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Abstract

We consider two families of weight bases for “one-rowed” irreducible representations of the simple Lie algebra G2 constructed
in Donnelly et al [Constructions of representations of o(2n + 1, C) that imply Molev and Reiner–Stanton lattices are strongly
Sperner, Discrete Math. 263 (2003) 61–79] using two corresponding families of distributive lattices (called “supporting graphs”),
here denoted LLM

G2
(k) and LRS

G2
(k). We exploit the relationship between these bases and their supporting graphs to give combinatorial

proofs that the bases enjoy certain uniqueness and extremal properties (the “solitary” and “edge-minimal” properties, respectively).
Our application of the combinatorial technique we develop in this paper to obtain these results relies on special total orderings of
the elements and edges of the lattices. We also apply this technique to another family of lattice supporting graphs to re-derive results
obtained in Donnely et al. using different, more algebraic methods.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is a sequel to [2]. In [2] we derived combinatorial results (namely, “rank symmetry,” “rank unimodality,”
and the “strong Sperner property”) for two families of distributive lattices, there denoted LMol

B (k, 2n) and LRS
B (k, 2n),

by explicitly constructing actions of the odd orthogonal Lie algebras o(2n + 1, C) on these lattices. As a consequence
we were also able to obtain new constructions of certain families of finite-dimensional irreducible representations of
the simple Lie algebra G2 on two families of “G2 lattices.” We call these the “one-rowed” representations of G2.
The combinatorial setting of the lattices LMol

B (k, 2n) and LRS
B (k, 2n) was nice enough to allow us to draw certain

conclusions about our odd orthogonal representation constructions: in particular, we showed that the bases we found
for the representing spaces enjoy certain uniqueness and extremal properties [2, Corollary 3.1]. However, at the time
we could not extend those methods to establish the same uniqueness and extremal properties of the bases obtained
in our G2 constructions. In this paper we provide a new combinatorial technique (Theorem 4.1), applied in the set-
ting of our two families of G2 lattices, to prove that the bases for the one-rowed representations of G2 found in [2]
are “solitary” and “edge-minimal” (Theorem 5.1). A basis with the solitary property is uniquely identified in a precise
way by its “supporting graph”; a basis with the edge-minimal property has a supporting graph which does not contain as a
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subgraph the supporting graph for any other basis. (See Section 3 for precise definitions; see [1] for further discussion
of these properties.) We see Theorem 5.1 as additional evidence that the solitary property (uniqueness) is closely
connected to the edge-minimal property (extremal). We also see this as further evidence that while the solitary property
is necessarily rare, many, and possibly all, irreducible representations of the simple Lie algebras have at least one basis
which enjoys this combinatorial property.

Our new combinatorial technique for demonstrating that certain families of bases enjoy these uniqueness and extremal
properties extends methods of [1]. The methods of [1] apply to a number of bases, but only when these bases behave
in a particularly nice way when one restricts to the action of Lie subalgebras (“restricts irreducibly for a chain of Levi
subalgebras,” in the parlance of that paper). Here we use Theorem 4.1 to demonstrate, for the first time, uniqueness and
extremal properties for two families of bases—those bases associated to our two families of G2 lattices—which do not
meet the specialized algebraic conditions required by the methods of [1]. We also apply Theorem 4.1 to re-derive in
Theorem 6.1 the analogous results for our odd orthogonal constructions obtained in [2]. In the future we hope to apply
this new technique to other bases, such as those mentioned in Table 1 of [1] or those found in [6].

2. Combinatorial setting for our results; G2 lattices

In this paper, we identify a poset with its Hasse diagram [8, p. 98], and all posets will be finite. For elements s and t
of a poset P, there is a directed edge s → t in the Hasse diagram if and only if t covers s, i.e. s < t and there is no x in
P such that s < x < t. Let I be any set. A poset P is an edge-colored poset with edges colored by the set I if there is a
function assigning to each edge of the Hasse diagram of P an element from the set I. If an edge s → t in P is assigned

color i ∈ I , we write s
i→ t. When we depict the Hasse diagram for a poset, its edges are directed “up.” We say the

vertex s and the edge s
i→ t are below t, and the vertex t and the edge s

i→ t are above s. The vertex s is a descendant
of t, and t is an ancestor of s. We let V(P ) denote the vertex set of P, let Ei (P ) denote the set of edges in P of color
i, and set E(P ) := ⋃

i∈IEi (P ). If J is a subset of I, remove all edges from P whose colors are not in J; connected
components of the resulting edge-colored poset are called J-components of P. Let Q be another edge-colored poset
with edge colors from I. If the vertices of Q are a subset of the vertices of P and the edges of Q of color i are a subset
of the edges of P of color i for each i ∈ I , then Q is an edge-colored subgraph of P. Two edge-colored posets are
isomorphic if there is a bijection between their vertex sets that preserves edges and edge colors. For a poset P, a rank
function is a surjective function � : P −→ {0, . . . , l} (l�0) with the property that if s → t in the Hasse diagram for
P, then �(s) + 1 = �(t). We call l the length of P with respect to �. For any s in P, �(s) is the rank of s. The set �−1(i)

is the ith rank of P. A poset which possesses a rank function is called a ranked poset. A ranked poset that is connected
has a unique rank function. See [8] for definitions of other combinatorial terms.

We say a poset P has no open vees if: (1) Whenever r, s, and t are elements in P for which s and t both cover r,
then there exists a unique u in P which covers both s and t, and (2) whenever s, t, and u are elements in P for which
u covers both s and t, then there exists a unique r in P which is covered by both s and t. Note that modular lattices,
and therefore distributive lattices, are ranked lattices with no open vees. A path from s to t in a poset P is a sequence
(s0 = s, s1, . . . , sr = t) such that for 1�p�r it is the case that either sp−1 → sp or sp → sp−1. We say this path has
length r. The distance dist(s, t) between s and t in a connected poset P is the minimum length achieved when all paths
from s to t in P are considered. If P is a ranked poset and if s�t in P, then dist(s, t) = �(t) − �(s). If P is a ranked
lattice with no open vees, then one can see that for any s and t, dist(s, t) = 2�(u) − �(s) − �(t) = �(s) + �(t) − 2�(r),
where u (respectively, r) is the unique least upper bound (resp. greatest lower bound) of s and t in P; hence P is a
modular lattice.

