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It is well known that in perturbation theory existence of quasi-degenerate states can rearrange the order 
counting. For a heavy quarkonium system, naively, enhanced effects (l-changing mixing effects) could 
contribute already to the first-order and third-order corrections to the wave function and the energy 
level, respectively, in expansion in αs . We present a formulation and note that the corresponding (lowest-
order) corrections vanish due to absence of the relevant off-diagonal matrix elements. As a result, in 
the quarkonium energy level and leptonic decay width, the enhanced effects are expected to appear, 
respectively, in the fifth- and fourth-order corrections and beyond.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Heavy quarkonium, the bound state of a heavy quark–antiquark pair, is a prime example of a strongly interacting system whose 
properties are well documented in perturbative QCD. With the advent of new theoretical framework, such as effective field theory (EFT) 
and threshold expansion technique, as well as proper treatment for decoupling infrared degrees of freedom, the heavy quarkonium system 
has become an ideal laboratory for precision tests of predictions of perturbative QCD with respect to various experimental data and lattice 
QCD predictions.

The state-of-the-art computational results in this field comprise the next-to-next-to-next-to-leading order (NNNLO) energy levels of 
heavy quarkonium [1–3], the NNNLO pair-production cross section of heavy quarks near threshold [4,5], and the leptonic decay width 
of ϒ(1S) state [6]. These calculations utilize the modern EFT, potential-nonrelativistic QCD (pNRQCD) [7,8], for systematically organiz-
ing the perturbative expansions in αs and v (velocity of heavy quarks) in a sophisticated manner. This EFT describes interactions of a 
non-relativistic quantum mechanical system (dictated by the Schrödinger equation) with ultrasoft gluons, which is organized in multipole 
expansion. We can benefit from methods and knowledge of perturbation theory of quantum mechanics therein.

It is widely known that quasi-degenerate systems need special care in perturbation theory of quantum mechanics [9], however, thus 
far the relevant consideration seems to be missing in the computation of the aforementioned NNNLO heavy quarkonium observables.1

In perturbative expansion of the heavy quarkonium system, the leading-order Hamiltonian is that of the Coulomb system whose energy 
eigenvalues are labeled only by the principal quantum number n. The first-order correction resolves the degeneracy in the orbital angular 
momentum l, while the second-order correction resolves the degeneracy in the total spin s and total angular momentum j. Once these 
features are properly taken into account in perturbative calculations there are enhanced contributions which rearrange the order counting. 
These are the mixing effects between different l states for the same n. One finds that naively these start from the third-order corrections 
to the heavy quarkonium energy levels and from the first-order corrections to the wave functions.2 The latter would induce second-order 
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1 In the computation of the NNLO energy levels the corrections from quasi-degenerate states for the n ≤ 3 states were explicitly considered and found to be absent [10].
2 As a simple example, consider a matrix

(
0 x2 V 2

x2 V ∗ xV

)
.
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corrections to the heavy quark threshold production cross section (or the quarkonium leptonic decay width). By explicit computation the 
relevant lowest order off-diagonal matrix elements for these corrections vanish. Hence, these enhanced corrections are pushed to higher 
orders. We present a necessary formulation, an explicit computation at the lowest order, and discuss further higher-order effects.

It is not our purpose to claim originality of the present work but rather to recollect relevant information and to clarify the basis for 
systematic computation. A closely related subject is the inclusion of transitions (mixings) between two quasi-degenerate states given by 
off-diagonal matrix elements of interaction operators considered in many potential-model calculations [11–14]. However, (somewhat to 
our surprise) systematic order counting in light of pNRQCD in expansion in αs and v has not been addressed so far.

In the case of QED, it was already pointed out in the late 1940s and 1950s that contributions from quasi-degenerate states to the 
positronium energy levels do not appear at and below order α6 (order α4 relative to the LO energy levels); see Ref. [15] and references 
therein. However, the situations of positronium and heavy quarkonium systems differ in some aspects and it is worth clarifying the latter 
case explicitly. The crucial difference stems from the fact that the degeneracy of the heavy quarkonium energy level is lifted at α3

s whereas 
the degeneracy is lifted at α4 in the case of positronium.

