SOLUBLE NORMAL SUBGROUPS OF SKEW LINEAR GROUPS

B.A.F. WEHRFRITZ

School of Mathematical Sciences, Queen Mary College, Mile End Road, London E1 4NS, UK

Communicated by K.W. Gruenberg
Received 25 October 1984

A skew linear group is a subgroup of GL(n,D) for some positive integer n and division ring D. In [13] and [14] we studied a locally finite normal subgroup H of a skew linear group G and found in particular that the structure of G/C_G(H) is very restricted. Here we consider corresponding questions concerning soluble normal subgroups of G. The results are similar to those of [13] and [14], but the conclusions are slightly weaker, necessarily so as we show with examples.

Let F be the centre of the division ring D. We say that the subgroup G of GL(n,D) is absolutely irreducible if the subring F[G] of the matrix ring D^{n×n} generated by F and G is the full matrix ring. See [13] for the background concerning this concept.

The locally finite results of [13] and the soluble results here can be combined, and it is in this form that we state our conclusions. Thus we consider the class P(\mathfrak{A} U L^\infty) of all groups with a series of finite length whose factors are abelian or locally finite. (In general we use Hall’s calculus of group classes as expounded in [4, Chapter 1] except that we use Q in place of H.) Our main theorem is the following.

Theorem A. Let G be an absolutely irreducible skew linear group and H a normal P(\mathfrak{A} U L^\infty)-subgroup of G.

(i) H contains an abelian normal subgroup A of G with H/A locally finite and G/C_G(H) is abelian by periodic.

(ii) If H modulo its centre is periodic, then G/C_G(H) is periodic.

We do not consider whether or not any of the periodic images of G in the conclusions of Theorem A are locally finite (cf. [13]). We do show at least that each of them (and also H/A in part (i), a fact pointed out by Snider [5] in a somewhat different context) can be any locally finite group. We also show that the group G/HC_G(H) in part (i) need not be periodic and indeed can contain free abelian subgroups of uncountable rank. This again contrasts with the results of [13]. The involved example which shows this is 3.12 below.

If G is merely an irreducible subgroup of GL(n,D) meaning that row n-space over D is irreducible as D-G-bimodule, then no theorem like Theorem A exists. Many
suitable examples exist in the literature in other contexts. For example, by [10, 1.2], if K is any $(L,P)\mathbb{Z}$-group, for example if K is poly (torsion-free abelian), and if G is the split extension $H \cdot K$ of the group ring $H=\mathbb{Z}K$ by K, then G is isomorphic to a (necessarily irreducible) subgroup of D^* for some division ring D. Of course, H here is abelian and $G/C_G(H)$ is isomorphic to K. With minor modifications to the argument one can replace K by an ordered group or by a group containing K with an arbitrarily locally finite image.

Part (ii) of Theorem A is an important step in the proof of part (i) and in one case part (ii) reduces to the consideration of locally finite-dimensional algebras. Here, not surprisingly, we can weaken substantially the hypotheses. As in [12] let \mathcal{X} denote the class of all groups with a local system of finitely generated subgroups, all of whose finite homomorphic images are soluble. Also $L_1\mathcal{X}$ denotes the class of periodic groups and \mathcal{P} the ascendent series operator.

Whenever a skew linear group G has a unique maximal unipotent normal subgroup, as it does if the ground division ring is locally finite-dimensional, we denote it by $u(G)$. For any group G set

$$\Delta(G) = \{ g \in G : (G : C_G(g)) < \infty \}.$$

Theorem B. Let G be a subgroup of $GL(n,D)$, where D is a locally finite-dimensional division algebra and let H be a normal $\mathcal{P}(\mathcal{X} \cup L_1\mathcal{X})$-subgroup of G with $u(H) = \langle 1 \rangle$.

(i) H contains an abelian normal subgroup A of G such that H/A and $G/AC_G(H)$ are locally finite. In particular, $G/C_G(H)$ is abelian by locally-finite.

(ii) If H modulo its centre Z is periodic, then $G/C_G(H)$ is locally finite.

(iii) If H is locally nilpotent, then H is centre by locally-finite.

(iv) If H is a Baer group (e.g., if G is a Fitting group), then $H \leq \Delta(G)$.

(v) If H is periodic, then $G/C_G(H)$ is locally finite.

In part (v) much more information about $G/C_G(H)$ is available, but it is complicated to state, see the proof 2.3(v) below; but for example, if char $D = 0$, then $G/C_G(H)$ is metabelian by finite. We have not included the case where H is locally finite in Theorem A since this is fully covered in [13] and [14]. For the connection between the hypotheses of Theorems A and B see 2.4 below.

In the situation of Theorem A we need not have $H \leq \Delta(G)$, even if H is abelian. This follows from Example 3.12 below. Also we need not have $H \leq \Delta(G)$ in Theorem B even if H is locally nilpotent, locally finite and metabelian and G is linear. For example if q is a prime let G be the wreath product W of a Prüfer q^{∞}-group by a cyclic group of order q and set $H=G$. Note that W has a faithful absolutely irreducible linear representation of degree q in any characteristic except q.