Throughout this paper k denotes a positive integer. Following [2], we let LRS
G2

(k) (respectively, LLM
G2

(k)) denote the
set of all 7-tuples s = (s1, . . . , s7) of nonnegative integers such that

∑
si = k and satisfying the rule that s1 �= 0 only if

s7 = 0 (respectively, the rule that s4 ∈ {0, 1}). For any such s = (s1, . . . , s7) and t = (t1, . . . , t7), let Sj := ∑j
i=1si and

Tj := ∑j
i=1ti (1�j �7). Observe that s and t are uniquely identified by the sequences of partial sums (S1, . . . , S6)

and (T1, . . . , T6), respectively. (We ignore S7 = ∑7
i=1si and T7 = ∑7

i=1ti since both sums are equal to k.) Declare

that s�t if and only if Sj �Tj for 1�j �6. One can see that the poset LRS
G2

(k) (respectively, LLM
G2

(k)) coincides with

the distributive lattice denoted LRS
G (2, k�1) (respectively, LLit

G (2, k�1)) in [2]. The elements of LRS
G2

(k) correspond
naturally with certain combinatorial objects called “tableaux” appearing in [4]; there, these tableaux are associated
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Fig. 1.

with the simple Lie algebra of type B3. The distributive lattice LRS
G2

(k) first appeared in [7]. The elements of LLM
G2

(k)

correspond naturally with tableaux appearing in [5]. See [2] for a discussion of the connection of the lattices LLM
G2

(k)

with Molev’s work. For these reasons we call LRS
G2

(k) and LLM
G2

(k) “Reiner–Stanton” and “Littelmann–Molev” G2

lattices, respectively. We define the boundary for LRS
G2

(k) to be the set

{(b1, . . . , b7) ∈ LRS
G2

(k)|bj + bj+1 = k where 1�j �6}.

For LLM
G2

(k), the boundary is the set

{
(b1, . . . , b7) ∈ LLM

G2
(k)

∣∣∣∣bj + bj+1 = k where j = 1, 2, 5, or 6;
or b3 + b4 + b5 = k

}
.

Let L be one of LLM
G2

(k) or LRS
G2

(k). Observe that in L, s ∨ t is the element identified with the sequence of par-
tial sums (max(S1, T1), . . . , max(S6, T6)), while s ∧ t is the element identified with (min(S1, T1), . . . , min(S6, T6)).
It is easy to see that �(s) = ∑6

i=1Si is the unique rank function. It follows that dist(s, t) = ∑6
i=1|Si − Ti |. The

unique maximal element in L is (k, 0, 0, 0, 0, 0, 0); the unique minimal element is (0, 0, 0, 0, 0, 0, k). So L has length
6k. At times it is convenient to view an element t = (t1, . . . , t7) in L on the following “grid”:

There is a covering relation s → t if s is one of

or (in which case we give this edge color 1), or if s is one of the

two vertices or (in which case we give this edge color 2). Thus,

the six possible descendants of t in L can be depicted as in Fig. 1. One can see that there is a one-to-one correspondence
between the elements of the boundary set and the ranks of L. Define a total order on the elements of L as follows: for
distinct s and t in L, we say s precedes t in the total order if (1) �(s) > �(t); or (2) �(s)=�(t) and dist(s, b) < dist(t, b),
where b is the unique boundary element of L for which �(b) = �(s) = �(t); or (3) �(s) = �(t), dist(s, b) = dist(t, b),
and there exists a j such that si = ti for i > j and sj < tj . If s is a nonmaximal element of L, let i be the largest index
(1� i�6) for which t = (s1, . . . , si−1, si +1, si+1 −1, si+2, . . . , s7) is an element of the lattice L; in this case we write
t = rightmost_decrease(s). See Section 7 for examples.

3. Lie algebra actions on edge-colored posets

Some of the notation and language of [1] are needed in this paper to develop the algebraic aspects of Theorems 4.1
and 5.1. Throughout this paper n is a positive integer, and we use g to denote the semisimple Lie algebra of rank n with
Chevalley generators {xi, yi, hi}ni=1 satisfying the Serre relations associated to a Dynkin diagram D with n nodes. For
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the simple Lie algebras, we number the nodes of the Dynkin diagram as in [3, p. 58]. In what follows the number Dj,i

can be found in the chart below by looking at the subgraph of D determined by the choice of distinct nodes i and j.

(With i = 1 and j = 2, the diagram in the last row of this chart is the Dynkin diagram for the simple Lie algebra G2.)
We use {�1, . . . ,�n} to denote the corresponding fundamental weights. The jth simple root �j can be identified with∑n

i=1Dj,i�i . Finite-dimensional irreducible g-modules are in one-to-one correspondence with highest weights, i.e. the
nonnegative linear combinations of the fundamental weights. The one-rowed representations of G2 are the irreducible
representations corresponding to the highest weight k�1. (From here on, vector spaces in this paper will be assumed
to be finite-dimensional.) If V is a g-module, then there is at least one basis B := {vs}s∈P (where P is an indexing set
with |P | = dim V ) consisting of eigenvectors for the actions of the hi’s: for any s in P and 1� i�n, there exists an
integer mi(s) such that hi.vs = mi(s)vs. The weight of the basis vector vs is the sum wt(vs) := ∑n

i=1mi(s)�i . We say
B is a weight basis for V. Form an edge-colored directed graph on the vertex set P which indicates the supports of the

actions of the generators on the basis B as follows: a directed edge s
i→ t of color i is placed from index s to index t if

ct,svt (with ct,s �= 0) appears as a term in the expansion of xi.vs as a linear combination in the basis {vx}, or if ds,tvs
(with ds,t �= 0) appears when we expand yi.vt in the basis {vx}. The resulting edge-colored directed graph, which is
also denoted by P, is the supporting graph for the basis B of V, or simply a supporting graph for V. Disregarding
edge colors, a supporting graph is always the Hasse diagram for a ranked poset [1, Lemma 3.1.E]. To keep track of the
actions of the generators on vectors of the basis B we sometimes attach the two coefficients ct,s (the “x”-coefficient)

and ds,t (the “y”-coefficient) to each edge s
i→ t of P. In this case,

xi.vs =
∑

t:s i→ t

ct,svt and yi.vt =
∑

s:s i→ t

ds,tvs. (1)

The supporting graph P together with the coefficients {(ct,s, ds,t)}s
i→ t∈E(P )

is the representation diagram (also denoted

by P) for the basis B of V. If the coefficients ct,s and ds,t are positive rational numbers we say that the weight basis B
is positive rational. A supporting graph P of V is positive rational if there is a positive rational basis for V which has
P as its supporting graph. A supporting graph for a basis B of V is edge-minimal if no other weight basis for V has
its supporting graph appearing as a proper edge-colored subgraph in the supporting graph for B. Two weight bases
{vs}s∈P and {wt}t∈Q for V are diagonally equivalent if there is an ordering on these bases with respect to which the
corresponding change of basis matrix is diagonal; the bases are scalar equivalent if this diagonal matrix is a scalar
multiple of the identity. The supporting graph for the basis B is solitary if no weight basis for V has the same supporting
graph as B other than those bases that are diagonally equivalent to B. Observe that, up to diagonal equivalence, the
representation V can have at most a finite number of solitary bases. The adjectives edge-minimal and solitary apply
to weight bases as well as supporting graphs. Up to diagonal equivalence, then, a solitary weight basis is uniquely
identified by its supporting graph.

