0 and d > 0 we will give algorithms which construct the
elements of Root(d), and these can be used to generate data such as given in Fig. 2 and Tables 1–3.

I would like to thank Ted Swang for discussions instrumental to the development of this work.
Glossary of terms:

Term Defined in Description
PIT(d) Introduction Poset of primitive integral triangles with defect d
Trip(d) (3.1) Poset of d-triples
Σ(d) (3.5) Poset of equivalence classes of d-triples
R(d) (3.6) Set of components of Σ(d)
Σ∆(d) (4.1) Subposet of Σ(d) corresponding to PIT(d)
Core(d) (4.6) The core of Σ(d)
Preferred d-triple After (3.5) Special representative for an element of Σ(d)
σ1, σ2, σ3 (1.4) Fundamental reflections on Trip(d)
µ (3.2), (4.5) Negation involution on Trip(d) and Σ(d)
η (3.2) Coordinate interchange involution on Trip(d)
ℓ(x) (3.3) Length of a d-triple
Si(x), S(x) (3.4) Determines direction that σi moves at x ∈ Trip(d)
N(x) (3.7) Norm of a d-triple
N [x] (4.2) Set of neighbors of [x] ∈ Σ(d)χ (4.4) Transformation from PIT(d) to Σ(d)

2. Rooted trees and indicable relations

Partial orderings play a central role in this work and in this sectionwe sketch some basic terminology. Stanley’s book [11]
is a good source for background details.

A poset consists of a set P and a partial ordering≤ on P . The inverse of P is the poset−P = (P, ≥). We say P is locally finite
if for each x, y the interval [x, y] = {z | x ≤ z ≤ y} is finite, and it satisfies the descending chain condition if every decreasing
sequence x1 > x2 > x3 > · · · is finite. If x < y and there is no z with x < z < y then x is an immediate predecessor of
y, and y is an immediate successor of x. Two elements of P are neighbors if one is an immediate successor of the other. The
number of immediate successors of an element of P is its upward valence, while the number of immediate predecessors is
its downward valence. An element is minimal if no element is smaller than it, and maximal if no element is larger. If (P, ≤)
is a poset and Q ⊆ P then (Q , ≤) is a subposet of (P, ≤). The subposet Q is an upward ideal if x ∈ Q and y > x implies that
y ∈ Q , a downward ideal if x ∈ Q and z < x implies that z ∈ Q , and a full subposet if [x, y] ⊆ Q for each x, y ∈ Q .

Via the association of a poset with its Hasse diagram one may apply graph theory terminology to posets. A path from x
to y in a poset P is a sequence x = x0, x1, . . . , xn = y in which xi is a neighbor of xi−1 for i = 1, . . . , n, and P is connected if
any two of its elements can be joined by a path. The relation on P where x ≡ y if and only if there is a path from x to y is an
equivalence relation whose equivalence classes are the components of P .

A rooted tree is a connected poset P satisfying the descending chain condition with the property that each element has
no more than one immediate predecessor. By the descending chain condition, if x is an element of a rooted tree then the
sequence x = x0, x1, x2, . . .where xi+1 is the immediate predecessor of xi (if it has one)must terminate at aminimal element
after finitelymany steps. Thus every rooted tree contains aminimal element. On the other hand it cannot havemore than one
minimal element since a path between distinctminimal elements would contain an elementwithmore than one immediate
predecessor. The unique minimal element in a rooted tree is called its root. A rooted tree is regular of degree n if the upward
valence of each element equals n. An uprooted tree is a posetwhose inverse is a rooted tree—it has a uniquemaximal element,
which is also called its root. It is not hard to verify that rooted and uprooted trees are locally finite.

The regular rooted tree T of degree three plays a key role in our investigations. (See Fig. 3.) It can be described formally
as the set of finite strings α = α1α2 . . . αn with entries αi ∈ {−1, 0, 1} where β ≤ α if β is an initial substring of α. The
immediate successors of α1 . . . αn are α1 . . . αnαn+1 where αn+1 ∈ {−1, 0, 1}, and its immediate predecessor is α1 . . . αn−1
provided that n > 0. The empty string is the root of T. The function ω : {−1, 0, 1} → {−1, 0, 1} given by ω(j) = −j
extends to a poset isomorphism ω : T → T with ω(α1 . . . αn) = ω(α1) . . . ω(αn). The quotient setT = T/ω, with elements
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Fig. 3. The rooted trees T andT.
[α] = {α, ω(α)}, also forms a rooted tree. Here [β] ≤ [α] when β ≤ α or β ≤ ω(α). The treeT can also be realized as the
subposet of T consisting of strings whose first nonzero entry is −1. A string inT has upward valence two if all of its entries
are 0 and three otherwise. The set of strings of 0’s forms a maximal chain C which we call the axis ray ofT. In this fashionT can be characterized as the unique rooted tree containing a maximal chain C such that each element in C has upward
valence two and each element outside C has upward valence three.

The partial orderings that occur in this work arise via a construction we call ‘indicable closure’, described as follows. If ≺
is a relation on S then its RT-closure is the relation≤where x ≤ y if there is a sequence x = s0, s1, . . . , sn = ywith n ≥ 0 and
si−1 ≺ si for i = 1, . . . , n. The RT-closure of≺ is the smallest reflexive and transitive relation containing≺. An index function
for ≺ is a function λ : S → Z with λ(x) < λ(y) if x ≺ y and x ≠ y. A relation is indicable if it admits an index function
λ : S → Z. Indicable relations are anti-symmetric because if x ≤ y ≤ x and x ≠ y then λ(x) < λ(y) < λ(x) violating the
anti-symmetry of the Archimedean ordering on Z. If λ : S → Z is an index function for≺ then it is also an index function for
the RT-closure ≤. Therefore the RT-closure of an indicable relation is a partial ordering. An indicable poset is locally finite
if it admits an index function whose point inverses are finite, and it satisfies the descending chain condition if it admits an
index function whose image is bounded below in Z.

To formally verify that the relation on PIT(d) described in the introduction is a partial ordering we use the indicable
closure construction. For ∆(u), ∆(v) ∈ PIT(d) write ∆(u) ≺ ∆(v) if v = τj(u) for some j ∈ {1, 2, 3}. The ‘perimeter
function’ ρ(∆(a, b, c)) = a + b + c is an index function for ≺ since if u = (a, b, c) then

ρ(∆(τ1u)) − ρ(∆(u)) = 4a + 6(c − b) > 0,
ρ(∆(τ2u)) − ρ(∆(u)) = 4a + 4b + 6c > 0, and
ρ(∆(τ3u)) − ρ(∆(u)) = 4b + 6(c − a) > 0.

Therefore the RT-closure of ≺ forms a partial ordering ≤ on PIT(d). As there are only finitely many integral triangles with
given perimeter, ρ has finite point inverses and PIT(d) is locally finite. Also the image of the perimeter function is bounded
below by 0 and PIT(d) satisfies the descending chain condition.