This leads us to the linear case upon which, of course, Theorem B depends. The following pieces together results from various sources. We state it mainly for comparison with the above. The phrase 'bounded by a function of n only' we shorten to 'n-bounded'.
Theorem C. Let G be a linear group of degree n over the field F and let H be a normal $P(\mathfrak{U}L_1\mathfrak{F})$-subgroup of G with $u(H) = \langle 1 \rangle$.

(i) H contains an abelian normal subgroup A of G with H/A and $G/AC_G(H)$ locally finite such that $G/HC_G(H)$ has an abelian normal subgroup with finite n-bounded index and exponent dividing $n!$.

(ii) If the centre Z of H has finite index m in H, then $(G: C_G(H))$ divides $m!n!m^n$.

(iii) If H is nilpotent of class c, then $(G: C_G(H))$ is finite and (n,c)-bounded.

(iv) If H is periodic, then $(G: HC_G(H))$ is finite and n-bounded.

We have already remarked above that in Theorem C, parts (i) and (iv) we need not have $H \triangleleft A(G)$. The same example, $G = H = W$, has $G/C_G(H)$ infinite. Also $G/HC_G(H)$ can be infinite. For let A be any non-trivial torsion-free abelian group, let i be the inversion automorphism of A, let G be the split extension $\langle i \rangle[A$ and set $H = \langle i \rangle A^2$. Since $i^a = ia^2$ for all $a \in A$ the subgroup H is normal in G. Also $C_G(A^2) = A$ and $C_A(i) = \langle 1 \rangle$, so $C_G(H) = \langle 1 \rangle$ and $G/HC_G(H)$ is isomorphic to A/A^2. Finally, G has a faithful absolutely irreducible linear representation of degree 2 in any characteristic.

In Theorem C, part (i) we clearly cannot in general choose A so that H/A has finite exponent, for H could be say $\text{PSL}(2, k)$ for any infinite locally infinite field k. However, if H is soluble or if the characteristic is zero, then A can be chosen with $(H: A)$ finite and n-bounded. This is essentially Mal'cev's and Jordan's theorems [6, 3.5 and 9.4]. No such conclusion is possible in the situation of Theorem B (or of Theorem A). For a start it is well known (see [15, Section 2]) that there exist nilpotent multiplicative subgroups H of class 2 of a locally finite-dimensional division algebra such that H^m is not abelian for every positive integer m; for example, H could be the direct product over p of groups H_p, where p ranges over infinitely many primes and H_p is the split extension of a cyclic p-group of order at least p^2 by an infinite cyclic group acting as an automorphism of order p. Using the techniques of [8, Section 3] a whole range of examples G can be constructed with $G/HC_G(H)$ not of finite exponent, even ones with H abelian and G soluble.

Our notation is mostly standard. If G is a group acting on a set X and Y is a subset of X, then

$$C_X(G) = \{x \in X: x^g = x \text{ for all } g \in G\},$$

$$C_G(Y) = \{g \in G: y^g = y \text{ for all } y \in Y\},$$

$$N_G(Y) = \{g \in G: Y^g = Y\},$$

$$\Delta_X(G) = \{x \in X: (G: C_G(x)) < \infty\}.$$

If R is a ring, S a subring of R and A a subset of R, then $S[A]$ denotes the subring of R generated by S and A,

$$r_R(A) = \{r \in R: Ar = \{0\}\} \text{ and } l_R(A) = \{r \in R: rA = \{0\}\}.$$

We use the latter notation even if R is commutative.
1. The proof of Theorem C

(i) H has a unique maximal soluble normal subgroup S say. By Theorem 3 of [12] the group H/S is locally finite. Now S contains a triangularizable normal subgroup A of G such that $(S:A)$ is n-bounded (cf. [6, exercise 3.1]). Since $u(A) \leq u(H) = \langle 1 \rangle$, the group A is abelian.

Now $u(G) \cap H = u(H) = \langle 1 \rangle$ and $u(G) \leq C_G(H)$. Using [6, p. 2] we may pass to $G/u(G)$ and assume that G is absolutely completely reducible. Set $K = C_H(A)$. Note that $(G : C_G(A))$ and hence $(H : K)$ divides $n!$ by [6, 1.12 and 1.8]. Clearly, we may assume that A is the centre of K. Then G/A has a linear representation ρ of degree n^2 that if faithful on K/A (let G act on $F[K] \leq F^{n \times n}$ by conjugation). If char $F = 0$, then $(K : A)$ is n-bounded by Jordan's theorem (applied to K/A) and the choice of A. Consequently [13, 1.10] applied to G/K yields that $(G : KC_G(K/A))$ is n-bounded in all cases. Therefore so is $(G : KC_G(A \cup K/A))$. By standard stability theory $C_G(A \cup K/A)/C_G(K)$ is isomorphic to a subgroup of $\text{Hom}(K/A, A)$, and the torsion subgroup of A has rank at most n. If char $F = 0$, it follows that $(G : KC_G(K))$ is n-bounded.

Suppose char $F > 0$. By 1.2 and 1.7 of [13] there are characteristic subgroups $A \leq B \leq C$ of K with $(B : A)$ and $(K : C)$ n-bounded and C/B a direct product of perfect simple groups. Thus

$$|\text{Hom}(K/A, A)| \leq (K : C)^n(B : A)^n$$

and so in this case too $(G : KC_G(K))$ is n-bounded. Since $(H : K)$ divides $n!$ it follows that $(G : KC_G(KUH/K))$ is n-bounded. By stability theory there is an embedding of $C_G(KUH/K) / AC_G(H)$ into the abelian group $H^1(H/K, A)$, which has finite exponent dividing $(H : K)$. Part (i) follows.