Let P be a ranked poset whose Hasse diagram edges are colored with colors taken from the set {1, . . . , n}. For
s in P, set mi(s) := 2�i (s) − li (s), where li (s) is the length of the i-component containing s and �i (s) is the rank
of s within this i-component. Following [2], we say P satisfies the structure condition for g if for 1� i�n, we have

mi(s)+Dj,i =mi(t) whenever s
j→ t with i �= j . Set wtP (s) := ∑n

i=1mi(s)�i . Then P satisfies the structure condition

if and only if wtP (s) + �j = wtP (t) whenever s
j→ t in P. This condition depends not only on g (information from

the corresponding Dynkin diagram) but also on the combinatorics of P. An edge-labelled poset P with colors from
{1, . . . , n} is an edge-colored ranked poset with edge colors from the set {1, . . . , n} together with an assignment of
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edge coefficients {(ct,s, ds,t)}s
i→ t∈E(P )

. We call �s,t := ct,sds,t the edge product associated to a given edge s
i→ t in

the edge-labelled poset P. The edge-labelled poset P satisfies the crossing condition if for any s in P and any color i
(1� i�n), we have∑

r:r i→ s

�r,s −
∑

t:s i→ t

�s,t = mi(s). (2)

A relation of form (2) is a crossing relation. The edge-labelled poset P satisfies the diamond condition if for any pair
of vertices s and t in P and any colors i and j (1� i, j �n), we have∑

u:s j→ u and t
i→ u

cu,sdt,u =
∑

r:r i→ s and r
j→ t

dr,sct,r, (3)

where an empty sum is zero. For s and t in P, suppose there is a unique element u such that s
j→ u and t

i→ u, and

suppose there is a unique element r such that r
i→ s and r

j→ t. Then we have this subgraph in P: The

diamond condition in this case implies that

cu,sdt,u = dr,sct,r, cu,tds,u = dr,tcs,r and �u,s�t,u = �r,s�t,r. (4)

Any relation of form (3) or (4) is a diamond relation. Let V [P ] be the complex vector space with basis {vs}s∈P . The
following lemma is a reformulation of Proposition 3.4 of [1].

Lemma 3.1. Let P be an edge-labelled poset with colors from {1, . . . , n} having the property that at least one of the

two coefficients (ct,s or ds,t) assigned to any given edge s
i→ t in P is nonzero. Then V [P ] is a g-module with the action

of g induced by the actions on V [P ] of the xi’s and yi’s described at (1) and the edge-labelled poset P is a representation
diagram for the weight basis {vs}s∈P of V [P ] if and only if P satisfies the diamond, crossing, and structure conditions.
In this case, hi.vs = mi(s)vs for any s in P and 1� i�n, so wt(vs) = ∑n

i=1mi(s)�i = wtP (s).

The main G2 result of [2] was:

Theorem. With edge coefficients assigned to the edges of LLM
G2

(k) and LRS
G2

(k) as in [2], the edge-labelled posets

LLM
G2

(k) and LRS
G2

(k) are representation diagrams for the one-rowed representation of G2 corresponding to highest
weight k�1.

4. A combinatorial technique for demonstrating uniqueness and extremal properties of bases

The main result of this section allows us in certain circumstances to reduce the question of demonstrating uniqueness
and extremal properties for a given basis for a simple Lie algebra representation to the problem of demonstrating that the
supporting graph meets certain combinatorial conditions. We will normally only apply this result when actions of Lie
algebra generators on the basis have been explicitly identified in such a way that we have explicit descriptions of the edge
coefficients associated to the edges of the supporting graph. In this paper, the main application of Theorem 4.1 is in the
proof of Theorem 5.1. (The total ordering on elements of LLM

G2
(k) and LRS

G2
(k) and the function rightmost_decrease

defined in Section 2 will play the respective roles of the “reverse linear extension” and the “ancestor function” in
Theorem 4.1.) We also apply Theorem 4.1 in Section 6 to re-derive some of the results of Corollary 3.1 from [2] for
the odd orthogonal lattices LMol

B (k, 2n) and LRS
B (k, 2n). We believe Theorem 4.1 can be applied to many of the other

bases and supporting graphs mentioned in Table 1 of [1].
Let (L, �) be a connected edge-labelled poset with rank function � and with edges colored by the set {1, . . . , n}.

A reverse linear extension T of L is a total ordering on the elements of L (with the relation in T denoted by “�T”)
such that if s�t in L then t�Ts in T, i.e. t precedes s in the total order T. An ancestor function f is a function
f : V(L)\{vertices of maximal rank} → V(L) with the property that if s is not of maximal rank in V(L), then f (s)
is an ancestor of s. Let x → y and s → t be edges in L. The next definition is inductive: We say that �x,y can be
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expressed in terms of edge products prior to s → t if (1) y precedes t in the total order, or (2) y = t and x precedes
s, or (3) �x,y is part of a diamond or crossing relation such that any other edge p → q involved in the relation has
the property that �p,q can be expressed in terms of edge products prior to s → t. If s is a descendant of t in L with

s
i→ t, then s is a diamond descendant (relative to the function f) if f (s) �= t; we say s is a crossing descendant of

t if f (s) = t and all other descendants of t along edges of color i precede s in the total order T; otherwise, s is an
exceptional descendant of t. The edge-labelled poset L together with T and f is diamond-and-crossing friendly if (1)
whenever s is a diamond descendant of t, then f (s) precedes t in the total order T, and (2) any exceptional descendant

s of a given vertex t lies along an edge s
i→ t whose edge product �s,t can be expressed in terms of edge products prior

to s
i→ t. While the hypotheses of the following theorem are somewhat involved, conditions of Theorem 5.1 put us in

exactly this situation, where we have g = G2, V a one-rowed representation of G2, and L one of LLM
G2

(k) or LRS
G2

(k).
Part (1) of Theorem 4.1 concludes that the product of coefficients on any edge of a certain kind of edge-labelled poset
L is “uniquely determined” in a certain sense by the combinatorics of the poset. By Lemma 3.1.B of [1], this property
is necessarily possessed by the representation diagram of any solitary basis for an irreducible g-module. Part (2) of
Theorem 4.1 provides a partial converse to this result.

Theorem 4.1. Let V be a g-module, and let L be the representation diagram for some given weight basis {vs}s∈L of V.