3. d-triples and the poset Σ(d)

An ordered triple of integers x = (x1, x2, x3) with gcd(x1, x2, x3) = 1 which satisfies Eq. (1.3) will be called a d-triple. We
define

Trip(d) =

x ∈ Z3

| x is a d-triple

. (3.1)

Each of the five transformations η and µ, given by

η(x1, x2, x3) = (x3, x2, x1) and
µ(x1, x2, x3) = (−x1, −x2, −x3),

(3.2)

and the fundamental reflections σ1, σ2, and σ3 defined in (1.4) are involutions on Z3. Straightforward calculations show that
each of them leave Trip(d) invariant. The length function on Trip(d) is the transformation ℓ : Trip(d) → Z given by

ℓ(x1, x2, x3) = x1 + x2 + x3. (3.3)

We define a relation ≺ on Trip(d) by setting

x ≺ y if y = σj(x) for some j ∈ {1, 2, 3} and ℓ(x) < ℓ(y).
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Clearly ℓ is an index function with respect to ≺, so the RT-closure of ≺ forms a partial ordering ≤ on Trip(d). With this
partial ordering Trip(d) is locally finite.3

To keep track of whether applying σj to a d-triple moves upward or downward in Trip(d) we introduce functions S1, S2
and S3 defined for x = (x1, x2, x3) by

S1(x) = sign(x2 − x1),
S2(x) = sign(x1 + x3 − x2),
S3(x) = sign(x2 − x3),

(3.4)

where sign(t) equals +, 0, or − according to whether t > 0, t = 0 or t < 0. Thus Si(x) = + if and only if σi increases the
value of ℓ(x), indeed Si(x) = sign(ℓ(σix) − ℓ(x)) for each i ∈ {1, 2, 3}. We also let S(x) denote the ordered triple consisting
of S1(x), S2(x) and S3(x) written as a string of length three. For example, x = (4, 3, −2) is an element of Trip(17) with
S(x) = − − +. (See Fig. 4.)

From definitions it is readily seen that σ1σ3 = σ3σ1, σ1η = ησ3 and σ2η = ησ2. Also σ1η has order four, and
⟨ σ1, σ3, η ⟩ = ⟨ σ1η, η ⟩ is a dihedral group of order eight acting on the set Trip(d). Let Σ(d) denote the set of orbits of
this action

Σ(d) = { [x] | x ∈ Trip(d)} (3.5)

where

[x] = {x, σ1(x), σ3(x), σ3σ1(x), η(x), ησ1(x), ησ3(x), ησ3σ1(x)} ,

and let

R(d) = {components of Σ(d)} . (3.6)

A d-triple x is preferred provided that S1(x) ≥ 0 and S3(x) ≥ 0. Note that each element of Σ(d) has a preferred
representative: for example, if S1(x) = − then σ1x is a representative of [x] with S1(σ1x) = +, and if S3(x) = − then
S3(σ3x) = +. If x is preferred then so is ηx, so preferred representatives are only unique up to η.

Next we describe a partial ordering on Σ(d). This is somewhat delicate because partial orderings do not descend to
quotients except in special circumstances. Indicability plays a key role in surmounting this difficulty but a new index function
is needed for the quotient. Here that role is filled by λ : Σ(d) → Z where

λ[x1, x2, x3] = x2.

For elements [x] and [y] in Σ(d) we write

[x] ≺ [y] if [x] ≠ [y] and x′
≺ y′ for some d-triples x′

∈ [x] and y′
∈ [y].

Lemma 3.1. ≺ is an indicable relation on Σ(d) with index function λ.

Proof. Let [x] and [y] be elements of Σ(d) with [x] ≺ [y] and x ≺ y. Then y = σj(x) for some j ∈ {1, 2, 3}, but j = 2 because
[x] ≠ [y]. Therefore y = (x1, y2, x3) and x2 = ℓ(x) − x1 − x3 < ℓ(y) − x1 − x3 = y2. �

Thus the RT-closure ≤ of ≺ is a partial ordering on Σ(d). It is not hard to verify that Σ(d) is a locally finite poset.4 The
natural projection Trip(d) → Σ(d) is a poset map, which means that [x] ≤ [y] in Σ(d) whenever x < y in Trip(d). To
illustrate these definitions portions of the Hasse diagrams of Trip(17) and Σ(17) are shown in Fig. 4, and the projection
Trip(17) → Σ(17) can be seen as collapsing the highlighted ‘diamonds’ in Trip(17) to points in Σ(17). A more global
picture of Σ(17) is given in Fig. 8.

We end this section with two lemmas that will be useful as we proceed. The norm of a triple x = (x1, x2, x3) is

N(x) = x21 + x22 + x23. (3.7)

Lemma 3.2. Let x be a d-triple with ℓ(x) > 0 and N(x) > d. For each j ∈ {1, 2, 3} either ℓ(σj(x)) > 0 or N(σj(x)) ≤ d.

Proof. Suppose that x is a d-triple with ℓ(x) > 0 and N(x) > d. Let y = σjx for j ∈ {1, 2, 3} and assume that N(y) > d. To
prove the lemma we must show that ℓ(y) > 0. As 2x2(x1 + x3) = N(x) − d > 0 and x2 + (x1 + x3) = ℓ(x) > 0, both x2 and
x1 + x3 are positive. If j = 2 then y1 + y3 = x1 + x3 > 0 and if j ≠ 2 then y2 = x2 > 0. Thus one of y1 + y3 or y2 is positive,
and so they are both positive because 2y2(y1 + y3) = N(y) − d > 0. It follows that ℓ(y) = y2 + (y1 + y3) > 0. �

3 Eq. (1.3) can be written as 4x21 + 6x1x3 + 4x23 − 4ℓ(x)x1 − 4ℓ(x)x3 + ℓ(x)2 = d. For a fixed value of ℓ(x), the graph in the x1x3-plane of this equation is
an ellipse which can only pass through finitely many integer lattice points. Thus the point-inverses of ℓ : Trip(d) → Z are finite.
4 Eq. (1.3) may be expressed as (x1 − x2)2 + (x3 − x2)2 = x22 + dwhose graph is a (possibly degenerate) circle in the x1x3-plane with center (x2, x2) for

a fixed value of x2 = λ(x). As the circle contains at most finitely many integer lattice points, λ−1(x2) is a finite subset of Trip(d).
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Fig. 4. Corresponding portions of the posets Trip(17) and Σ(17).

Lemma 3.3. Let x = (x1, x2, x3) be a d-triple with x1 ≥ 0 and x3 ≥ 0.

(a) If S2(x) = 0 then x is a preferred d-triple.
(b) If S2(x) ≠ 0 and S(x) ≠ + − + then S(σ2x) = + − +.

Proof. Let x1 ≥ 0 and x3 ≥ 0. If S2(x) = 0 then x2 = x1 + x3, S1(x) = sign(x3) ≥ 0 and S3(x) = sign(x1) ≥ 0, and (a)
holds. Assume that S2(x) ≠ 0 and S(x) ≠ + − +. If S2(x) = − then either S1(x) ≤ 0 or S3(x) ≤ 0. But if S1(x) ≤ 0 then
x1 + x3 < x2 ≤ x1, contradicting the assumption that x3 ≥ 0. If S3(x) ≤ 0 then x1 < 0 which is also impossible. Therefore
S2(x) = +. Now

S1(σ2x) = sign((2x1 + 2x3 − x2) − x1) ≥ sign(x1 + x3 − x2) = S2(x) = +

and S3(σ2x) = + similarly. Since S2(σ2x) = −S2(x), we have S(σ2x) = + − +. �

4. The posets Σ∆(d) and Core(d)

Let Σ∆(d) be the subposet of Σ(d) defined by

Σ∆(d) = {[x] = [x1, x2, x3] ∈ Σ(d) | S(x) = + − +, x1 ≥ 0 and x3 ≥ 0} . (4.1)

If [y] is a neighbor of [x] in Σ(d) then [y] = [σ2γ x] for some γ ∈ ⟨ σ1, σ3, η ⟩, but γ may be chosen from ⟨ σ1, σ3 ⟩ because
[σ2ηγ x] = [ησ2γ x] = [σ2γ x]. Therefore the set of neighbors of [x] is a subset of

N [x] = {[σ2x], [σ2σ1x], [σ2σ3σ1x], [σ2σ3x]} . (4.2)

Lemma 4.1. Let x be a preferred d-triple with [x] ∈ Σ∆(d).