(ii) Here $(G : C_G(Z))$ divides $n!$ and so $(G : C_G(ZUH/Z))$ divides $m!n!$. Finally $C_G(ZUH/Z)/C_G(H)$ embeds into $\text{Hom}(H/Z, Z)$ and the latter has order dividing m^n. Part (ii) follows.

(iii) This follows at once from [11, 3.3]. It also follows from part (ii) and [6, 3.13].

(iv) This is the proposition of [13].

2. The locally finite-dimensional case

2.1. Let G be a subgroup of $\text{GL}(n, R)$, where R is a finitely generated integral domain, such that $u(G) = \langle 1 \rangle$ and suppose that G has an abelian normal subgroup A with G/A periodic. Then G is abelian by finite. If A is central in G, then the centre Z of G has finite index in G.

Proof. Firstly G/A is locally finite by [6, 4.9 (and 6.4, 5.9 and 5.11)]. Let $C = C_G(A)$. Then C' is locally finite by Schur's theorem (e.g. [6, lemma p. 213]) and by [6, 4.8] there is a normal subgroup N of G of finite index whose only torsion
elements are unipotent. Let \(B = C \cap N \). Then \([B, C] \leq C' \cap N \leq u(G) = \langle 1 \rangle\) and so \(B \) is abelian. It follows from [6, p. 2 and 1.12] that \((G : C)\) divides \(n!\) and therefore \(B \) has finite index in \(G \). If \(A \leq Z \), then \(C = G \) and \([B, G] = \langle 1 \rangle\). That is \(B \leq Z \).

2.2. Let \(G \) be a periodic group and let \(A \) be a \(G \)-module that is finitely generated as a \(Z \)-module. Then \(H^1(G, A) \) is periodic.

Proof. Periodic subgroups of \(GL(n, Z) \) are finite [6, 4.8]. Hence \(C = C_G(A) \) has finite index \(m \) say in \(G \). Now \(H^1(C, A) \equiv \text{Hom}(C, A) \) is certainly periodic. Also the image of corestriction of \(H^1(C, A) \) in \(H^1(G, A) \) contains \(mH^1(G, A) \). The result follows.

2.3. The Proof of Theorem B. (i) Let \(F \) be the centre of \(D \). If \(X \) is any finitely generated subgroup of \(G \), then \(\dim_F F[X] \) is finite and \(X \) carries a Zariski topology over \(F \). If \(Y \) is a subgroup of \(X \), then \(Y^0 \) denotes the connected component of the identity of \(Y \) in the induced topology. It does not depend on the choice of \(X \). As in [7] we set \(G^+ = \bigcup X^0 \), where \(X \) runs over all finitely generated subgroups of \(G \). Then \(G^+ \) is a normal subgroup of \(G \) with \(G/G^+ \) locally finite. We need a relativised version of this construction. Set \(A = \bigcup (H \cap X)^0 \) where \(X \) is as before. Then \(A \) is a normal subgroup of \(G \) with \(A \leq H \cap G^+ \) and \(H/A \) locally finite. (Always \(H^+ = A \) but we need not have equality.)

Let \(K \) be any \(\mathcal{P}(X \cup L_1 \mathcal{R}) \)-subgroup of \(GL(n, D) \). By the linear case and a simple transfinite induction \(K \) is locally soluble-by-finite and so \(K^+ \) is locally soluble by [7, 5.4]. Thus \(H \) is abelian by locally-finite by [7, 2.6]. Let \(g \in A' \). There exists a finitely generated subgroup \(X \) of \(G \) such that \(g \) lies in the derived group of \(Y = (H \cap X)^0 \). By Theorem C, part (i) and 2.1 the group \(Y/u(Y) \) is abelian. Thus \(g \) is unipotent and \(A' \leq u(H) = \langle 1 \rangle \). That is \(A \) is abelian.

Let \(a \in A \), \(h \in H \) and \(g \in G^+ \). There exists a finitely generated subgroup \(X \) of \(G \) with \(a \) and \(h \) in \(X \) and \(g \) in \(X^0 \). Now \(u(A \cap X) \leq u(A) = \langle 1 \rangle \). Hence by part (iii) of Theorem C we have that \([A \cap X, X^0] = \langle 1 \rangle \). Thus \([a, g] = 1\) and so \([A, G^+] = \langle 1 \rangle \). Also \((H \cap X)^0 \leq A \cap X \) by the definition of \(A \) and consequently \(A \cap X \) is closed in \(H \cap X \). Therefore \([H \cap X, X^0] \leq A \). It follows that \([h, g] \in A \) and that \([H, G^+] \leq A \).

