Note

On the Class of Entire Functions Defined by Dirichlet Series of Several Complex Variables

Suzanne Meshreky-Daoud

Department of Mathematics, University of Assiut, A. R. of Egypt

Submitted by Steven G. Krantz

Received March 12, 1990

In this note, we consider functions of only two variables, although the results can easily be extended to any finite number of variables. Let

\[f(s_1, s_2) = \sum_{m,n} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2) \]

be an entire function defined by Dirichlet series \([1]\) of two complex variables \(s_1, s_2\), where the coefficients \(a_{m,n}\) are complex numbers and

\[0 < \lambda_1 < \lambda_2 < \cdots < \lambda_m \to \infty \quad \text{with } m \]

\[0 < \mu_1 < \mu_2 < \cdots < \mu_n \to \infty \quad \text{with } n \]

and further \([2, 3]\)

\[\limsup_{m+n \to \infty} \frac{\log(m+n)}{\lambda_m + \mu_n} = D < +\infty \]

\[\limsup_{m+n \to \infty} \frac{\log |a_{m,n}|}{\lambda_m + \mu_n} = -\infty. \]

Let \(X\) be a class of entire functions defined by Dirichlet series \((1)\) which satisfy the condition

\[\sum_{m,n=1}^{\infty} |a_{m,n}| \exp(m\lambda_m + n\mu_n) < \infty. \]

Definition. (I) We use the notation \(f \sim a_{m,n}\) to denote \((1)\). The algebraic operations in \(X\) are defined by:

(i) \(f + g \sim a_{m,n} + b_{m,n}\)

(ii) \(af \sim aa_{m,n}\)

(iii) \(f \ast g \sim a_{m,n}b_{m,n} \exp(m\lambda_m + n\mu_n),\)

where \(f \sim a_{m,n}\) and \(g \sim b_{m,n}\) are in \(X.\)
(II) We can define also for each \(f \in X \), the following function:

\[
\| f \| = \sum_{m, n = 1}^{\infty} |a_{m, n}| \exp(m\lambda_m + n\mu_n).
\] \hspace{1cm} (6)

Observe that \(\| f \| \) is defined and it is easy to see that \(\| f \| \) defines a norm on \(X \).

Theorem 1. \(X \) is a Banach-algebra.

Proof. It sufficient to show that \(X \) is complete; for this, assume that \(\{f_p\} \) is a Cauchy sequence in \(X \), where for \((s_1, s_2) \in \mathbb{C}^2\)

\[
f_p(s_1, s_2) = \sum_{m, n = 1}^{\infty} a_{m, n}^{(p)} \exp(\lambda_m s_1 + \mu_n s_2).
\]

Given \(\varepsilon > 0 \), then there exists some constant \(p_0 \geq 1 \) such that

\[
\| f_p - f_q \| < \varepsilon \quad \text{for } p, q \geq p_0,
\]

i.e.,

\[
\sum_{m, n = 1}^{\infty} |a_{m, n}^{(p)} - a_{m, n}^{(q)}| \exp(m\lambda_m + n\mu_n) < \varepsilon, \quad p, q \geq p_0.
\] \hspace{1cm} (7)

This implies \(\{a_{m, n}^{(p)}\} \) forms a Cauchy sequence in \(\mathbb{C} \) for every \(m, n \) and hence, owing to the completeness of \(\mathbb{C} \), converges to a complex number, say \(a_{m, n} \). In (7) let \(q \to \infty \); we get

\[
\sum_{m, n = 1}^{\infty} |a_{m, n}^{(p)} - a_{m, n}| \exp(m\lambda_m + n\mu_n) < \varepsilon \quad p \geq p_0,
\]

therefore

\[
f_p \to f \sim a_{m, n}.
\]

Moreover \(f \sim a_{m, n} \in X \), since

\[
\sum_{m, n = 1}^{\infty} |a_{m, n}| \exp(m\lambda_m + n\mu_n)
\leq \sum_{m, n = 1}^{\infty} |a_{m, n}^{(p)} - a_{m, n}| \exp(m\lambda_m + n\mu_n)
+ \sum_{m, n = 1}^{\infty} |a_{m, n}^{(p)}| \exp(m\lambda_m + n\mu_n).
\]

It can now be verified that \(X \) is a Banach-algebra.
DEFINITION. A complex-valued function $\Phi(f)$ defined for $f \in X$ is called a functional; this functional is said to be linear if

$$\Phi(af + bg) = a\Phi(f) + b\Phi(g).$$

Theorem 2. Every continuous linear functional Φ on X is of the form

$$\Phi(f) = \sum_{m,n=1}^{\infty} a_{m,n} d_{m,n} \exp(m\lambda_m + n\mu_n)$$

with

$$f(s_1, s_2) = \sum_{m,n=1}^{\infty} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2),$$

where $\{d_{m,n}\}$ is a bounded sequence.

Proof. We denote the dual space of X by X^*; let $\Phi \in X^*$. Define

$$f_{m,n} = \exp\{ (s_1 - m) \lambda_m + (s_2 - n) \mu_n \}$$

$$f^{(N)} = \sum_{m,n=1}^{N} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2).$$

Obviously $f^{(N)} \to f$ as $N \to \infty$.