(a) [σ2x] is an immediate predecessor of [x] in Σ(d).
(b) [σ2σ1x], [σ2σ3σ1x] and [σ2σ3x] are immediate successors of [x] in Σ(d) and elements of Σ∆(d).

Proof. Let x be a d-triple representing an element of Σ∆(d) with S(x) = + − +, x1 ≥ 0 and x3 ≥ 0. Let y be one
of σ1x, σ3σ1x or σ3x. As y is not preferred and yi ≥ xi ≥ 0, then S2(y) ≠ 0 by Lemma 3.3(a), [σ2y] is a successor of
[y] = [x] by Lemma 3.3(b), and [σ2y] ∈ Σ∆(d). Thus [σ2x] is a predecessor of [x] while the other elements of N [x]
are successors. As every neighbor of [x] is in N [x], [σ2x] is an immediate predecessor of [x] in Σ(d) and (a) holds. Since
[σ2y] ∈ Σ∆(d), [σ2σ2y] = [y] = [x] is an immediate predecessor of [σ2y] by (a), and (b) holds. �

Let χ : Z3
→ Z3 be the bijective transformation χ(a, b, c) = (c − a, c, c −b). Using definitions (1.2) and (1.4) it is easily

verified that

χ τ1 = σ2σ1χ,

χ τ2 = σ2σ3σ1χ, and
χ τ3 = σ2σ3χ.

(4.3)

These equations may be viewed as defining the transformations τ1, τ2 and τ3 in terms of the more elementary involutions
σ1, σ2 and σ3. If (a, b, c) satisfies (1.1) then χ(a, b, c) satisfies (1.3), and we defineχ : PIT(d) → Σ(d) byχ(∆(u)) = [χ(u)]. (4.4)
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Theorem 4.2. χ defines a poset isomorphism from PIT(d) to Σ∆(d).

Proof. Let ∆(a, b, c) ∈ PIT(d) and let x = χ(a, b, c). Then x1 = c − a ≥ 0 and x3 = c − b ≥ 0. In addition
S1(x) = sign(a) = +, S3(x) = sign(c) = +, and S2(x) = sign(c − a − b) = − by the triangle inequality. This shows that
[x] ∈ Σ∆(d) and the image ofχ is inΣ∆(d). The correspondence [x] → ∆(χ−1(x))where x is a preferred representative for
[x] is the inverse of χ , and χ : PIT(d) → Σ∆(d) is a bijection. By definition ∆(u) ≺ ∆(v) in PIT(d) if and only if v = τj(u)
for some j ∈ {1, 2, 3}, and χ(v) = σ2γχ(u) for some γ ∈ {σ1, σ3σ1, σ3} by (4.3). This in turn is equivalent to writingχ(u) ≺ χ(v) since χ(u) ≠ [σ2γχ(u)] by Lemma 4.1(a). Therefore ∆(u) ≺ ∆(v) if and only if χ(u) ≺ χ(v). It follows thatχ is a poset isomorphism with respect to the RT-closures of the relations (PIT(d), ≺) and (Σ(d), ≺). �

Theorem 4.3. Σ∆(d) is an upward ideal in Σ(d) and each component C of Σ∆(d) is a rooted tree isomorphic to T or T. If
x = (x1, x2, x3) is a preferred representative for the root element of C then C is isomorphic toT if and only if x1 = x3.5

Proof. The restriction of λ to Σ∆(d) is an index function whose image is bounded below by 0, showing that Σ∆(d) satisfies
the descending chain condition. By Lemma 4.1 each component ofΣ∆(d) is a rooted tree in which each element has upward
valence 3 or less. In addition, each immediate successor of an element of Σ∆(d) is in Σ∆(d), and Σ∆(d) is an upward ideal
in Σ(d).

To complete the proof we must show that each component C of Σ∆(d) is isomorphic to T or toT. Let x = (x1, x2, x3) be
a preferred representative for an element [x] in C . By Lemma 4.1 the immediate successors of [x] are

[σ2σ1x] = [2x2 − x1, 3x2 − 2x1 + 2x3, x3],
[σ2σ3x] = [x1, 3x2 + 2x1 − 2x3, 2x2 − x3], and
[σ2σ3σ1x] = [2x2 − x1, 7x2 − 2x1 − 2x3, 2x2 − x3].

If two of these coincide then their second coordinates are equal. But 7x2 − 2x1 − 2x3 cannot equal 3x2 − 2x1 + 2x3 or
3x2 + 2x1 − 2x3 as otherwise x2 − x3 = 0 or x2 − x1 = 0, contradicting the assumption that S3(x) = S1(x) = +. Thus the
upward valence of [x] is 2 or 3. Moreover, the upward valence of [x] is 2 if and only if x1 = x3 since 3x2 − 2x1 + 2x3 and
3x2 +2x1 −2x3 are equal only when x1 = x3. When x1 = x3 the first and third coordinates of both σ2x and σ2σ3σ1xwill also
be equal, but the first and third coordinates of σ2σ1x will not be equal. So, if the upward valence of [x] is 2 then one of its
immediate successors has upward valence 2 and the other has upward valence 3, and, if [x] has an immediate predecessor
in Σ∆(d) then its immediate predecessor also has upward valence 2. It follows that if C contains an element with upward
valence 2 then the elements in C with upward valence 2 form a maximal ascending chain starting at the root element, and
C is isomorphic toT. Otherwise every element of C has upward valence 3 and C is isomorphic to T. �

The involution µ : Trip(d) → Trip(d) (defined in (3.2)) and its projection µ : Σ(d) → Σ(d) given by

µ[x] = [−x] (4.5)

are order-reversing poset isomorphisms. We denote µ(Σ∆(d)) by −Σ∆(d). Observe that Σ∆(d) is disjoint from −Σ∆(d)
since λ takes positive values on Σ∆(d) and negative values on −Σ∆(d). By Theorem 4.3, −Σ∆(d) is a downward ideal in
Σ(d) and each component of −Σ∆(d) is an uprooted tree isomorphic to −T or −T. The core of Σ(d) is the subposet

Core(d) = Σ(d) −

Σ∆(d) ∪ −Σ∆(d)


. (4.6)

Any immediate successor of an element ofΣ∆(d) is inΣ∆(d) by Theorem 4.3. Therefore the only possible elements ofΣ∆(d)
which are adjacent to Core(d) are the roots of Σ∆(d). Similarly the only elements of −Σ∆(d) neighboring Core(d) must be
roots. This shows that Σ(d) can be constructed from Core(d) by attaching disjoint trees isomorphic to ±T or ±T, and no
more than four trees are attached at each element of Core(d) since an element of Σ(d) has at most four neighbors.