Again let \(g \in G^+ \). Then \([H, g] \leq A \) and \(A \langle g \rangle \) is an abelian normal subgroup of \(H \langle g \rangle \). Let \(U = u(A \langle g \rangle) \). By [8, 1.1] and [7, 3.1] we have that \(gU \) lies in \(A(H \langle g \rangle)/u \) and so \([H, g]U/U \) is finitely generated. But \(H \cap U = \langle 1 \rangle \) and therefore \(A_g = [H, g] \) is a finitely generated subgroup of \(A \). Also \(A_g \) is normal in \(H \). By 2.2 the group \(H^1(H/A, A_g) \) is periodic. Now \(hA \rightarrow [h, g] \) is a derivation of \(H/A \) into \(A_g \) and so its \(r \)-th power for some positive integer \(r \) is inner. Thus far some \(a \in A_g \) we have

\[
[h, g^r] = [h, g]^r = [h, a]
\]

for every \(h \) in \(H \).

Thus \(g' \in aC_G(H) \) and so \(G^+/AC_{G^*}(H) \) is periodic. Since \(G^+ \) stabilizes the series \(\langle 1 \rangle \leq A \leq H \), the group \(G^+/C_{G^*}(H) \) is abelian. It follows that \(G/AC_{G^*}(H) \) is locally finite.
(ii) We prove that $A \leq Z$. It will then follow from (i) that $G/C_G(H)$ is locally finite. Let $a \in A$ and $h \in H$. There is a finitely generated subgroup X of G with $a \in (H \cap X)^0$ and $h \in X$. Now $(H \cap X)/u(H \cap X)$ is centre by finite by 2.1 and so $[a, h]$ is unipotent. Thus $[A, H] \leq u(H) = \langle 1 \rangle$ and $A \leq Z$ as claimed.

(iii) This follows from [7, 2.7].

(iv) By [7, 1.2d] the group H is a central product of nilpotent groups H_i. A glance at the proof [7, 4.2] shows that the H_i can be chosen to be characteristic in H and so normal in G. (In this proof the H_i are the primary components of H modulo its centre.) By [11, 3.1] we have that $H_i \leq A(G)$ for each i. Part (iv) follows.

(v) We may pass to $G/u(G)$ via [7, 3.1] and assume that G is completely reducible subgroup of $\text{GL}(n, D)$. By point 4 of [9] the F-algebra $R = F[G] \leq D^{n \times n}$ is semisimple Artinian. Let $R = \bigoplus R_i$, where each R_i is simple and let $\pi_i : R \to R_i$ be the natural projection. Then the structure of $G/C_G(H \pi_i)$ is given by the results of [13] and [14]. In particular each $G/C_G(H \pi_i)$ is locally finite. Clearly $C_G(H) = \bigcap_i C_G(H \pi_i)$ and the proof of Theorem B is complete.

Part of the proof of (v) above shows the following, which gives the connection between the basic hypotheses of Theorems A and B.

2.4. Let G be a skew linear group over a locally finite-dimensional division algebra over the field F such that $u(G) = \langle 1 \rangle$ (e.g., if G is completely reducible). Then G is a subdirect product of a finite number of absolutely irreducible skew linear groups over locally finite-dimensional division F-algebras.

3. Absolutely irreducible groups

Throughout this section n is a positive integer and D is a division ring with centre F.

3.1. Let A be an abelian normal subgroup of the absolutely irreducible subgroup G of $\text{GL}(n, D)$. Then $G/C_G(A)$ is periodic.

Proof. Choose if possible a counterexample (D, G, A) with n minimal. Set $J = F[A] \leq D^{n \times n}$. By [13, 2.5] the ring J is semiprime and certainly J has the maximal condition on annihilators. Thus J has only a finite number r of minimal prime ideals p_i and $\bigcap p_i = \{0\}$, see [1, 1.16]. Also each p_i is an annihilator ideal of J. Clearly G permutes the p_i; let $Y = \bigcap N_G(p_i)$. Then $(G : Y)$ is finite and $T = F[Y]$ is Artinian by [3, point 4] and semiprime by [13, 2.5]. Thus T is semisimple, say $T = \bigoplus_{i=1}^r T_i$ where the T_i are simple Artinian of degree n_i say. Since $D^{n \times n}$ can contain at most n pairwise orthogonal idempotents $\sum n_i \leq n$. Let $\pi_i : T \to T_i$ be the natural projection.
Suppose that \(s > 1 \). Then each \(n_i < n \) and by the choice of \(n \) each \(Y/C_y(A \pi_i) \) is periodic. But \(C_y(A) = \bigcap_i C_y(A \pi_i) \). Therefore \(Y/C_y(A) \) and hence \(G/C_G(A) \) is periodic. This contradiction shows that \(s = 1 \) and \(T \) is simple. Now \(Y \) is an ideal of \(T \) with \(l_i(p_i) \cdot p_i Y = \{ 0 \} \) and \(p_i = r_l l_j(p_i) \). Hence \(r = 1 \) and \(J \) is domain. Then \(C = J \setminus \{ 0 \} \) is a right divisor set of \(J \) and so also of \(T \) and \(\bigcup_{c \in C} r_T(c) \) is an ideal of \(T \). As \(T \) is simple the ideal is \(\{ 0 \} \); that is, \(T \) is torsion-free as right \(J \)-module. By [13, 2.1] the ring \(T \) is a crossed product of \(C_T(A) \) by \(G/C_G(A) \) and consequently \(G/C_G(A) \) is periodic by [13, 2.2]. This contradicts the assumption that we chose a counterexample and completes the proof of 3.1.