2. Perturbation theory for quasi-degenerate system

Consider the Schrödinger equation of heavy quarkonium(
H (0) +

∞∑
i=1

εi V (i)

)
|�nlsj〉 = Enlsj |�nlsj〉 , (1)

which dictates the quantum mechanical subsystem in pNRQCD. An expansion parameter ε (corresponding to αs or v) is introduced,3 and 
a unique order in ε is assigned to each potential operator V (i) . The definitions of H (0), V (1), . . . can be found, for instance, in [16,3], but 
we do not need their explicit forms in this section. The energy level and the wave function are labeled with (n, l, s, j). The operators H (0)

and V (1) preserve l, s and j. Furthermore, H (0) and V (i) preserve s and j (see Sec. 4), hence we suppress these two labels in the following. 
(|nl〉 = |nlsj〉 represents an eigenstate of H (0) .)

The perturbative expansion of the energy level is given by

Enlsj = E(0)
n + εE(1)

nl + ε2

⎡
⎣〈nl| V (2) |nl〉 +

∑
n′ �=n

| 〈nl| V (1) |n′l〉 |2
E(0)

n − E(0)

n′

⎤
⎦

+ ε3

⎡
⎣〈nl| V (3) |nl〉 +

∑
l′ �=l

| 〈nl| V (2) |nl′〉 |2
E(1)

nl − E(1)

nl′
+

∑
n′ �=n

〈nl| V (2) |n′l〉 〈n′l| V (1) |nl〉
E(0)

n − E(0)

n′

+
∑
n′ �=n

〈nl| V (1) |n′l〉
E(0)

n − E(0)

n′

{
〈n′l| V (2) |nl〉 − E(1)

nl

〈n′l| V (1) |nl〉
E(0)

n − E(0)

n′′
+

∑
n′′ �=n

〈n′l| V (1) |n′′l〉 〈n′′l| V (1) |nl〉
E(0)

n − E(0)

n′′

⎫⎬
⎭

⎤
⎦ +O(ε4), (2)

where we use short-hand notations E(0)
n ≡ 〈nl| H (0) |nl〉, E(1)

nl ≡ 〈nl| V (1) |nl〉. The fourth- and fifth-order corrections will be given in eqs. (16), 
(17). The subscript of E(0)

n indicates that the leading energy eigenvalue depends only on n, and that of E(1)

nl indicates that degeneracy in l
is resolved at the first-order. The degeneracy is fully resolved at the second order.

The ε3-term proportional to | 〈nl| V (2) |nl′〉 |2 in eq. (2) is the main focus of this letter. This correction has not been considered explicitly 
in the previous studies [1–3]. Since the operator V (2) is accompanied by ε2, naive order counting indicates that the | 〈nl| V (2) |nl′〉 |2 term 
may be order ε4. Due to the quasi-degeneracy of the states |nl〉 and |nl′〉, however, the denominator (E(1)

nl − E(1)

nl′ ) compensates one ε, 
rendering the term to be order ε3.

The perturbative expansion of the wave function is given by

|�nlsj〉 = |nlsj〉 +
∞∑

i=1

εi

⎡
⎣∑

l′ �=l

|nl′sj〉 c(i)
nl′;nl

E(1)

nl − E(1)

nl′
+

∑
n′ �=n, l′

|n′l′sj〉 d(i)
n′l′;nl

E(0)
n − E(0)

n′

⎤
⎦ , (3)

where |�nlsj〉 is normalized as 〈nlsj|�nlsj〉 = 1. The coefficients are given by

c(1)

nl′;nl = 〈nl′| V (2) |nl〉 , d(1)

n′l′;nl = 〈n′l′| V (1) |nl〉 , (4)

c(2)

nl′;nl = 〈nl′| V (3) |nl〉 + 〈nl′| V (2) |nl′〉 c(1)

nl′;nl

E(1)

nl − E(1)

nl′
+

2∑
i=1

∑
n′′ �=n, l′′

〈nl′| V (3−i) |n′′l′′〉 d(i)
n′′l′′;nl

E(0)
n − E(0)

n′′
− E(2)

nl

c(1)

nl′;nl

E(1)

nl − E(1)

nl′
, (5)

Its energy eigenvalues are given by −x3|V 2|2/V 1 and xV 1 + x3|V 2|2/V 1 up to O(x3), and the corresponding eigenvectors are given by (1, −xV ∗
2 /V 1) and (xV 2/V 1, 1) up to 