Let

$$\Phi(f_{m,n}) = d_{m,n};$$

then

$$\Phi(f) = \Phi\left(\lim_{N \to \infty} f^{(N)} \right)$$

$$= \Phi \left(\lim_{N \to \infty} \sum_{m,n=1}^{N} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2) \right)$$

$$= \Phi \left(\lim_{N \to \infty} \sum_{m,n=1}^{N} a_{m,n} f_{m,n} \exp(m\lambda_m + n\mu_n) \right)$$

$$= \sum_{m,n=1}^{\infty} a_{m,n} d_{m,n} \exp(m\lambda_m + n\mu_n).$$

Moreover

$$|d_{m,n}| = |\Phi(f_{m,n})| \leq M \| f_{m,n} \| = M;$$

hence, $\{d_{m,n}\}$ is a bounded sequence.
Conversely, let \(\{d_{m,n}\} \) be a bounded sequence. The functional defined by (8) is well defined and linear. Further, we note

\[
|\Phi(f)| \leq \sum_{m,n=1}^{\infty} |a_{m,n}d_{m,n}| \exp(m\lambda_m + n\mu_n) \\
\leq M \|f\|; \quad (9)
\]

hence the theorem.

Remark. This characterization helps us in formulating an alternative expression for the norm in \(X^* \). We know [4] that \(X^* \) is a Banach space with the same operations as in \(X \) and norm define as

\[
\|\Phi\| = \sup_{\|f\| \leq 1} |\Phi(f)|/\|f\|.
\]

Lemma. We have

\[
\|\Phi\| = \sup_{m,n \geq 1} |d_{m,n}|.
\]

Proof. By (9), we infer that

\[
\|\Phi\| = \sup_{\|f\| \leq 1} |\Phi(f)|/\|f\| \leq \sup_{m,n \geq 1} |d_{m,n}|;
\]
on the other hand

\[
|d_{m,n}| = |\Phi(f_{m,n})| \leq \|\Phi\| \|f_{m,n}\| = \|\Phi\|.
\]

Hence the Lemma.

Theorem 3. Let

\[
f(s_1, s_2) = \sum_{m,n=1}^{\infty} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2),
\]

where \(a_{m,n} \neq 0, \forall m, n \geq 1 \). Let \(D \subset \mathbb{C}^2 \) having at least one finite point. Define

\[
f_{\alpha, \beta}(s_1, s_2) = \sum_{m,n=1}^{\infty} a_{m,n} \exp\left\{(s_1 + \alpha - m) \lambda_m + (s_2 + \beta - n) \mu_n\right\};
\]

then the set

\[A_f = \{f_{\alpha, \beta} : \alpha, \beta \in D\}\]

is a total set in \(X \).
Proof. Note that \(f_{\alpha, \beta} \in X, \forall \alpha, \beta \in D \), since

\[
f_{\alpha, \beta}(s_1, s_2) = \sum_{m,n=1}^{\infty} a_{m,n} \exp \{ (s_1 + \alpha - m) \lambda_m + (s_2 + \beta - n) \mu_n \}
\]

and

\[
\sum_{m,n=1}^{\infty} \exp(m \lambda_m + n \mu_n) |a_{m,n}\exp(\alpha - m) \lambda_m + (\beta - n) \mu_n| = \sum_{m,n=1}^{\infty} |a_{m,n}| \exp(\gamma_1 \lambda_m + \gamma_2 \mu_n),
\]

where \(\gamma_1 = \text{Re} \, \alpha, \gamma_2 = \text{Re} \, \beta \), which must converge for every \(\alpha, \beta \in D \), because \(f(s_1, s_2) \) is an entire Dirichlet series. Let \(\Phi^* \in X^* \) be such that \(\Phi^*(A_f) = 0 \), i.e.,

\[
\Phi^*(f_{\alpha, \beta}) = 0, \quad \forall \alpha, \beta \in D.
\]

This implies that

\[
\sum_{m,n=1}^{\infty} a_{m,n} d_{m,n} \exp(m \lambda_m + n \mu_n) \exp \{ (\alpha - m) \lambda_m + (\beta - n) \mu_n \} = 0, \quad \forall \alpha, \beta \in D,
\]

i.e.,

\[
\sum_{m,n=1}^{\infty} a_{m,n} d_{m,n} \exp(\alpha \lambda_m + \beta \mu_n) = 0, \quad \forall \alpha, \beta \in D. \tag{10}
\]

Now define \(h \sim a_{m,n} d_{m,n} \), since \(\{d_{m,n}\} \) is bounded sequence and \(f \sim a_{m,n} \in X \). \(h \sim a_{m,n} d_{m,n} \in X \). But, owing to (10),

\[
h(\alpha, \beta) = 0, \quad \forall \alpha, \beta \in D.
\]

Since \(D \) has a finite limit point, this means that \(h = 0 \); this, however, implies that \(a_{m,n} d_{m,n} = 0, \forall m, n \geq 1 \) and as \(a_{m,n} \) is not zero for every \(m, n \), we get the result.

Theorem 4. Every element in \(X \) is a topological zero divisor in \(X \).

Proof. For the definition of the topological zero divisor, we refer to [5]. Consider the sequence \(\{g_{m,n}\} \) where

\[
g_{m,n} = \exp - (m \lambda_m + n \mu_n) \exp(\lambda_m s_1 + \mu_n s_2), \quad m, n \geq 1.
\]
Obviously $g_{m,n} \in X$ and $\| g_{m,n} \| = 1, \forall m, n \geq 1$. Also
\[f \ast g_{m,n} = g_{m,n} \ast f = a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2) \]
and
\[\| f \ast g_{m,n} \| = \| g_{m,n} \ast f \| = |a_{m,n}| \exp(m\lambda_m + n\mu_n) \rightarrow 0 \quad \text{as} \quad m, n \rightarrow \infty; \]
hence the theorem.

REFERENCES