Let \(S_f \) be the subgroup-of-finite-index operator and let \(\mathcal{S} \) be a class of groups satisfying \(QS_f \mathcal{S} = \mathcal{S} \). The example we have in mind is \(\mathcal{S} = P(\mathfrak{U} \cup L \mathfrak{F}) \).

3.2. Let \(H \) be a normal \(\mathcal{S} \)-subgroup of the absolutely irreducible subgroup \(G \) of \(GL(n, D) \). Suppose that \(H \) does not contain an abelian normal subgroup of \(G \) with \(H/A \) locally finite and that \(D, G \) and \(H \) have been chosen so that \(n \) is minimal. If \(N \) is any normal subgroup of \(G \), then the subring \(F[N] \) of \(D^{n \times n} \) is prime.

Proof. The ring \(S = F[N] \) is certainly semiprime [13, 2.5], so assume that \(S \) is not prime. \(S \) has the maximal condition on annihilators and by [1, 1.16] again has only a finite number \(r > 1 \) of minimal prime ideals \(p_i \), \(\bigcap p_i = \{ 0 \} \) and \(r_5 l_5(p_i) = p_i \). Set \(Y = \bigcap_i N_G(p_i) \). Then \(Y \) is a normal subgroup of \(G \) of finite index containing \(N \); also \(L_i = l_5(p_i) \neq \{ 0 \} \) and \(l_i p_i Y = \{ 0 \} \), so \(p_i Y \) is a proper ideal of \(T = F[Y] \) and \(T \) is not simple.

\(T \) is semisimple Artinian ([3] and [13, 2.5] again). Let \(T = \bigoplus_{i=1}^s T_i \) where \(T_i \) is simple Artinian of degree \(n_i \). Then \(s > 1 \) and \(\sum n_i \leq n \) and so each \(n_i \leq n \). Let \(\pi_i : T \to T_i \) be the natural projection.

Now \((H \cap Y) \pi_i \in QS_f \mathcal{S} = \mathcal{S} \), so by the minimality of \(n \) there are normal subgroups \(A_i \) of \(Y \) with \((H \cap Y)/A_i \) locally finite and \(A_i \pi_i \) abelian. Then \(A_0 = \bigcap_i A_i \) is an abelian normal subgroup of \(Y \) with \(A_0 \leq H \cap Y \) and \((H \cap Y)/A_0 \) locally finite. Since \((G : Y) \) is finite, \(A = \bigcap_{g \in G} A_0^g \) is an abelian normal subgroup of \(G \) with \(A \leq H \) and \(H/A \) locally finite. This contradiction proves that \(S \) is prime.

3.3. Let \(H \) be a normal subgroup of the absolutely irreducible subgroup \(G \) of \(GL(n, D) \) such that \(H \) is centre by locally-finite and \(G/C_G(H) \) is not periodic. Suppose that \(D, G \) and \(H \) have been chosen so that \(n \) is minimal. If \(N \) is any normal subgroup of \(G \), then the subring \(F[N] \) is prime.

Proof. Repeat the first two paragraphs of the proof of 3.2. Let \(K = H \cap Y \). Then by the minimality of \(n \) each \(Y/C_y(K \pi_i) \) is periodic. Hence \(Y/C_y(K) \) is periodic and therefore so too is \(Y/C_y(K \cup H/K) \).

Let \(A \) be the centre of \(H \). By hypothesis \(H/A \) is locally finite and \(G/C_G(A) \) is periodic by 3.1. Schur's theorem yields that \(H' \) is locally finite, so \(H \) has a character-
istic locally finite subgroup L with H/L torsion-free abelian. The isolator of AL/L in H/L is H/L. Thus $[H, C_G(A)] \leq L$. Set $C = C_G(KUH/KUA)$ and let B denote the centre of K. Then G/C is periodic and by stability theory $C/C_G(H)$ is isomorphic to a subgroup of $\text{Der}(H/K, B \cap L)$. The latter is periodic abelian since H/K is finite and $B \cap L$ periodic. Consequently $G/C_G(H)$ is periodic, a contradiction that completes the proof.

3.4. Let G be a $P(\mathfrak{A} \cup L \mathfrak{B})$ group. Then G has a characteristic series of finite length whose factors are abelian or locally finite.

Proof. Certainly G has a characteristic series of finite length whose factors are either torsion-free locally nilpotent or locally finite. Hence we may assume that G is torsion-free and locally nilpotent.

G has a series $1 = G_0 \leq G_1 \leq \cdots \leq G_r = G$ where the G_{2i+1}/G_{2i} are abelian and the G_{2i}/G_{2i-1} are locally finite. We prove by induction on r that G is soluble of derived length at most r. The result will then follow.

By induction applied to G_{2r-2} the subgroup $H = G_{2r-1}$ is soluble of derived length at most r. Let X be any finitely generated subgroup of G. Regard X as a unipotent linear group over \mathbb{C}. The Zariski closure Y of $H \cap X$ in X is soluble of derived length at most r and X/Y is finite and isomorphic to a unipotent linear group over \mathbb{C} (use [6, 5.11, 5.9 and 6.6]). Therefore $X = Y$ and G is soluble of derived length at most r as required.

3.5. Let H be a normal $P(\mathfrak{A} \cup L \mathfrak{B})$-subgroup of the absolutely irreducible subgroup G of $\text{GL}(n, \mathbb{D})$. Then H contains an abelian normal subgroup A of G with H/A locally finite.