In the illustrations of Σ(d) displayed throughout the paper, Core(d) is highlighted in bold, and the tree components of
Σ∆(d) are indicated by dashed circles labeled with ±T or ±T as appropriate. The set of root triangles Root(d) of defect d is
in 1–1 correspondence with the set of dashed circles labeled T orT.
Corollary 4.4. For each integer d, Core(d) is a full subposet of Σ(d). When d ≠ 1 each component of Σ(d) intersects Core(d)
in a component of Core(d).

Proof. Let [x], [y] ∈ Core(d). If [y] ≤ [z] ≤ [x] then [z] ∉ Σ∆(d) because Σ∆(d) is an upward ideal and [z] ∉ −Σ∆(d)
because −Σ∆(d) is an downward ideal. Therefore Core(d) is full in Σ(d). Let C be a component of Σ(d) where d ≠ 1.
Any path joining points of C ∩ Core(d) can be shortened to one that does not enter Σ∆(d) ∪ −Σ∆(d). Thus C ∩ Core(d) is
connected, and if it is nonempty it will be a component of Core(d). Suppose that C∩Core(d) = ∅. Then C ⊂ Σ∆(d)∪−Σ∆(d)
and C contains a root element [x] of a component of Σ∆(d) or −Σ∆(d). By replacing C with −C we may assume that
[x] ∈ Σ∆(d). The immediate predecessor of [x] is [σ2x] which is in −Σ∆(d) since it is not in Σ∆(d). Then [−σ2x] =

[−x1, −2x1 − 2x3 + x2, −x3] ∈ Σ∆(d) and both −x1 and −x3 are nonnegative. It follows that x1 = x3 = 0, and x = (0, 1, 0)
and d = 1, which is a contradiction. �

5 In Section 7 we will derive a formula which counts the number ofT components in Σ∆(d).
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(0+ + )= (+ 0+)=

(+ + + )=(+ + + )=

Fig. 5. The four forms for rooted tree components of Σ(d) when d < −2.

There is a simple algorithm that will produce the root triangle of the component of PIT(d) containing a given triangle
∆(a, b, c). By applyingχ we describe this algorithm as taking place in the component C of Σ∆(d) which contains [x] where
x = χ(a, b, c). Construct a sequence

x = x(0) > x(1) > x(2) > · · ·

of d-triples with S(x(i)) = +−+ as follows. Given x(i−1), let y(i)
= σ2x(i−1) < x(i−1) and let x(i) be the preferred d-triple γ y(i)

with γ ∈ ⟨ σ1, σ3 ⟩. Thus γ = σ
ϵ3
3 σ

ϵ1
1 for ϵ1, ϵ3 ∈ {0, 1} where ϵk = 1 if Sk(y(i)) = −. Now check that S2(x(i)) = −, x(i)

1 ≥ 0
and x(i)

3 ≥ 0. If one of these conditions fails then [x(i)
] ∉ Σ∆(d), and the algorithm stops with [x(i−1)

] as the root of C .
Otherwise [x(i)

] ∈ Σ∆(d) and we continue on with the sequence. Each step decreases the value of ℓ(x(i)) > 0 so the
procedure will halt after a finite number of iterations.

To illustrate the algorithm, consider∆(193, 318, 372) ∈ PIT(−11), where x = χ(193, 318, 372) = (179, 372, 54). Then
y(1)

= σ2(x) = (179, 94, 54) and S(y(1)) = − + + so we obtain x(1)
= σ1(179, 94, 54) = (9, 94, 54). Continuing in this

fashion, we get y(2)
= (9, 32, 54), x(2)

= σ3(y(2)) = (9, 32, 10), y(3)
= (9, 6, 10), x(3)

= σ3σ1(y(3)) = (3, 6, 2). Finally
y(4)

= (3, 4, 2) = x(4) and S2(3, 4, 2) = +, and the process stops at the root [3, 6, 2] ∈ Σ∆(−11). So ∆(193, 318, 372) is
obtained from ∆(χ−1(3, 6, 2)) = ∆(3, 4, 6) ∈ Root(−11) by applying τ2, τ3 and τ1 in that order.

5. The obtuse case

In this section we examine the structure of Σ(d) where d ≤ 0. If x = (x1, x2, x3) is a d-triple then Eq. (1.3) gives
2x2(x1 + x3) = x21 + x22 + x23 − d > −d ≥ 0. Thus x2, x1 + x3 and ℓ(x) are non-zero and have the same sign, when
d ≤ 0. Two integers i, j ∈ {1, 2, 3} are adjacent if |i − j| = 1.

Lemma 5.1. Let d ≤ 0 and let x be a d-triple with ℓ(x) > 0.

(a) If y is in the same component of Trip(d) as x then ℓ(y) > 0 and y2 > 0.
(b) If i and j are adjacent and Si(x) = − then Sj(x) = +.

Proof. For (a), there is a sequence of d-triples from x to y in which each term is a neighbor of the following term. So it is
enough to assume that x and y are neighbors. In this case y = σj(x) for some j ∈ {1, 2, 3}. Since d ≤ 0 and the norm of any
d-triple is positive, Lemma 3.2 shows that ℓ(y) > 0, and (a) holds.

Assume that S1(x) and S2(x) are non-positive with at least one of the two being negative. Then x2 ≤ x1 and x1 + x3 ≤ x2
and one of the two inequalities is strict. It follows that x1 + x3 < x1, and x3 < 0. On the other hand rewriting (1.3) as

(x2 − x1)2 + x23 − 2x2x3 = d

gives x2x3 ≥ 0. Thus x2 ≤ 0, but 2x2 ≥ x2 + x1 + x3 = ℓ(x) > 0 which is a contradiction. So if one of S1(x) or S2(x) is
negative then the other is positive. Similarly if one of S2(x) or S3(x) is negative then one is positive. Part (b) follows since the
only pairs of adjacent elements of {1, 2, 3} are {1, 2} or {2, 3}. �

Theorem 5.2. For d ≤ 0 the components of Σ(d) are rooted or uprooted trees whose root elements form Core(d). When d < −2
each rooted tree component of Σ(d) is isomorphic to T(0 + +), ±T(+0+),T(+ + +) or T(+ + +) as shown in Fig. 5, and
each uprooted tree component is isomorphic to the inverse of one of these.
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Proof. Let x be a preferred d-triple with ℓ(x) > 0 and let C be the component of Σ(d) containing [x]. By Lemma 5.1(a), λ(C)
is bounded below by 0 and C satisfies the descending chain condition. Let y be σ1x, σ3σ1x or σ3x and assume that y ≠ x.
Then one of S1(y) or S3(y) is negative and S2(y) = + by Lemma 5.1(b). Thus [σ2(y)] is a successor to [y] = [x], and [σ2x] is
the only possible immediate predecessor of [x] inΣ(d). This shows that C is a rooted tree. Since S2(σ2y) = −, Lemma 5.1(b)
implies that S(σ2y) = + − + and [σ2y] ∈ Σ∆(d). If [σ2x] is a successor of [x] in Σ(d) then S2(x) = +, which means that
S(σ2x) = + − + and [σ2x] ∈ Σ∆(d). These observations show that each element of N [x] which is a successor of [x] is in
Σ∆(d) and the only element of C in Core(d) is its root.