Suppose that �s,t �= 0 for each edge s
i→ t in L, and suppose L is connected and has no open vees. Let T be a reverse

linear extension of L and let f be an ancestor function. Suppose that L together with T and f is diamond-and-crossing
friendly. Then:

(1) Let {(at,s, bs,t)}s
i→ t∈E(L)

be another set of coefficients assigned to the edges of L such that the corresponding

edge-labelled poset satisfies the diamond and crossing relations. Then on any edge s
i→ t in L, it is the case that

at,sbs,t = �s,t.
(2) If V is an irreducible g-module, then the basis {vs}s∈L and the supporting graph L are solitary and edge-minimal.

Our proof requires two preliminary results (Lemmas 4.2 and 4.3). Let {vs}s∈K and {wt}t∈L be two weight bases for
a finite-dimensional g-module, where K and L are index sets. Let K and L also denote, respectively, the representation
diagrams for these two bases. We say the representation diagram K and L are edge product similar if, under some
correspondence between elements of the index sets, the edge-colored directed graphs K and L are isomorphic and the
product of coefficients on any edge in K is the same as the product of coefficients on the corresponding edge in L.

Lemma 4.2. Let L be the representation diagram for a weight basis B = {vs}s∈L for a g-module V. Suppose that the
product of the x-coefficient and y-coefficient on any edge in L is nonzero. Suppose L is connected and has no open
vees. Let K be the representation diagram for another weight basis for V such that K and L are edge product similar.
Let s′ denote the vertex in K corresponding to the vertex s in L. Then there exist nonzero scalars {as}s∈L such that the
representation diagram for the basis {ws′ := asvs}s∈L of V is K.

Proof. Since L is connected and has no open vees, L has a unique maximal element m. Set wm′ := vm (i.e. am := 1).
We can inductively produce scalars as such that ws′ = asvs as follows: Let t ∈ L and suppose we have found an

appropriate scalar at with wt′ := atvt as required. If s
i→ t in L, then set

as := at
ct′,s′

ct,s
= at

ds,t

ds′,t′
.

The quantities at(ct′,s′/ct,s) and at(ds,t/ds′,t′) are equal since ct,sds,t and ct′,s′ds′,t′ are the same nonzero product. The

scalar as is well-defined in the following sense: Suppose s
j→ u, where u ∈ L is some other vertex for which we have

an appropriate scalar au with wu′ = auvu as required. Since L has no open vees, then we have a “diamond” of edges

and vertices in L that looks like . By working within the representation diagrams L and K, respectively, we
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see that xi.yj .(atvt) = at(xi .yj .vt) = at(· · · + cu,sds,tvu + · · ·), while xi.yj .(wt′) = · · · + cu′,s′ds′,t′wu′ + · · · = · · · +
cu′,s′ds′,t′auvu + · · ·. Equate coefficients to get atcu,sds,t = aucu′,s′ds′,t′ . So

as := at
ct′,s′

ct,s
= au

cu′,s′ds′,t′

cu,sds,t

ct′,s′

ct,s
= au

cu′,s′

cu,s
.

Thus we can produce the scalars as inductively by proceeding down through L one level at a time starting at the unique
maximal vertex. Now for any s in L we have

xi.ws′ = xi.(asvs) = asxi.vs = as

∑
t:s i→ t

ct,svt =
∑

t:s i→ t

asct,svt

=
∑

t:s i→ t

at
ct′,s′

ct,s
ct,svt =

∑
t:s i→ t

atct′,s′vt =
∑

t:s i→ t

ct′,s′wt′ ,

and similarly for any t in L we have yi.wt′ = ∑
s:s i→ t

ds′,t′ws′ . It follows that with the scalars as defined as above, the
basis {ws′ := asvs}s∈L has K as its representation diagram. �

Lemma 4.3. Let V, B, and L be as in Lemma 4.2. In addition suppose V is irreducible. Suppose that for any repre-
sentation diagram K for V which is isomorphic to L as an edge-colored directed graph, it is the case that K and L are
edge product similar. Then the basis B is solitary.

Proof. Let {ws′ }s′∈K be a weight basis for V with representation diagram K such that K and L are edge product similar.
Let s and s′ denote corresponding elements in L and K, respectively. By Lemma 4.2, there exists a basis {asvs}s′∈K

which has representation diagram K. Then by Lemma 3.1.C of [1], it follows that {ws′ }s∈L and {asvs}s∈L are scalar
equivalent. Therefore, {ws′ }s∈L and {vs}s∈L are diagonally equivalent. Since this is true for any basis {ws′ }s∈L with
supporting graph L, it follows that the basis B = {vs}s∈L is solitary. �

Proof of Theorem 4.1. For part (1), let K denote the edge-labelled poset that coincides with L as an edge-colored
directed graph and whose edge coefficients are {(at,s, bs,t)}s

i→ t∈E(L)
. We use induction on the totally ordered sequence

(t0, . . . , t|V(L)|−1) of vertices of L. Here, tp precedes tq in the total order T if p < q. At a given vertex t, we will

argue that on each edge s
i→ t below t, the product at,sbs,t coincides with the product �s,t. So suppose that at each

vertex t′ which precedes a given vertex t := tj (0�j � |V(L)| − 1) it is the case that at′,s′bs′,t′ = �s′,t′ on each edge

s′ i→ t′ below t′. Let sp1 , . . . , spr be the descendants of t, where sp1 precedes sp2 , etc. Let 1� l�r and suppose that
for each s ∈ {sp1 , . . . , spl−1}, it is the case that at,sbs,t = �s,t. Now let s := spl

. Let u := f (s). If u �= t, then since L is
diamond-and-crossing friendly, u precedes t in the total order. Let v be the unique element in L which covers both u

and t. So we have a “diamond” in L which looks like and with u and v preceding t in the total order T. The

diamond conditions for K and L (cf. Lemma 3.1) together with the inductive hypothesis imply that

at,sbs,t = av,ubu,v · av,tbt,v

au,sbs,u
= �u,v · �t,v

�s,u
= �s,t.

Next suppose that u = t and that s is an exceptional descendant of t. Since it is the case that the edge product �s,t can be

expressed in terms of edge products prior to s
i→ t, one can use an inductive argument to conclude that at,sbs,t = �s,t.

Finally suppose s is a crossing descendant of t. By the crossing conditions in K and L we see that

at,sbs,t = mi(t) +
∑

v:t i→ v

av,tbt,v −
∑

r:r i→ t and r �=s

at,rbr,t

= mi(t) +
∑

v:t i→ v

�t,v −
∑

r:r i→ t and r �=s

�r,t = �s,t,
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since each of the edges t
i→ v and r

i→ t in the preceding sums has already been accounted for. This completes the
proof of (1).