Proof. Choose if possible a counterexample D, G, H with n minimal. By 3.4 there is a characteristic series of H of finite length whose factors are abelian or locally finite. Choose D, G, H and n as above and with this series of minimal length. Then H contains normal subgroups.

$\langle 1 \rangle \leq C \leq K \leq B \leq H$

of G with C and B/K abelian and K/C and H/B locally finite.

By 3.1 the group $G/C_G(C)$ is periodic. Replace K and B by $C_K(C)$ and $C_B(C)$. Thus we may assume that C is central in B. By Schur’s theorem K' is locally finite, so by the theorem of [13] the group $G/C_G(K')$ is locally finite. Replace B by $C_B(K')$. We have now reduced the problem to the case where B is soluble.

By 3.2 and [12, 4.3.3] there is a characteristic subgroup E of B such that $G/\Delta_G(E)$ is periodic and $\Delta_B(E) \leq E$. In particular, $H/\Delta_B(E)$ is locally finite. But $\Delta_B(E) \leq E$ is an FC-group and so is locally finite modulo its centre A. Then A is an abelian normal subgroup of G with $A \leq H$ and H/A locally finite.
3.6. Let G and H be as in 3.5. Then $S = F[H]$ is a semiprime Goldie subring of $R = D^{n \times n}$ whose (classical) ring of quotients embeds naturally into R.

Proof. Let A be as in 3.5 and set $J = F[A]$. Then J and S are semiprime. Let C be the set of regular elements of J. Then C is a right divisor set in both S and R, since C is normalized by G, and $T = \bigcup_{c \in C} I_R(c)$ is an ideal of the simple ring R. Thus $T = \{0\}$. Any left regular element of R is a unit of R and therefore $K = JC^{-1} \leq SC^{-1} \leq R$.

Now K is a direct sum of finitely many fields and is normalized by H ([1, 1.16] again). Then $SC^{-1} = K[H]$ is locally Artinian (meaning that every finite subset lies in an Artinian subring) and so SC^{-1} is semisimple Artinian by [13, 2.6]. Right regular elements of S are right regular in SC^{-1} and so are units. Therefore SC^{-1} is the ring of quotients of S and by Goldie’s theorem [1, 1.27] the ring S is right Goldie. Similarly it is left Goldie.

In a private communication R.L. Snider has provided the author with a proof of the following generalization of the proposition of [12].

3.7. (R.L. Snider). Let H be a normal subgroup of the absolutely irreducible subgroup of G of $GL(n, F)$ with G/H locally finite. Then the subring $F[H]$ of $D^{n \times n}$ is semisimple Artinian.

In fact the only use we make here of 3.7 is covered by (b) of the proposition of [12].

3.8. Let H be a normal subgroup of the absolutely irreducible subgroup G of $GL(n, D)$ and suppose that H modulo its centre A is locally finite. Then $G/C_G(H)$ is periodic.

Proof. Choose if possible a counterexample D, G, H with n minimal. By 3.3 the subring $F[N]$ is prime for every normal subgroup N of G. In particular, $F[A]$ is a domain and its field J of fractions embeds naturally into $R = F[G]$, for example by 3.6. Of course H centralizes J and G normalizes J. Replace H and G by HJ^* and GJ^*. Thus we may assume that $J^* = A$ and $J = F[A]$.

By Schur’s theorem H' is locally finite. Let T be the maximal locally finite subgroup of H and let Z denote the centre of T. Then $K = J[Z]$ is a field, being commutative, prime and [13, 2.4] semisimple. Let $C_0 = C_G(T)$ and $C = C_G(A \cup T)$. By the theorem of [13] the group G/C_0 is locally finite and hence $F[C_0]$ is Artinian by 3.7. Now C centralizes AT/T and hence also H/T. By elementary stability theory $[H, C] \leq Z \subseteq K$. Hence by [13, 3.1] applied with C_0 in place of G the group $K*C_0/(K*C_{K*C}(H))$ is periodic. As remarked above G/C_0 is locally finite, and $G/C_G(A)$ is periodic by 3.1. Therefore, $G/(C \cap K*C_{K*C}(H))$ is periodic. Now

$$C \cap K*C_{K*C}(H) \leq N_{K*C}(H) \cap K*C_{K*C}(H) = N_{K*}(H)C_{K*C}(H).$$
Also J is a central subfield of the prime ring, $S = F[H]$ and S is locally finite-dimensional over J. By [13, 2.6] again, S is simple Artinian. Apply Theorem B to the normal subgroup H of $L = N_{K^*}(H)H \subseteq S$. Then $L/C_L(H)$ is locally finite. But then so too is $N_{K^*}(H)/C_{K^*}(H)$ and hence $G/C_G(H)$ is periodic. This contradiction completes the proof of 3.8.

3.9. Let $A \leq H$ be normal subgroups of the absolutely irreducible subgroup G of $GL(n, D)$ with A abelian with H/A locally finite. Then $G/C_G(H)$ is abelian by periodic.

Proof. Let $K = C_H(A)$ and denote the centre of K by Z. Now $G/C_G(K)$ is periodic by 3.8 and $[H, C_G(K)] \leq C_H(K) = Z$. Thus by stability theory $C_G(K)/C_G(H)$ is isomorphic to a subgroup of the abelian group $\text{Der}(H/K, Z)$. The point is proved.