Now assume that d < −2 and that [x] is the root of C . Then S1(x) ≥ 0, S2(x) ≥ 0 and S3(x) ≥ 0. Replacing x with ηx
if necessary, we assume that S1(x) ≤ S3(x). If S1(x) = S3(x) = 0 then x = (1, 1, 1) and d = −1, which is a contradiction.
If S1(x) = S2(x) = 0 then x = (1, 1, 0) and d = 0, which is also impossible. Three cases remain: (i) S(x) = 0 + +,
(ii) S(x) = +0+ and (iii) S(x) = + + +.
Case i: x1 = x2 > x3 > 0. Here N [x] = {[σ2x], [σ2σ3x]} and [σ2x] ≠ [σ2σ3x] (because λ[σ2σ3x] = 5x1 − 2x3 > x1 + 2x3 =

λ[σ2x]). Each of [σ2x] and [σ2σ3x] is the root of a component of Σ∆(d) isomorphic to T so neither can succeed the other.
Thus both are immediate successors of [x], and C is isomorphic to T(0 + +).
Case ii: S(x) = +0+ and x2 = x1 + x3. If x1 = x3 then x2 = 2x1, x = (1, 2, 1) and d = −2, which contradicts the
assumption that d < −2. Thus x1 ≠ x3 and the elements of N [x] = {[x], [σ2σ1x], [σ2σ3σ1x], [σ2σ3x]} can be seen to be
distinct. Moreover [σ2σ1x], [σ2σ3σ1x] and [σ2σ3x] are immediate successors of [x] as each is the root of a T component of
Σ∆(d). It follows that C is isomorphic to T(+0+).
Case iii: S(x) = +++. Here [σ2x], [σ2σ1x], [σ2σ3x] and [σ2σ3σ1x] are successors of [x]. As each is the root of a component of
Σ∆(d) they are immediate successors of [x]. The only possible redundancy among the four is that [σ2σ1x] = [σ2σ3x] when
x1 = x3. In this case [x] has three distinct immediate successors [σ2x], [σ2σ1x] and [σ2σ3σ1x]. The component of Σ∆(d)
whose root is the first and third of these isT while the component whose root is the second of these is T. So C ∼= T(+ + +)
when x1 = x3. On the other hand if x1 ≠ x3 then [x]has four immediate successors all ofwhich are roots ofΣ∆(d) isomorphic
to T, and C ∼= T(+ + +).

Finally, if C ′ is a component of Σ(d) containing [x] where ℓ(x) < 0 then µ(C ′) is a rooted tree as examined above.
Therefore C ′ is an uprooted tree intersecting the core ofΣ(d) in its root element and isomorphic to the inverse ofµ(C ′). �

For d ≤ 0 letM(d) be the set consisting of all triples of integers (A, x1, x3)which satisfy A2
= 2x1x3 +d, x1 ≥ x3 ≥ A ≥ 0

and gcd(A, x1, x3) = 1. If (A, x1, x3) ∈ M(d) then −d = 2x1x3 − A2
≥ 2A2

− A2
= A2. Hence A is bounded above by

√
−d.

Also, given A and d there are only finitely many factorizations x1x3 of (A2
− d)/2. This shows that M(d) is finite for each

d ≤ 0.

Theorem 5.3. Let d ≤ 0. The function (A, x1, x3) → [x1, x1 + x3 − A, x3] is a one-to-one correspondence between M(d) and
the set of minimal elements in Σ(d).

Proof. If (A, x1, x3) ∈ M(d) then it is easy to show that x = (x1, x1 + x3 − A, x3) is a d-triple with ℓ(x) > 0. Also S1(x), S2(x)
and S3(x) are non-negative, and [x] is minimal inΣ(d). Conversely suppose that x is a preferred representative for aminimal
element of Σ(d). Then x2 ≥ x1 and x2 ≥ x3. By replacing xwith ηxwemay assume that x1 ≥ x3. Notice that S2(x) ≥ 0 since
otherwise [σ2(x)] would be less than [x] and [x] would not be minimal. Eq. (1.3) can be rewritten as

x22 − 2(x1 + x3)x2 + (x21 + x23 − d) = 0

and the quadratic formula gives x2 = x1 + x3 ±
√
2x1x3 + d. In fact

x2 = x1 + x3 −


2x1x3 + d

because sign(x1 + x3 − x2) = S2(x) ≥ 0. Thus A =
√
2x1x3 + d is an integer and x = (x1, x1 + x3 − A, x3). Also x1 ≥ x3 ≥ A

as sign(x3 − A) = sign(x2 − x1) ≥ 0, and gcd(x1, x3, A) = gcd(x1, x3, x2) = 1. This shows that (A, x1, x3) ∈ M(d). �

Let C be the rooted tree component containing the minimal element of Σ(d) associated with (A, x1, x3) ∈ M(d). If
x = (x1, x1 + x3, −A, x3) then S(x) = +0+ if A = 0, S(x) = 0 + + if x1 > x3 = A, and S(x) = + + + if x3 > A. Thus

C ∼=


T (0 + +) if x1 > x3 = A > 0
T (+0+) if A = 0T (+ + +) if x1 = x3 > A > 0
T (+ + +) if x1 > x3 > A > 0.

(5.1)

It is not hard to design a computer routine which produces the elements of M(d) for d < −2 and collates them into the
four forms for C . As the number of components of Σ∆(d) in C is 2 if C ∼= T (0 + +), 3 if C ∼= T (+0+) orT (+ + +), and 4 if
C ∼= T (+ + +), the routine can easily be extended to enumerate the elements of Root(d). (See Table 2.)

Corollary 5.4. For each integer d ≤ 0, Root(d) is a nonempty finite set and there are infinitely many primitive integral triangles
with defect d.
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Table 2
Cardinalities of R(d) = {components of Σ(d)} and Root(d) for −25 ≤ d ≤ −3.

d Number of components of Σ(d) isomorphic to: |R(d)| |Root(d)|
T(0 + +) T(+0+) T(+ + +) T(+ + +)

− 3 1 0 0 0 2 2
− 4 0 1 0 0 2 3
− 5 1 0 0 0 2 2
− 6 0 1 0 0 2 3
− 7 1 0 1 0 4 5
− 8 1 1 0 0 4 5
− 9 1 0 0 0 2 2
−10 0 1 0 0 2 3
−11 1 0 0 1 4 6
−12 0 2 0 0 4 6
−13 1 0 0 0 2 2
−14 0 1 1 0 4 6
−15 2 0 0 1 6 8
−16 1 1 0 0 4 5
−17 1 0 1 0 4 5
−18 0 1 0 0 2 3
−19 1 0 0 1 4 6
−20 0 2 0 1 6 10
−21 2 0 0 0 4 4
−22 0 1 0 0 2 3
−23 1 0 1 2 8 13
−24 2 2 0 0 8 10
−25 1 0 0 0 2 2

Fig. 6. Σ(d) for d = 0, −1, −2.