Part (1) implies that if K is any representation diagram for V such that K is isomorphic to L as an edge-colored
directed graph, then K is edge product similar to L. Suppose now that V is irreducible. It follows from Lemma 4.3 that
the basis {vs}s∈L and the supporting graph L are solitary. Now let L′ be a representation diagram for a basis of V, and
suppose that L′ is an edge-colored subgraph of L. In particular, V(L′) = V(L) and Ei (L

′) ⊆ Ei (L) for 1� i�n. Let

(c′
t,s, d

′
s,t) denote the pair of coefficients attached to the edge s

i→ t in E(L′). Let m′
i (s) := 2�′

i (s) − l′i (s), where l′i (s)
is the length of the i-component in L′ containing s and �′

i (s) is the rank of s within this i-component. Let mi(s) denote
the corresponding quantity in L. By Lemma 3.2.C of [1], we have m′

i (s) = mi(s) for 1� i�n and any s in V(L).
Let K be the edge-labelled poset with V(K) := V(L), Ei (K) := Ei (L) for 1� i�n, and{(pt,s, qs,t)}s

i→ t∈E(K)
:=

{(c′
t,s, d

′
s,t)}s

i→ t∈E(L′)
⋃{(0, 0)}

s
i→ t∈E(K)\E(L′)

. Since m′
i (s) = mi(s) for 1� i�n and any s in V(L′) = V(K), and

since the edge-labelled poset L′ satisfies the crossing condition by Lemma 3.1, then K satisfies the crossing condition.
Since L′ satisfies the diamond condition by Lemma 3.1, it is easy to see that K also satisfies the diamond condition. Part

(1) implies that for any edge s
i→ t in K, the product of coefficients pt,sqt,s is the same as the nonzero product �s,t of

coefficients on the same edge in L. So both coefficients are nonzero on any edge in K. It follows thatE(L′)=E(K)=E(L),
so L′ and L coincide as edge-colored posets. Since L does not contain as a proper edge-colored subgraph the supporting
graph for any other weight basis for V, it follows that L and the basis {vs}s∈L are edge-minimal. �

Remark 4.4. Our proof of Theorem 4.1 gives an algorithmic or procedural approach for computing edge coeffi-
cients when an edge-labelled poset L is known to meet the hypotheses of the theorem statement. The reverse linear
extension T of L induces the following ordering on the edges of L: edge x → y precedes edge s → t if (1) y
precedes t in the total ordering T or (2) y = t and x precedes s in the total ordering T. A consequence of the
proof is that one has enough information available to (uniquely) determine edge products in this order one edge at
a time.

For the lattices we have studied, a crucial step in implementing this procedure has been to identify a set of boundary
vertices which gives us a starting point for performing computations on edges below vertices of a given rank. For the
G2 lattices we consider in this paper, the boundary is defined in Section 2; in Section 6 we identify the boundary for
certain odd orthogonal lattices. As in Figs. 15 and 16, we visualize boundary elements to be on the left side of the
Hasse diagram. In these cases the algorithm of Remark 4.4 proceeds from the top of the lattice down, and from left to
right (following the total order) across each rank of the lattice. Alverson [9] was able to implement this algorithm in a
computer algebra system so that one can obtain edge products for certain lattices associated to the rank two simple Lie
algebras.

5. Statement and proof of main G2 result

In this section we refer to the edge-colored lattices LLM
G2

(k) and LRS
G2

(k) with the total orderings and ancestor function
rightmost_decrease identified in Section 2. We apply Theorem 4.1 in these settings to obtain:

Theorem 5.1. Let L be one of the edge-colored posets LLM
G2

(k) or LRS
G2

(k).

(1) Let {(Xt,s, Ys,t)}s
i→ t∈E(L)

be the set of positive rational coefficients assigned to the edges of L in [2]. Suppose

{(ct,s, ds,t)}s
i→ t∈E(L)

is another set of coefficients assigned to the edges of L such that the corresponding edge-

labelled poset satisfies the diamond and crossing conditions. Then on any edge s
i→ t in L, it is the case that

ct,sds,t = Xt,sYs,t.
(2) The edge-colored poset L is a positive rational, solitary, and edge-minimal supporting graph for the irreducible

representation of G2 with highest weight k�1.

We need the following lemmas to prove Theorem 5.1.
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Lemma 5.2. Let L be one of LLM
G2

(k) or LRS
G2

(k). Let t = (t1, . . . , t7) be an element of L, and let s1, . . . , s6 be the
possible descendants of t as depicted in Fig. 1, with si = (t1, . . . , ti−1, ti − 1, ti+1 + 1, ti+2, . . . , t7) for 1� i�6. Then
in the total order on L, si precedes sj when i < j .

Proof. Let si be a descendant of t in L. In particular, we must have ti �1. Let b = (b1, . . . , b7) be the boundary vertex

with the same rank as si . Then we have dist(b, si ) =
∣∣∣1 + ∑i

p=1(bp − tp)

∣∣∣ + ∑6
q=1,q �=i

∣∣∑q
r=1(br − tr )

∣∣. Let sj be

a descendant of t with i < j . To prove the lemma, it clearly suffices to show that dist(b, si )�dist(b, sj ). We have

dist(b, sj ) − dist(b, si ) =
∣∣∣∑i

p=1(bp − tp)

∣∣∣ −
∣∣∣1 + ∑i

p=1(bp − tp)

∣∣∣ +
∣∣∣1 + ∑j

p=1(bp − tp)

∣∣∣ −
∣∣∣∑j

p=1(bp − tp)

∣∣∣.
Now suppose that

∑i
p=1(bp − tp) < 0. Then

∣∣∣∑i
p=1(bp − tp)

∣∣∣ −
∣∣∣1 + ∑i

p=1(bp − tp)

∣∣∣ = 1, and so

dist(b, sj ) − dist(b, si ) =
∣∣∣∣∣∣1 +

j∑
p=1

(bp − tp)

∣∣∣∣∣∣ −
∣∣∣∣∣∣

j∑
p=1

(bp − tp)

∣∣∣∣∣∣ + 1 =
{

0 if
∑j

p=1(bp − tp) < 0,

2 if
∑j

p=1(bp − tp)�0.

So in this case dist(b, sj ) − dist(b, si )�0.
Next consider the case that

∑i
p=1(bp−tp)�0. Note that since ti �1, then bp �1 for at least one p, p=1, . . . , i. Except

possibly for the case i=3 and j=4 with b=(0, 0, b3, b4, b5, 0, 0) in LLM
G2

(k), we will then have
∑j

p=1bp=k, from which

it follows that
∑j

p=1bp �
∑j

p=1tp. Since
∑i

p=1(bp − tp)�0 as well, then it follows that dist(b, sj ) − dist(b, si ) = 0.