O(x). The appearance of V 1 in the denominator signals enhanced contributions.
3 For simplicity we neglect the electromagnetic interaction of quarks. In the case of bottom quark, numerically its effects are small even compared to the NNNLO corrections 

in αs . The electric charge of bottom quark Q b = −1/3 plays a role of an extra suppression factor in addition to the small QED coupling constant α 
 1/137, as compared to, 
e.g., αs(mb) 
 0.23.
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d(2)

n′l′;nl = 〈n′l′| V (2) |nl〉 + 〈n′l′| V (1) |nl′〉 c(1)

nl′;nl

E(1)

nl − E(1)

nl′
+

∑
n′′ �=n, l′′

〈n′l′| V (1) |n′′l′′〉 d(1)

n′′l′′;nl

E(0)
n − E(0)

n′′
− E(1)

nl

d(1)

n′l′;nl

E(0)
n − E(0)

n′
, (6)

c(3)

nl′;nl = 〈nl′| V (4) |nl〉 +
2∑

i=1

∑
l′′ �=l

〈nl′| V (4−i) |nl′′〉 c(i)
nl′′;nl

E(1)

nl − E(1)

nl′′
+

3∑
i=1

∑
n′′ �=n, l′′

〈nl′| V (4−i) |n′′l′′〉 d(i)
n′′l′′;nl

E(0)
n − E(0)

n′′
−

2∑
i=1

E(4−i)
nl

c(i)
nl′;nl

E(1)

nl − E(1)

nl′
,

(7)

d(3)

n′l′;nl = 〈n′l′| V (3) |nl〉 +
2∑

i=1

∑
l′′ �=l

〈n′l′| V (3−i) |nl′′〉 c(i)
nl′′;nl

E(1)

nl − E(1)

nl′′
+

2∑
i=1

∑
n′′ �=n, l′′

〈n′l′| V (3−i) |n′′l′′〉 d(i)
n′′l′′;nl

E(0)
n − E(0)

n′′
−

2∑
i=1

E(3−i)
nl

d(i)
n′l′;nl

E(0)
n − E(0)

n′
.

(8)

Here, E(k)

nl denotes the coefficient of εk of Enlsj [cf., eq. (2)], and it is understood that c(i)
nl′;nl = 0 if l′ = l. As can be seen, an enhanced

contribution proportional to c(1)

nl′;nl/
[

E(1)

nl − E(1)

nl′
]

appears already at the first order for the wave function. A derivation of the perturbative 
expansions of Enlsj and |�nlsj〉 is given in the appendix.

Physical quantities, such as the quark pair production cross section near threshold in e+e− collisions4 and the quarkonium leptonic 
decay width, are proportional to the absolute square of the wave function at the origin, and the enhanced corrections to these observables 
arise from the second order. This is because only the S-wave (l = 0) wave functions have non-vanishing values at the origin, and since the 
enhanced corrections should connect different ls, namely they should be proportional to | 〈n, l = 0| V (2) |n, l′ �= 0〉 |2.

So far we have implicitly assumed that 〈nl| V (2) |nl′〉 �= 0 for l′ �= l, but if this matrix element vanishes for some reasons, the enhanced 
corrections from quasi-degenerate states do not appear at least up to the fourth order in the energy level, as well as up to the third order 
in the quark pair production cross section (or quarkonium leptonic decay width).5

3. Vanishing off-diagonal matrix elements of V (2)

In this section we evaluate the matrix element 〈nl| V (2) |nl′〉 explicitly and show that it vanishes if l′ �= l.6 The operator in V (2) which 
can have non-vanishing off-diagonal matrix elements for different ls is the so-called tensor operator

V (2)
T = C F αs

4m2r3
S12, S12 = 2

(
3
(�r · �S)2

r2
− �S2

)
. (9)

Its matrix element can be factorized into two parts:

〈nlsj| V (2)
T |nl′sj〉 = 〈nl| C F αs

4m2r3
|nl′〉 〈lsj| S12 |l′sj〉 , (10)

where the first factor represents the radial part and the second factor represents the angular and spin part.
The radial matrix has a form

C F αs

4m2
〈nl| 1

r3
|nl′〉 =

l′=0 1 2 3 ··· n−1⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

� � 0 0 · · · 0 l=0

� � � 0 · · · 0 1

0 � � � · · · 0 2

0 0 � � · · · 0 3

...
...

...
...

. . .
...

0 0 0 0 · · · � n−1

, (11)

where the star (�) denotes a non-zero value. (This can easily be shown using the generating function for the Laguerre polynomial.) Namely, 
the radial matrix element vanishes in the case |l − l′| ≥ 2.