Proof. Let d ≤ 0. Since Root(d) has no more than 4|M(d)| elements it is a finite set. If d is even then (A, x1, x3) =

(0, −d/2, 1) ∈ M(d) and if d is odd then (A, x1, x3) = (1, (1 − d)/2, 1) ∈ M(d). This shows that M(d) and Root(d)
are nonempty. As PIT(d) has at least one component isomorphic to T or T it contains an ascending chain with infinitely
many elements. �

Theorem 5.3 can be used to describe Σ(d) for d = 0, −1 and −2. Here M(0) = {(0, 1, 0)} , M(−1) = {(1, 1, 1)} and
M(−2) = {(0, 1, 1)}, and this easily leads to the pictures displayed in Fig. 6. As another example consider Σ(−11) where
M(−11) = {(1, 3, 2), (1, 6, 1)}. There are two rooted tree components in Σ(−11), one isomorphic to T (+ + +) with
root [3, 4, 2] and the other isomorphic to T (0 + +) with root [6, 6, 1] by (5.1). Thus Σ∆(−11) has six minimal elements
[3, 6, 2], [5, 10, 2], [6, 14, 3], [6, 18, 5], [6, 8, 1] and [11, 28, 6] (the first four are immediate successors of [3, 4, 2] and
the last two are immediate successors of [6, 6, 1]). Applying χ−1 shows that Root(−11) consists of the six triangles
∆(3, 4, 6), ∆(5, 8, 10), ∆(8, 11, 14), ∆(12, 13, 18), ∆(2, 7, 8), and ∆(17, 22, 28).

6. The acute case

In this section we examine the structure of Σ(d) when d > 0.

Lemma 6.1. If x is a d-triple with d > 0 then there are integers j, k ∈ {1, 2, 3} such that Sj(x) = − and Sk(x) = +.
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(16)

Fig. 7. Σ(16).

Proof. Let x be a d-triple where d > 0. Suppose that S1(x) ≥ 0, S2(x) ≥ 0 and S3(x) ≥ 0. Then x2 ≥ x1, x1 + x3 − x2 ≥ 0
and x2 ≥ x3. From (1.3) we have

2x1x3 + d = (x1 + x3 − x2)2 ≥ 0, (6.1)

and so x1 + x3 − x2 =
√
2x1x3 + d. Also x3 ≥ x1 + x3 − x2 =

√
2x1x3 + d ≥ 0 and x1 ≥ x1 + x3 − x2 =

√
2x1x3 + d ≥ 0.

Hence x1x3 ≥ (
√
2x1x3 + d)2 = 2x1x3 + d. Rewriting this inequality gives x1x3 ≤ −d < 0 which contradicts the fact that

x1 ≥ 0 and x3 ≥ 0.We conclude that Sj(x) = − for some j ∈ {1, 2, 3}. Now suppose that S1(x) ≤ 0, S2(x) ≤ 0 and S3(x) ≤ 0.
Then −x is a d-triple with S1(−x) ≥ 0, S2(−x) ≥ 0 and S3(−x) ≥ 0, which is impossible by the argument above. Thus
Sk(x) = + for some k ∈ {1, 2, 3}. �

By the lemma Σ(d) has nominimal or maximal element when d > 0. Moreover each component of Trip(d) has d-triples
with positive length and d-triples with negative length. So Lemma 5.1(a) fails for d > 0. Lemma 5.1(b) fails as well. For
example (4, 3, −2) is a 17-triple with ℓ(4, 3, −2) > 0 and S(4, 3, −2) = − − +.

Lemma 6.2. Let d > 0.

(a) Let x be a preferred d-triple with x2 ≥ 0. Then [x] ∈ Core(d) if and only if at least one of x1 or x3 is negative.
(b) If x is a d-triple with N(x) ≤ d then either [x] ∈ Core(d) or x = ±(0, 1, 0).
(c) Every element of Core(d) is comparable to an element [x] with N(x) ≤ d.

Proof. Let x be a preferred d-triple with x2 ≥ 0. After replacing x by ηx, wemay assume that x1 ≥ x3, and S3(x) ≥ S1(x) ≥ 0.
By Lemma 6.1, S3(x) = + and S2(x) = −, so that x2 > x3 and x1 + x3 − x2 < 0. If x2 = 0 or S1(x) = 0 then [x] ∈ Core(d)
and x3 < 0, and (a) holds in these cases. So assume that x2 > 0 and S1(x) = +. Then S(x) = + − +, and [x] ∈ Σ∆(d) if and
only if x3 ≥ 0. Therefore [x] is an element of Core(d) if and only if x3 < 0, verifying (a).

Let x be a d-triple with N(x) ≤ d. Thus 2x2(x1 + x3) = N(x) − d ≤ 0. Suppose that x2 > 0. Then x1 + x3 ≤ 0, and one
of x1 or x3 or x1 = x3 = 0. If x1 = x3 = 0 then x = (0, 1, 0). If x1 < 0 or x3 < 0 then [x] ∈ Core(d) by (a). In either case
(b) holds. If x2 = 0 then the preferred representative of [x] has a negative first or third coordinate, and again [x] ∈ Core(d).
Finally, if x2 < 0 then −x is a d-triple with N(−x) ≤ d and −x2 > 0, and [−x] ∈ Core(d) or x = (0, −1, 0), proving (b).

Let y be a d-triple with [y] ∈ Core(d). Suppose that ℓ(y) > 0. By Lemma 6.1 we can construct a descending sequence
y = y(1) > y(2) > y(3) > · · · in Trip(d). Let i0 be the smallest integer such that ℓ(y(i0+1)) ≤ 0. If N(y(i0)) ≤ d then put
x = y(i0). If N(y(i0)) > d then N(y(i0+1)) ≤ d by Lemma 3.2 and put x = y(i0+1). In either case [y] is comparable to [x] and
N(x) ≤ d. Then [x] ∈ Core(d) by (c), and [y(i)

] ∈ Core(d) for each i because Core(d) is a full subposet of Σ(d). This verifies
(d) when ℓ(y) > 0. Now suppose that ℓ(y) < 0. Then ℓ(−y) > 0 and [−y] = µ([y]) ∈ Core(d). By the above, [−y] is
comparable to some [x] ∈ Core(d) with N(x) ≤ d and [y] = µ[−y] is comparable to [−x] ∈ Core(d). Finally, if ℓ(y) = 0
then N(y) = d + 2y2(y1 + y3) = d − 2y22 ≤ d. �

A circuit is a finite connected poset in which every element has exactly two distinct neighbors. A segment is a finite
connected poset in which each element has at most two neighbors and two elements have just one neighbor.

Theorem 6.3. If d > 4 then Core(d) has finitely many components each of which is a segment or a circuit.
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(17)

Fig. 8. Σ(17).

Proof. We first claim that each element [x] ∈ Core(d) has at most two neighbors. We may arrange that x2 ≥ 0 (after
replacing [x] with µ[x]) and that x is a preferred d-triple with x1 ≥ x3. Hence x2 ≥ x1 and x3 < 0 by Lemma 6.2(a). Recall
that each neighbor of [x] in Σ(d) is an element of N [x] = {[σ2x], [σ2σ1x], [σ2σ3σ1x], [σ2σ3x]}.

Consider the d-triple y = σ2σ3σ1x = (2x2 − x1, 7x2 − 2x1 − 2x3, 2x2 − x3) with

y2 = 2x2 − x3 + 2x2 + 2(x2 − x1) + (x2 − x3) > 2x2 − x3 = y3 ≥ y1,

and S(y) = + − +. Then [y] ∈ Σ∆(d) because y1 = x2 + (x2 − x1) ≥ 0 and y3 ≥ −x3 > 0. This shows that [σ2σ3σ1x]
∈ N [x] − Core(d).