This argument will only fail in the case that i=3 and j=4 with b=(0, 0, b3, b4, b5, 0, 0) in LLM
G2

(k),
∑3

p=1(bp−tp)�0,

and
∑4

p=1(bp − tp) < 0. The latter inequalities imply that t4 > b4. In LLM
G2

(k), this means t4 = 1 and b4 = 0. But then

t = (t1, t2, t3, 1, t5, t6, t7), which has no descendant s3 in LLM
G2

(k). �

Lemma 5.3. Let L be one of LLM
G2

(k) or LRS
G2

(k). Let s
i→ t be an edge in L. Let t′ := rightmost_decrease(s). Suppose

t′ �= t. Then t′ precedes t in the total order on L.

Proof. Write s = (s1, . . . , s7). Then for some p, we have t = (s1, . . . , sp + 1, sp+1 − 1, . . . , s7). Moreover, we have
t′ = (s1, . . . , sq + 1, sq+1 − 1, . . . , s7) for some q > p. Let u be the least upper bound of t and t′ in L. If p < q − 1,
then u = (s1, . . . , sp + 1, sp+1 − 1, . . . , sq + 1, sq+1 − 1, . . . , s7).

If p = q − 1, then u = (s1, . . . , sp + 1, sp+1, sp+2 − 1, . . . , s7). In either case, when we view the descendants t′ and
t of u in the light of Lemma 5.2, then we see that t′ precedes t. �

Lemma 5.4. There are no exceptional descendants in LLM
G2

(k). In LRS
G2

(k), a vertex s is an exceptional descendant of
some vertex t only when t = (a, b, c, d, 0, 0, 0), s = (a, b, c − 1, d + 1, 0, 0, 0), c�1, and d �1.

Proof. Let L be one of LLM
G2

(k) or LRS
G2

(k). Let t = (t1, . . . , t7) be in L. If s is the only descendant of t along an edge of
a given color i (i = 1, 2), then s cannot be an exceptional descendant. So suppose t has two descendants along edges
of color 2; these are s2 and s5 in the notation of Lemma 5.2. In particular, t5 > 0. Now observe that in this situation s2
is a diamond descendant of t since rightmost_decrease(s2) is a vertex in L that differs from t in coordinate positions
5 and 6 or in coordinate positions 6 and 7. Now s5 will be a diamond descendant if t7 > 0; otherwise, s5 is a crossing
descendant of t, since s2 precedes s5 in the total order by Lemma 5.2. Thus t has no exceptional descendants along
edges of color 2.

Now consider the four possible descendants s1, s3, s4, s6 of t along edges of color 1. Observe that in any case,
s1 is a diamond or a crossing descendant of t. Suppose s6 is a descendant of t in L. In particular, t6 > 0. Then s6
is a crossing descendant, since by Lemma 5.3 each of s1, s3, and s4 precedes s6 in the total order. Then, if si is a
descendant of t for i = 1, 3, 4, it is a diamond descendant since rightmost_decrease(si ) will not coincide with t. In
this case, then, t has no exceptional descendants. So suppose s6 is not a descendant of t in L. If exactly one of s3 or
s4 is a descendant of t, then it is a diamond or a crossing descendant. Since t can have at most one of s3 or s4 as a
descendant if t is in LLM

G2
(k), we conclude that an element t of LLM

G2
(k) has no exceptional descendants. So now assume

t has both s3 and s4 as descendants; hence we are working with L = LRS
G2

(k). Note that t3 > 0 and t4 > 0. Observe that
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Fig. 2.

s4 is a diamond or a crossing descendant. For s3 to be an exceptional descendant of t, then it must be the case that
rightmost_decrease(s3) = t. This will happen precisely when t5 = t6 = t7 = 0. So, t has an exceptional descendant
only when t is in LRS

G2
(k) and has form t = (t1, t2, t3, t4, 0, 0, 0) with t3 > 0 and t4 > 0. The exceptional descendant here

is s3. �

Lemma 5.5. Let t be an element of LRS
G2

(k) of the form t = (a, b, c, d, 0, 0, 0). Suppose s
1→ t. Then the edge product

�s,t can be expressed in terms of edge products prior to s
1→ t.

Proof. The vertex t has up to three descendants along edges of color 1. In the notation of Lemma 5.2, we will have s1
preceding s3 preceding s4 in the total order. For this proof it will be convenient to depict these edges as in Fig. 2.

Edge s1
1→ t is easy to account for. Suppose a�1. Then rightmost_decrease(s1) = t only if c = d = 0. In this case,

s1
1→ t is the only edge of color 1 below t, and we can use the crossing relation for color 1 at vertex t to express �s1,t in

terms of edge products prior to s1
1→ t. If c > 0 or d > 0, then t′ = rightmost_decrease(s1) �= t. Then by Lemma 5.3,

t′ precedes t. Let u be the unique least upper bound of t′ and t. Use the diamond relation on the diamond to

express �s1,t in terms of edge products prior to s1
1→ t.

If c = 0 (respectively, d = 0), then �s4,t (resp. �s3,t) can be expressed in terms of edge products prior to s4
1→ t

(resp. s3
1→ t) using the crossing relation for color 1 at vertex t. So let us suppose c�2 and d �1. Consider

where t′ = (a, b + 1, c − 2, d + 1, 0, 0, 0) and u is the unique least upper bound of t′ and t. The edge product �s3,t′ can

be expressed in terms of edge products prior to s3
1→ t by the crossing relation for color 2 at vertex t′. Then the edge

product �s3,t can be expressed in terms of edge products prior to s3
1→ t by the diamond relation on this diamond. At

this point �s4,t can now be expressed in terms of edge products prior to s4
1→ t using the crossing relation for color 1

at vertex t.
The remainder of the proof handles the case c=1 and d �1. Set m=�(d −1)/2	. Consider the following sequence of

vertices in LRS
G2

(k) that have the same rank as t: t0 := (a, b, 1, d, 0, 0, 0) = t; t1 := (a, b, 2, d − 2, 1, 0, 0); . . . ; ti :=
(a, b, 1+i, d −2i, i, 0, 0); . . . ; tm := (a, b, 1+m, 1 or 2, m, 0, 0); tm+1 := (a, b+1, m, 0 or 1, 1+m, 0, 0); tm+2 :=
(a, b + 2, m − 1, 0 or 1, m, 1, 0); . . . ; tm+i := (a, b + i, m − i + 1, 0 or 1, m − i + 2, m, 0); . . . ; t2m+1 := (a, b +
m + 1, 0, 0 or 1, 1, m, 0); t2m+2 := (a + 1, b + m, 0, 0 or 1, 0, m + 1, 0). If d is even, then necessarily m > 0, and
we set t2m+3 := (a + 2, b + m − 1, 0, 0, 1, m + 1, 0). If d is odd we will not need t2m+3. We are only interested in
the descendants of these vertices depicted in Figs. 3 and 4. The product on the rightmost edge in each of Figs. 3 and

4 can be expressed in terms of edge products prior to s3
1→ t by a crossing relation. One can then use diamond and

crossing relations in succession from the right to express the edge products on each of the depicted edges below vertices

Fig. 3. d odd.