3.10. The proof of Theorem A. Part (i) of Theorem A follows from 3.5 and 3.9 and part (ii) follows from 3.8.

3.11. Let p be a prime and C a Prüfer p^{∞}-group. Then $\text{Der}(C, ZC)$, for ZC the group ring, is uncountable.

Proof. Let $\langle a \rangle$ be a cyclic group of order pq and set $V = \mathbb{Z}\langle a \rangle$. Then $\text{Der}(\langle a \rangle, V) \cong (a - 1)V$ and $\text{Der}(\langle a^p \rangle, V) \cong (a^p - 1)V$. Further with the obvious isomorphisms

$$
\text{Der}(\langle a \rangle, V) \xrightarrow{\text{Res}} \text{Der}(\langle a^p \rangle, V)
$$

commutes and $\text{rank}_\mathbb{Z}(a - 1)V = pq - 1$ while $\text{rank}_\mathbb{Z}(a^p - 1)V = pq - p$. Thus the restriction map of $\text{Der}(\langle a \rangle, V)$ to $\text{Der}(\langle a^p \rangle, V)$ is onto but not one-to-one. Let C_i be the subgroup of C of order p^i. Then $\text{Der}(C, ZC) \cong \lim_{\leftarrow} \text{Der}(C_i, ZC)$, the maps being restrictions. The result follows.

3.12. The Main Counterexample. Let S be a locally finite group and V a \mathbb{Z}-torsion-free faithful right S-module, written multiplicatively. Let $C \leq \text{Der}(S, V)$. There exists a torsion-free group T with a homomorphism π of T onto S such that $B = \ker \pi$ is abelian (e.g., set $T = F/R'$ for $R \rightarrow F \rightarrow S$ a free presentation of S). Make $V \times C$ into a T module via

$$(vc)' = v^\ell t^n (tn)'^c \quad \text{for} \quad v \in V, \ c \in C \text{ and } t \in T.$$

The split extension $W = T[VC$ is torsion-free and locally abelian-by-finite. Note that the action of $c \in C$ as a derivation is given by $t\pi \mapsto [c, t]$.

Let F be a field. By [2] the group ring FW is a domain and thus by Goldie's theorem [1, 1.28] is an Ore domain. Let D be its division ring of quotients and set $K = F(BVC)$, the quotient field of $F[BVC]$ in D. Then $T \leq D^*$ normalizes $A_0 = K^*$. Set $G = TA_0 \leq D^*$. Then A_0 is abelian and since S acts faithfully on $V \leq A_0$, we have $T \cap A_0 = B$ and $G/A_0 \cong S$. As S is locally finite, so $K[T] = F[G]$ is a division ring and so $F[G] = D$. Therefore, G is absolutely irreducible.

Suppose that A_1 is an abelian normal subgroup of G with G/A_1 periodic. If $t \in T \setminus B$ there exists $v \in V$ with $v^t \neq v$. There is a positive integer r with $v^r \in A_1$. Since $v^r \neq v$, it follows that $A_0 \geq C_G(A_0 \cap A_1) = A_1$. This has two immediate consequences. Firstly, $C_G(A_0) = A_0$, so in Theorem A, part (ii) the group $\langle G/C_G(H) \rangle$ there can be any locally finite group. Secondly, since $A_1 \leq A_0$, nothing more can be said about the group $\langle H/A \rangle$ of Theorem A, part (i).

Let $L = F(BV) \subseteq K$. Since V is \mathbb{Z}-torsion-free so too is $\text{Der}(S, V)$. Let C_0 be a maximal \mathbb{Z}-independent subset of $\text{Der}(S, V)$ and set $C = \langle C_0 \rangle$. Then $R = L[C_0] \leq K$ is a polynomial ring over the field L in the elements of C_0 and as such is a unique factorization domain [16, p. 38]. Also $[C, T] \leq V \leq L$, so T normalizes R and hence permutes its atoms (=irreducible elements). The elements of C_0 are non-associate atoms. Let $C_0 \cap Y_0$ be a full set of non-associate atoms of R, where $C_0 \cap Y_0 = 0$, and set $Y = \langle Y_0 \rangle$. By the unique factorization theorem $K^* = L^* \times C \times Y$. Now T normalizes the set $L^*C_0 \cup L^*Y_0$ of all atoms and the set L^*C_0. Also $L^*C_0 \cap L^*Y_0 = \emptyset$. Therefore T normalizes L^*Y_0 and consequently $A = L^*Y = \langle L^*Y_0 \rangle$ is a T-submodule of K satisfying $K^* = A \times C$ and $L^* \leq A$.