Suppose that x1 > 0 and let y and z be the d-triples

y = σ2x = (x1, 2x1 + 2x3 − x2, x3) and
z = σ2σ3x = (x1, 3x2 + 2x1 − 2x3, 2x2 − x3).

Then [y] ∈ Core(d) by Lemma 6.2, and [y] ≠ [x]. On the other hand [z] ∈ Σ∆(d) because z1 > 0, z2 = x2+2(x2+x1−x3) >
x2, z3 > 0 and S(z) = + − +.

Suppose that x1 ≤ 0. Let y and z be the d-triples

y = σ2x = (x1, 2x1 + 2x3 − x2, x3) and
z = σ2σ1x = (2x2 − x1, 3x2 − 2x1 + 2x3, x3).

Then S(y) = − + − and y2 = 2x1 + 2x3 − x2 < 0, which implies that [y] ∈ −Σ∆(d) and [y] ∉ Core(d). On the other hand,
z1 = x2 + (x2 − x1) > 0 while z3 < 0. This shows that [z] ∈ Core(d), however [z] will equal [x] when x2 = z2. In the latter
case, we have x2 = x1 − x3 and

σ2σ3x = (x1, 3x2 + 2x1 − 2x3, 2x2 − x3) = (x1, 5x2, 2x2 − x3).

Since 2x2 − x3 > 0, [σ2σ3x] is an element of Core(d) which is distinct from [x] provided that x1 ≠ 0 and x2 ≠ 0. If x1 = 0
then x = (0, 1, −1) and if x2 = 0 then x = (−1, 0, −1). In either case d ≤ 4 contradicting assumption.

The previous paragraphs show that at least one, and nomore than two, of the elements ofN [x] are in Core(d). This proves
that each element has valence one or two in Core(d) as claimed. By Lemma 6.2(c), each element of Core(d) is in a maximal
chain which also contains an element [x]with N(x) ≤ d. As each element of Core(d) has valence one or two, [x] is contained
in at most two distinct maximal chains of Core(d). There are only finitely many d-triples x with N(x) ≤ d and so Core(d) is
the union of a finite number of maximal chains. To complete the proof we will show that every maximal chain in Core(d) is
finite.

For contradiction suppose that Core(d) has a maximal chain with infinitely many elements. Then Core(d) contains an
infinite ascending sequence

[x(1)
] < [x(2)

] < [x(3)
] < · · · (6.2)

in which x(i) is a preferred d-triple for each i and [x(i+1)
] is an immediate successor of [x(i)

]. (If Core(d) contains a descending
sequence then applying µ will produce an ascending sequence.) Each step in the sequence increases λ[x(i)

] so by replacing
(6.2) with a tail we may assume that x(i)

2 = λ[x(i)
] > 0 for each i. As [x(i+1)

] is an immediate successor of [x(i)
], x(i+1)

=
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(33)

Fig. 9. Σ(33).

γ2σ2γ1x(i) for some γ1, γ2 ∈ ⟨ σ1, σ3 ⟩. In fact each γ1 equals σ1 or σ3 because if γ1 = 1 then [x(i+1)
] = [σ2x(i)

] ≤ [x(i)
] and

if γ1 = σ3σ1 then [x(i+1)
] = [σ2σ3σ1x(i)

] ∉ Core(d). Moreover if γ2 = σ3 then ηx(i+1)
= ηγ2σ2σ3x(i)

= γ ′

2σ2σ1ηx(i) where
γ ′

2 = ηγ2η ∈ ⟨ σ1, σ3 ⟩, and by replacing x(i+1) and x(i) with ηx(i+1) and ηx(i) we may arrange that γ1 = σ1 for each i.
For convenience of notation wewrite x = x(i) and y = x(i+1)

= γ2σ2σ1x. Since x is a preferred representative of [x]which
is an immediate predecessor of [y], S1(x) = + and S2(σ1x) = +, implying that x2 − x1 > 0 and x2 − x1 + x3 > 0. Also

σ2σ1x = (2x2 − x1, 3x2 − 2x1 + 2x3, x3)

and S3(σ2σ1x) = sign(x2 + (x2 − x1)+ (x2 − x1 + x3)) = +. As y = γ2σ2σ1x is a preferred d-triple, it follows that γ2 ∈ ⟨ σ1 ⟩.
Therefore y equals σ2σ1x or σ1σ2σ1x. If y = σ2σ1x then y2 − y1 = (x2 − x1) + 2x3 < x2 − x1. If y = σ1σ2σ1x then

σ1σ2σ1x = (4x2 − 3x1 + 4x3, 3x2 − 2x1 + 2x3, x3)

and y2 − y1 = (x2 − x1) − 2(x2 − x1 + x3) < x2 − x1. This shows that each step in the sequence (6.2) strictly decreases the
value of x(i)

2 − x(i)
1 . Thus there is an integer i1 for which x(i1)

2 − x(i1)
1 is negative. But then S1(x(i1)) = − which contradicts the

assumption that x(i1) is a preferred d-triple. This completes the proof. �

Circuit components in Core(d) are rare, at least for small values of d. The first one occurs in Core(33), and the circuit is a
hexagon (see Fig. 9).6 The next smallest values of dwhere Core(d) has a circuit are 37 (octagon), 57 (decagon), 65 (decagon),
79 (two squares), 101 (dodecagon) and 105 (two octagons).

A different proof of Theorem 6.3 can be given by analyzing possible configurations for the neighbors in Σ(d) of each
[x] ∈ Core(d). For d > 4 and x2 ≥ 0 one finds ten different ‘local isomorphism types’ describing these neighbors. Each of the
ten types can be parametrized by a finite subset of Z3 and Core(d) has finitely many elements of each type. The illustrations
of Σ(d) in Figs. 7, 8 and 10 have been chosen so that all ten local types appear. The small arrows pointing to certain vertices
indicate these types. This approach to Theorem 6.3 also provides the basis for a computer procedure which constructs the
poset Σ(d) when d > 4. The next theorem points the way to another procedure which achieves the same end.

For d > 0, let M(d) be the set of triples (A, x1, x3) ∈ Z3 with A2
− d = 2x1x3, −A ≤ x1 + x3 ≤ 0, x1 ≥ x3 and

gcd(A, x1, x3) = 1. If (A, x1, x3) ∈ M(d) then either x1x3 ≤ 0 and A2
= 2x1x3 + d ≤ d, or x1x3 > 0 and

A2
≤ A2

+ (x1 − x3)2 = A2
+ (x1 + x3)2 − 4x1x3 ≤ 2A2

− 2(A2
− d) = 2d.

In either case A ≤
√
2d. For fixed A and d, (A2

− d)/2 has only finitely many factorizations x1x3. This shows that M(d) is
finite for each d > 0.

Theorem 6.4. Let x = (x1, x2, x3) be a d-triple with d > 0, x2 ≥ 0 and x1 ≥ x3. Then N(x) ≤ d if and only if x =

(x1, x1 + x3 + A, x3) for some (A, x1, x3) ∈ M(d).

6 The hexagonal circuit in Core(33) consists of the vertices [2, −7, −6], [4, −1, −4], [4, 1, −4], [6, 7, −2], [2, 5, −2], and [2, −5, −2].
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(60)

Fig. 10. Σ(60).