R.G. Donnelly et al. / Discrete Mathematics 306 (2006) 1285–1300 1295

Fig. 4. d even.

Fig. 5.

Fig. 6.

t2m+2, . . . , tm+1 in terms of edge products prior to s3
1→ t. If a =0, then there are no “middle” edges below the vertices

t0, . . . , tm, in which case we can continue in succession from the right to express the remaining edge products below

vertices tm, . . . , t0 in terms of edge products prior to s3
1→ t. So now suppose a > 0. We can complete the argument

to express the edge products �s3,t and �s4,t in terms of edge products prior to s3
1→ t if we can do so for the “middle”

edge below each of tm, . . . , t1. Before doing this, we need the following.
If d > a, then let 0�j < a. If d �a, then allow a −d �j < a. As long as j > a −d, we set mj =�(d −a + j −1)/2	

and consider the following sequence of vertices (all have the same rank in LRS
G2

(k) as t): t(j)
0 := (j, a + b − j, a + 1 −

j, d − a + j, 0, 0, 0); t(j)
1 := (j, a + b − j, a + 2 − j, d − a + j − 2, 1, 0, 0); . . . ; t(j)

i := (j, a + b − j, a + 1 −
j + i, d − a + j − 2i, i, 0, 0); . . . ; t(j)

mj
:= (j, a + b − j, a + 1 − j + mj , 1 or 2, mj , 0, 0); t(j)

mj +1 := (j, a + b − j +
1, a − j + mj , 0 or 1, 1 + mj , 0, 0); t(j)

mj +2 := (j, a + b − j + 2, a − j + mj − 1, 0 or 1, mj , 1, 0); . . . ; t(j)
mj +i :=

(j, a + b − j + i, a − j + mj − i + 1, 0 or 1, mj − i + 2, i − 1, 0); . . . ; t(j)
2mj +1 := (j, a + b − j + mj + 1, a −

j, 0 or 1, 1, mj , 0); t(j)
2mj +2 := (j, a + b − j + mj + 2, a − j − 1, 0 or 1, 0, mj + 1, 0). If j = a − d, we consider the

sequence t(a−d)
0 := (a − d, b + d, d + 1, 0, 0, 0, 0); t(a−d)

1 = (a − d, b + d + 1, d − 1, 1, 0, 0, 0). Note that t
(j1)
i1

= t
(j2)
i2

if and only if i1 = i2 and j1 = j2.We are only interested in the descendants of these vertices depicted in Fig. 5.

The product on the rightmost edge in Fig. 5 can be expressed in terms of edge products prior to s3
1→ t by a crossing

relation. Working from the right, one can then use diamond and crossing relations to express the products on each of

the depicted edges below vertices t(j)
2mj +2, . . . , t(j)

mj +1 in terms of edge products prior to s3
1→ t. Let s(j)

1 = (j − 1, a +
b + 1 − j, a + 1 − j, d − a + j, 0, 0, 0) and t′ = (j − 1, a + b + 2 − j, a − j, d − a + j, 0, 0, 0), so s(j)

1 is the

common descendant of t′ and t(j)
0 , as depicted in Fig. 6. Then �

s(j)
1 ,t′ can be expressed in terms of edge products prior

to s3
1→ t by a crossing relation, and hence �

s(j)
1 ,t(j)

0
can be expressed in terms of edge products prior to s3

1→ t using

a diamond relation. We can complete the argument to express products on each of the depicted edges below t(j)
0 in

terms of edge products prior to s3
1→ t if we can do so for the “middle” edge below each of t(j)

m , . . . , t(j)
1 . To do this

we use induction on j. For d > a, the base case is j = 0. Since the vertices t(0)
0 , . . . , t(0)

m have no descendants along
“middle” edges, we get the picture in Fig. 7. Starting on the right and using diamond and crossing relations, we can

now express the products on each of these edges in terms of edge products prior to s3
1→ t. When d �a, the base case
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Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

for the induction argument is j = a − d . In this case we have the following very simple picture of Fig. 8. Starting on
the right and using diamond and crossing relations, we can now express the products on each of these edges in terms

of edge products prior to s3
1→ t.

For the inductive hypothesis, assume that the products on the depicted edges below each t(r)i have been expressed

in terms of edge products prior to s3
1→ t for each 0�r �j − 1 (respectively, a − d �r �j − 1) when 0 < j < a and

d > a (respectively, a − d < j < a and d �a). Consider now a vertex of the form t(j)
i (where 1� i�mj ) along with the

arrangement of vertices depicted in Fig. 9. In this figure, we have: s = (j − 1, a + b − (j − 1), a + 1 − (j − 1) + (i −
1), d −a+j −2i, i, 0, 0) and t′ =(j −1, a+b−(j −1), a+1−(j −1)+(i−1), d −a+(j −1−2(i−1), i−1, 0, 0).
Then t′ = t(j−1)

i−1 , and the inductive hypothesis applies to the edge product �s,t′ . Now use a diamond relation to express

the edge product �
s,t(j)

i

in terms of edge products prior to s3
1→ t. We have now accounted for all the edges of interest

below each of the vertices t(j)
0 , . . . , t(j)

2mj +2. This completes the induction argument.
We can now return to the problem of expressing products on the “middle” edge below each of t1, . . . , tm in terms of

edge products prior to s3
1→ t. Let 1� i�m and consider the arrangement of vertices depicted in Fig. 10. In this figure,

we have: s = (a − 1, b + 1, i + 1, d − 2i, i, 0, 0) and t′ = (a − 1, b + 1, i + 1, d − 2i + 1, i − 1, 0, 0). Then t′ = t(a−1)
i−1 ,

and the previous paragraph applies to the edge product �s,t′ . Now use a diamond relation to express the edge product

�s,ti in terms of edge products prior to s3
1→ t. Finally, we can now express �s4,t in terms of edge products prior to

s3
1→ t. Then we can use the crossing relation for color 1 at vertex t to express �s3,t in terms of edge products prior to

s3
1→ t. �

Proof of Theorem 5.1. From Corollary 3.3 (and its preceding paragraphs) in [2] we know that L is a positive rational
supporting graph for the irreducible representation of G2 with highest weight k�1. Consider L together with its total
ordering on vertices, its ancestor function rightmost_decrease, and the edge coefficients assigned in [2]. By Lemmas
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5.3, 5.4, and 5.5, it follows that L is diamond-and-crossing friendly. Since L also meets the other hypotheses of Theorem
4.1, statements (1) and (2) of Theorem 5.1 follow. �

6. Re-deriving an odd orthogonal result

Theorem 6.1 re-derives parts of Corollary 3.1 of [2] by applying Theorem 4.1 to the edge-colored distributive lattices
LMol

B (k, 2n) and LRS
B (k, 2n) of [2]. In keeping with the notation of [2], we think of elements of LMol

B (k, 2n) and
LRS

B (k, 2n) as (2n + 1)-tuples s = (s1, . . . , s2n+1). We define the boundary for LMol
B (k, 2n) to be the set{

(b1, . . . , b2n+1)

∣∣∣∣bj + bj+1 = k where 1�j �2n (j �= n, j �= n + 1);
or bn + bn+1 + bn+2 = k

}
.