On the other hand, because of the parity of S12 and the orbital wave function, S12 can mix the state of l = j ± 1, s = 1 with l′ = j ± 1, 
s = 1, and of l = j, s = 1 with l′ = j, s = 1. Other matrix elements vanish. By explicit computation the angular matrix elements are given 
by [17–19]

〈lsj| S12 |l′sj〉 =

l′= j−1 j j+1⎛
⎝

⎞
⎠− 2( j−1)

2 j+1 0 6
√

j( j+1)
2 j+1 l= j−1

0 2 0 l= j
6
√

j( j+1)
2 j+1 0 − 2( j+2)

2 j+1 l= j+1

for s = 1, j ≥ 1, (12)

4 These corrections can make sense only in the close vicinity of distinct quasi-degenerate resonance peaks. Otherwise the enhancement from the small denominators is
lost, for instance, by smearing due to the resonance widths.

5 There is also a contribution from the D-wave production (or decay) via the higher-dimensional local current operator. In the case 〈nl| V (2) |nl′〉 = 0, contribution of 
enhanced corrections through such an operator also starts from the fourth-order correction.

6 The vanishing of the matrix elements relies on the property of radial wave functions of Coulomb system H0 = p2/m − C F αs/r. If one takes another wave function, 
for instance one in phenomenological potential models the matrix elements can have non-zero values, while it violates rigid order counting of pNRQCD and brings yet 
higher-order effects considered here into the computation of the matrix elements.
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〈lsj| S12 |l′sj〉 = −4 for l = l′ = 1, s = 1, j = 0, (13)

and 〈lsj| S12 |l′sj〉 = 0 otherwise. Thus, the only non-vanishing off-diagonal matrix elements are the ones with |l − l′ | = 2.
Combining eqs. (11), (12), we obtain

〈nlsj| V (2)
T |nl′sj〉 = 〈nl| C F αs

4m2r3
|nl′〉 〈lsj| S12 |l′sj〉 = 0 (14)

for all n, l, l′(�= l), s, j.

4. Enhanced corrections at higher orders

The analysis of the previous section does not apply to the tensor operator in the third-order potential,

V (3)
T = C F αs

2m2r3

αs

π

[
1

72

{
C A(97 + 18Lm − 18Lr) + 4(9C F − 5T F nl)

}
+ 1

24
β0(3Lr − 8)

]
S12, (15)

where Lm = log(μ2/m2), Lr = log(e2γE μ2r2). The essential difference between V (2)
T and V (3)

T originates from the log r terms, resulting in 
non-zero radial matrix elements for |l − l′| ≥ 2. Indeed the off-diagonal matrix elements of 〈nlsj| V (3)

T |nl′sj〉 have non-zero values. It follows 
that the second order correction to the wave function c(2) in eq. (5) has non-zero values, as well as the cross-term of 〈V (3−i)〉 and d(i) in 
eq. (8) also has nonzero values.

Up to this point we considered enhanced contributions from the intermediate states whose degeneracy is lifted by the order ε pertur-
bation. Let us comment on contributions from the states whose degeneracy is lifted first at order ε2, namely, from the multiplets of fine 
and hyperfine splittings [with the same (n, l) but different (s, j)]. Such contributions, if they exist, would give rise to more pronounced 
enhancement effects than those considered so far, since the level splittings which enter the denominator are order ε2. In fact such con-
tributions are absent to all orders in ε, since the transition matrix elements of V (i) between the states with the same (n, l) but different 
(s, j) vanish by parity and charge-parity conservation of QCD.7 Thus, the order ε2 quasi-degeneracy of the multiplets with the same (n, l)
does not give enhanced contributions to either the energy level or the wave function.

Taking into account the fact that c(1) = 0, c(2) �= 0 in eq. (3), the fourth- and fifth-order corrections to the energy level are given by

E(4)

nlsj = 〈nl| V (4) |nl〉 +
3∑

i=1

∑
n′ �=n, l′

〈nl| V (4−i) |n′l′〉d(i)
n′l′;nl

E(0)
n − E(0)

n′
, (16)

E(5)

nlsj = 〈nl| V (5) |nl〉 +
4∑

i=1

∑
n′ �=n, l′

〈nl| V (5−i) |n′l′〉d(i)
n′l′;nl

E(0)
n − E(0)

n′
+

∑
l′ �=l

〈nl| V (3) |nl′〉 c(2)

nl′;nl

E(1)

nl − E(1)

nl′
. (17)

Note that the fourth-order correction does not contain the enhanced corrections from quasi-degeneracy, which can be seen from the 
absence of the c-term in eq. (16).