Set $H = TA$. Then $G = TK^* = HC$ and $H \cap C = H \cap \langle K^* \cap C = (T \cap K^*)A \cap C = BA \cap C = \langle 1 \rangle$. Also

$$[C, H] = [C, T] \leq V \leq H,$$

so H is normal in G. Clearly $C \leq C_G(A \cup H/A)$ and since S acts faithfully on V, we have that $C_H(A \cup H/A) = A$. Let I be the set of all $c \in C$ for which there exists $a \in A$ such that $[a, t] = [c, t]$ for all $t \in T$. Then I is a subgroup of C. If $x \in C_G(H)$, then $x = hc$ for some $h \in H$ and $c \in C$. Then $c \in C_G(A \cup H/A)$, so $h \in C_H(A \cup H/A) = A$ and $[c, t] = [h^{-1}, t]$ for all $t \in T$. Hence $AC_G(H) \leq AI$ and clearly $I \leq AC_G(H)$. Therefore

$$G/AC_G(H) = HC/AI \cong S \times (C/I) \quad \text{and} \quad G/HC_G(H) \cong C/I.$$

We show now that S and V can be chosen so that C/I contains a free abelian group of uncountable rank. Assume that S is infinite with no non-trivial finite homomorphic images, set $V = ZS$ and suppose that $C \leq \text{Der}(S, V)$ has cardinal greater than the cardinal of S. For example, S could be any Prüfer group by 3.11.

Let J be the subgroup of C of inner derivations; that is, J is the set of all $c \in C$ for which there exist $v \in V$ with $[v, t] = [c, t]$ for all $t \in T$. Then $J \leq I$ and $|J| \leq |S| < |C|$. Therefore C has a Z-basis $C_0 = C_1 \cup C_2$ with $C_1 \cap C_2 = \emptyset$, $J \leq \langle C_1 \rangle$ and $|C_2| = |C|$. We prove that $I \leq \langle C_1 \rangle$. The claim above about C/I will then be proved. Let $a \in A$ and $c \in C$ be such that $[a, t] = [c, t]$ for all $t \in T$.

Consider first the case where \(a \in L \). By hypothesis there is now a \(\mathbb{Z} \)-basis \(X \) of \(V \) normalized by \(S \). Then \(T \) normalizes the polynomial ring over the field \(F(B) \) in the elements of \(X \). Just as with \(R \) and \(K^* \) above, the unique factorization theorem yields that \(L^* = V \times W \) for some \(T \) submodule \(W \supseteq F(B)^* \) of \(L^* \). Then \(a = uv \) for some \(u \in V \) and \(w \in W \). If \(t \in T \), then

\[
[v, t][w, t] = [a, t] = [c, t] \in V.
\]

Hence \([w, t] \in V \cap W = \langle 1 \rangle \) and \([v, t] = [c, t] \). Therefore \(c \in J \).

Now consider the case where \(a \notin L^* \). Then \(a = ly \) for some \(l \in L^* \) and \(y \in Y \setminus \langle 1 \rangle \). Also \([a, T] \cup [l, T] \subseteq L^* \), so \([y, T] \subseteq L^* \) and \(T \) normalizes \(L^*y \). Now \(y = \prod y_i^{m_i} \) for some non-zero integers \(m_i \) and atoms \(y_i \in Y_0 \) of \(R \). By the uniqueness of factorization again \(T \) permutes the \(L^*y_i \). But \(S \) has no non-trivial finite homomorphic images and therefore \(T \) normalizes each \(L^*y_i \).

Consider for example \(y_1 \). We have \(y_1 = \alpha_1 c_1 + \cdots + \alpha_s c_s \) say, where the \(\alpha_i \in L^* \) and the \(c_i \) are distinct monomials on \(C_0 \). If \(t \in T \), then for some \(\beta \in L^* \) we have \(y_1' = \beta y_1 \). Hence \(\alpha_i' [c_i, t] = \alpha_i \beta \) for all \(i \) and so \([c_i, t] = [\alpha_i^{-1}, t] \) for all \(t \in T \). By the case \('a \in L' \) this implies that each \(c_i^{-1} c_i \in J \). It also follows that \(T \) centralizes \(\alpha_i^{-1} c_i \) for each \(i \). Thus \(y_1 = \alpha_1 c_1 d_1 \) where

\[
d_1 = 1 + \alpha_1^{-1} \alpha_2 c_1^{-1} c_2 + \cdots + \alpha_1^{-1} \alpha_s c_1^{-1} c_s \in C_{L^*}(T).
\]

Since \(y_1 \in Y_0 \) we have that \(s > 1 \) and \(d_1 \notin L^* \). Also \(y_1 \) is an atom and the denominators of the \(c_i^{-1} c_i \) lie in \(\langle C_1 \rangle \) since \(J \subseteq \langle C_1 \rangle \). Therefore \(c_1 \in \langle C_1 \rangle \).

We have now shown that \(a = ly = l'c'd' \) where \(l' \in L^*, c' \in \langle C_1 \rangle \) and \(d' \in C_{K^*}(T) \). Then \([c, t] = [a, t] = [l', t][c', t] \) and \([c(c')^{-1}, t] = [l', t] \) for all \(t \in T \). By the case \('a \in L' \) again \(c(c')^{-1} \in J \) and therefore \(c \in Jc' \subseteq \langle C_1 \rangle \). Thus \(J \subseteq \langle C_1 \rangle \) as claimed.

The construction is complete. That is we have built a metabelian normal subgroup \(H \) of an absolutely irreducible skew-linear group \(G \) such that \(G/HC_G(H) \) contains a free abelian subgroup of uncountable rank. There is no restriction on the characteristic. This shows that in Theorem A, part (i) the conclusion that \(G/HC_G(H) \) is abelian by periodic cannot strengthened to periodic.

References