Fig. 11. Σ(d) for d = 1, 2, 3, 4.

Proof. If (A, x1, x3) ∈ M(d) then it is easy to see that x = (x1, x1 + x3 + A, x3) is a d-triple with N(x) ≤ d. Conversely,
suppose x is a d-triple with N(x) ≤ d, x2 ≥ 0 and x1 ≥ x3. Let A = x2 − x1 − x3. By (1.3), A2

= 2x1x3 + d and
gcd(x1, x3, A) = gcd(x1, x2, x3) = 1. Also, x1 + x3 = x2 − A ≥ −A and x1 + x3 ≤ 0 because 2x2(x1 + x3) = N(x) − d ≤ 0.
This shows that (A, x1, x3) ∈ M(d). �

In distinction from the obtuse case, the surjection from the finite set M(d) to the set of components of Σ(d) need not
be injective. So additional work is needed to pare the image of M(d) down to a unique set of component representatives
of Σ(d). A computer routine which constructs the Hasse diagram for Σ(d) can be created by first enumerating M(d) and
the associated elements of Core(d), and enlarging this set step-by-step to include neighboring elements in Core(d). Such a
routine produced the data shown in Table 3.

Corollary 6.5. For each integer d > 0, Root(d) is a nonempty finite set, and there are infinitely many primitive integral triangles
with defect d.

Proof. Choose integers A, x1 and x3 with A = d(mod 2), x1x3 = (A2
− d)/2 and gcd(x1, x3, A) = 1. (For example one might

take A to be 0 or 1 according to the parity of d, x1 = 1 and x3 = (A2
− d)/2.) Even though A, x1 and x2 may not satisfy the

condition−A ≤ x1+x3 ≤ 0 required to be an element ofM(d), the proof of Theorem 6.4 shows that x = (x1, x1+x3+A, x3)
is a d-triple. The component of Σ(d) containing [x] has at least one component of Σ∆(d) in it. �

Fig. 11 displays the Hasse diagrams for the posets Σ(d) where 1 ≤ d ≤ 4 which are obtained by first observing that
M(1) = {(1, 0, −1), (1, 0, 0)} , M(2) = {(0, 1, −1), (2, −1, −1)} , M(3) = {(1, 1, −1)} and M(4) = {(2, 0, −1)}.

The last portion of the proof of Theorem 6.3 suggests that there are positive integers d for which Core(d) contains
arbitrarily long chains. Here is an example: Let d = b2 + 2 where b is an odd positive integer. Then (1, b, −1) is a d-triple.
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Table 3
Cardinalities of R(d) = {components of Σ(d)}
and Root(d) for 3 ≤ d ≤ 25.

d |R(d)| |Root(d)|

1 2 2
2 1 1
3 1 1
4 2 3
5 1 2
6 1 2
7 2 3
8 2 3
9 3 7

10 1 3
11 1 3
12 2 4
13 1 6
14 2 4
15 2 4
16 4 9
17 2 8
18 1 4
19 1 5
20 2 6
21 2 8
22 1 6
23 2 5
24 4 8
25 5 18
26 1 5
27 1 5
28 2 10
29 1 10
30 2 6
31 2 9
32 2 7
33 3 14
34 3 9
35 2 6
36 4 12
37 2 14
38 1 6
39 2 8
40 4 14
41 2 16
42 2 8
43 1 9
44 2 12
45 2 12
46 2 12
47 2 7
48 4 12
49 8 33
50 1 7
51 2 10

By successively applying σ2σ1 to (1, b, −1) we obtain a maximal chain C in Σ(d)

[1, b, −1] < [2b − 1, 3b − 4, −1] < · · · < [(b2 + 1)/2, (b2 + 1)/2, −1]

(x2 − x1 decreases by 2 for each step up in C). By Lemma 6.2, C ⊂ Core(d), and C ∪ µC is a chain of length b + 1 in Core(d).
Similarly, if d = b2 +2where b is an even positive integer then there is a chain of length b in Core(d). This example confirms
that there are infinitely many different isomorphism types of components of Core(d) for d > 0.

7. Isosceles integral triangles

In this section we consider the isosceles triangles in PIT(d). If∆(a, b, c) is isosceles then it has one of the forms∆(a, c, c)
or ∆(a, a, c). Soχ carries the set of isosceles triangles in PIT(d) onto the intersection of Σ∆(d) with I1(d) ∪ I2(d) where

I1(d) = {[x1, x2, x3] ∈ Σ(d) | x3 = 0} and
I2(d) = {[x1, x2, x3] ∈ Σ(d) | x1 = x3} .
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We will give brief descriptions of I1(d) and I2(d) for |d| > 2.
Let Q be a connected infinite subposet of a poset P such that each pair of neighbors in Q are also neighbors in P . Then Q

is a line in P if each element of Q has valence two in Q . A line is vertical if each element has upward valence 1, and bent if it
has exactly one element with upward valence not equal to 1.

If [x1, x2, 0] ∈ I1(d) then d = (x2 − x1)2. So I1(d) is nonempty only when d is a perfect square, and we write d = D2

for D > 1. If x = (x1, x2, 0) where x2 − x1 = ±D, −D < x2 < D and x1x2 < 0 then N(x) = (x1 − x2)2 + 2x1x2 < d, and
[x] ∈ I1(d) ∩ Core(d). It is not hard to show that

Lx =

[(σ2σ1)

kx] | x ∈ Z


⊂ I1(d)

is a vertical line in Σ(d) that intersects Core(d) in the single point [x] and [x] is an endpoint of a segment component of
Core(d). Furthermore I1(d) is the disjoint union of 2φ(D) of these vertical lines Lx.

If [x1, x2, x1] ∈ I2(d) then d = 2(x2−x1)2−x22. So I2(d) is nonempty only when d = 2B2
−A2 for relatively prime integers

A and B. The ‘generalized Pell equation’

A2
− 2B2

= −d (7.1)

is known to have a primitive integer solution (A, B) only if d is not divisible by 4 or any prime congruent to ±3 modulo 8
(see Section 16.3 of [6] for example). Assume that d has this form and that |d| > 2. If [x] = [x1, x2, x1] ∈ I2(d) then

L′

x =

[(σ2σ3σ1)

k(x)] | k ∈ Z


⊂ I2(d)

is a line in Σ(d). If (x1, x2, x1) ∈ Trip(d) then (A, B) = (x2, x2 − x1) is a primitive solution to the Pell equation (7.1). The
family of solutions to (7.1) corresponding to the line L′

x forms precisely what is known as a ‘class’ of primitive solutions to
(7.1).7 Such a class contains a unique ‘fundamental solution’ and the set of primitive fundamental solutions has cardinality
2s where s is the number of odd prime divisors of d. (Details may be found in Section 16.3 of [6].) So there are 2s lines L′

x. It is
not hard to show that these lines are pairwise disjoint and constitute all of I2(d). Each L′

x intersects Core(d) in a single point
whose complement in L′

x is the union of the axis rays of two components of Σ∆(d) ∪ −Σ∆(d) isomorphic to ±T. If d > 2
then each L′

x is a vertical line intersecting Core(d) in an endpoint of a segment component of Core(d). If d < −2 then each L′
x

is a bent line which is the intersection of I2(d) with a component of Σ(d) isomorphic to ±T(+ + +), and the root element
of L coincides with the root element of that component of Σ(d).
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