For LRS
B (k, 2n), the boundary is the set

{(b1, . . . , b2n+1)|bj + bj+1 = k where 1�j �2n}.
Now let L be one of LMol

B (k, 2n) or LRS
B (k, 2n), and let � be the rank function for L. One can see that there is a

one-to-one correspondence between the elements of the boundary set and the ranks of L. The distance between s and
another element t = (t1, . . . , t2n+1) in L is dist(s, t) = ∑2n

i=1|
∑i

j=1(si − ti )|. As in Section 3, we totally order the
elements of L as follows: we say s precedes t if (1) �(s) > �(t); or (2) �(s) = �(t) and dist(s, b) < dist(t, b), where
b is the unique boundary element of L for which �(b) = �(s) = �(t); or (3) �(s) = �(t), dist(s, b) = dist(t, b), and
there exists a j such that si = ti for i > j and sj < tj . If s is a nonmaximal element of L, let i be the largest index
(1� i�2n) for which t = (s1, . . . , si−1, si + 1, si+1 − 1, si+2, . . . , s2n+1) is an element of the lattice L; in this case we
write t = rightmost_decrease(s).

Theorem 6.1. Let L be one of the edge-colored posets LMol
B (k, 2n) or LRS

B (k, 2n).

(1) Let {(Xt,s, Ys,t)}s
i→ t∈E(L)

be the set of positive rational coefficients assigned to the edges of L in [2]. Suppose

{(ct,s, ds,t)}s
i→ t∈E(L)

is another set of coefficients assigned to the edges of L such that the corresponding edge-

labelled poset satisfies the diamond and crossing conditions. Then on any edge s
i→ t in L, it is the case that

ct,sds,t = Xt,sYs,t.
(2) The edge-colored poset L is a positive rational, solitary, and edge-minimal supporting graph for the irreducible

representation of Bn with highest weight k�1.

As with Theorem 5.1, the proof of Theorem 6.1 follows quickly from a sequence of lemmas. We suppress the details
of the proofs of these lemmas since the arguments are analogous to the arguments given for the corresponding Section
5 lemmas.

Lemma 6.2. Let L be one of LMol
B (k, 2n) or LRS

B (k, 2n). Let t = (t1, . . . , t2n+1) be an element of L, and let s1, . . . , s2n

be the possible descendants of t, where si = (t1, . . . , ti−1, ti − 1, ti+1 + 1, ti+2, . . . , t2n+1) for 1� i�2n. Then in the
total order on L, si precedes sj when 1� i < j �2n.

Remarks on proof. This proof is analogous to the proof of Lemma 5.2; one only needs to change indices in the
appropriate places.

Lemma 6.3. Let L be one of LMol
B (k, 2n) or LRS

B (k, 2n). Let s
i→ t be an edge in L. Let t′ := rightmost_decrease(s).

Suppose t′ �= t. Then t′ precedes t in the total order on L.

Remarks on proof. Follows from Lemma 6.2 in the exactly the same way that Lemma 5.3 follows from Lemma 5.2.

Lemma 6.4. There are no exceptional descendants in LMol
B (k, 2n). In LRS

B (k, 2n), a vertex s is an exceptional de-
scendant of some vertex t only when t = (t1, . . . , tn+1, 0, . . . , 0), s = (t1, . . . , tn − 1, tn+1 + 1, 0, . . . , 0), tn �1, and
tn+1 �1.
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Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Remarks on proof. Analogous to our proof of Lemma 5.4. Analysis of descendants along edges of a given color i
(for 1� i < n) in the Bn lattices is entirely similar to our analysis of descendants along edges of color 2 in the G2
lattices. Descendants along edges of color n in the Bn lattices can be handled in a fashion similar to our treatment of
descendants along edges of color 1 in the G2 lattices.

Lemma 6.5. Let t be an element of LRS
B (k, 2n) of the form t = (t1, . . . , tn+1, 0, . . . , 0). Suppose s

n→ t. Then the edge

product �s,t can be expressed in terms of edge products prior to s
n→ t.

Remarks on proof. The proof here is easier than the proof of Lemma 5.5 since it is not possible for a ver-
tex t in LRS

B (k, 2n) to have more than two descendants along edges of a given color. Figs.11–14 illustrate the
various cases our argument considers in the setting of LRS

B (k, 2n) with n = 4 and k = 7. In Fig. 14, we have

and In each figure we can express the product on the “rightmost” edge in
terms of products prior to s → t by a crossing relation. We can then use diamond and crossing relations in succession
from the right to express the edge products on each of the depicted edges in terms of edge products prior to s → t.

Proof of Theorem 6.1. See the first paragraph in the proof of Corollary 3.1 of [2] for an argument that L is a positive
rational supporting graph for the irreducible representation of Bn with highest weight k�1. That argument only depends
on Theorem 2.1 of [2] and is independent of the other conclusions of Corollary 3.1. Now consider L together with its
total ordering on vertices and the ancestor function rightmost_decrease. By Lemmas 6.3, 6.4 and 6.5, it follows that
L is diamond-and-crossing friendly. Since L also meets the other hypotheses of Theorem 4.1, statements (1) and (2) of
Theorem 6.1 follow. �
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7. Examples of Littelmann–Molev and Reiner–Stanton G2 lattices

The figures (Figs. 15 and 16 ) that appear in this section follow the notation of Section 2 for the G2 lattices LLM
G2

(k)

and LRS
G2

(k). Here we take k=2. Each lattice has 27 vertices identified as t0, t1, . . . , t26 so that ti precedes tj in the total
order if and only if i < j . The larger dots for the vertices along the left side of each figure indicate boundary vertices.
In the edge-colored graphs depicted in these two figures, each edge has one coefficient attached. This coefficient is the
product of the x- and y-coefficients that were obtained for G2 lattice edges in [2]. These products can also be computed
following the procedure described in Remark 4.4. A consequence of Theorem 5.1 is that for any representation diagram
for G2 whose underlying edge-colored poset is one of these G2 lattices, the product of the coefficients on any edge
must agree with the product given in these figures.

Fig. 15.
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Fig. 16.
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