5. Conclusions

We have reconsidered the perturbation theory for the Schrödinger equation of the heavy quarkonium system in pNRQCD, taking into 
account contributions of quasi-degenerate states. As expected there are enhanced contributions which rearrange the order counting of the 
expansion. (In other words, it can be regarded as a question on the proper order counting of the l-changing mixing effects.) At the (naive) 
lowest order, the effect from the quasi-degenerate states is induced only from one type of off-diagonal matrix elements in the l-space, 
〈nlsj| V (2)

T |nl′sj〉. This matrix element vanishes, hence the quasi-degenerate correction vanishes at the naive lowest order. As a result this 
type of corrections is expected to appear first at the fifth order in the energy level and at the second order in the wave function. The 
contribution to the heavy quark threshold cross section or leptonic decay width is expected to start at the fourth order.

Thus, these specific corrections turn out to be irrelevant with respect to the current highest-level perturbative QCD calculations (energy 
levels and leptonic decay width at NNNLO). We think that this fact itself should be stated clearly. It should also be noted that, since the 
enhanced corrections to the wave function are expected to appear already at the second order, they may be important for other physical 
observables, such as level transition rates in certain channels. We also note that, even if the flavors of quark and antiquark are different 
(such as the Bc system), enhanced quasi-degenerate contributions to the NNNLO spectrum [21] (l-changing mixing) vanish similarly to the 
equal flavor case.8 These subjects will be discussed separately.

We remark that if one had a sufficiently wide knowledge one could reach the same conclusion without any computation, since all the 
necessary results were available in the literature. In this sense there is hardly any truly new ingredient in the present work. We find, 
however, that it is not easy to collect these pieces of information together, in particular since the old results on perturbative computation 
of bound states before the advent of modern EFT are scattered through literature in an unorganized way. At least it would be meaningful 
to bring these results to the attention of experts at the forefront.

7 The parity and charge-parity of the heavy quarkonium system of the same flavor are given, respectively, by P = (−1)l+1 and C = (−1)l+s [20]. Hence, variations of l and 
s, respectively, are allowed only by even numbers. Since s = 0, 1, this means s cannot change and l can change only by 0 or 2.

8 In this case there are well-known mixing effects between different s states from the second-order energy levels, which correspond to the different diagonalizing basis 
for V (2) for the same (n, l).
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Appendix. General terms of perturbative series

In this appendix, we derive the general expressions for the energy level correction and the wave function correction at the N-th order, 
in the case that the degeneracy is lifted by the first-order and second-order corrections stepwise. The expressions shown in Secs. 2 and 4
are special cases of the general expressions eqs. (21), (23) and (25).

We expand the Schrödinger equation as(
H (0) +

∞∑
i=1

εi V (i)

)( ∞∑
i′=0

εi′
∣∣∣�(i′)

nlsj

〉)
=

( ∞∑
i=0

εi E(i)
nlsj

)( ∞∑
i′=0

εi′
∣∣∣�(i′)

nlsj

〉)
. (18)

The labels s and j are suppressed in the rest of this appendix. For notational simplicity, we redefine the wave function corrections as 
c̃(i)

nl′;nl = c(i)
nl′;nl/(E(1)

nl − E(1)

nl′ ) and d̃(i)
n′l′;nl = d(i)

n′l′;nl/(E(0)
n − E(0)

n′ ). Then the full wave function is given by

|�nl〉 =
∞∑

i=0

εi
∣∣∣�(i)

nl

〉
= |nl〉 +

∞∑
i=1

∑
l′ �=l

εi |nl′〉 c̃(i)
nl′;nl +

∞∑
i=1

∑
n′ �=n, l′

εi |n′l′〉 d̃(i)
n′l′;nl. (19)

In addition, we write V (i)
n′l′;nl = 〈n′l′| V (i) |nl〉 in the following.

The coefficient of εN of the Schrödinger equation (18) reads

V (N) |nl〉 +
N−1∑
i=1

V (N−i)
∣∣∣�(i)

nl

〉
+ H (0)

∣∣∣�(N)

nl

〉
= E(N)

nl |nl〉 +
N−1∑
i=1

E(N−i)
nl

∣∣∣�(i)
nl

〉
+ E(0)

n

∣∣∣�(N)

nl

〉
. (20)

The correction to the energy level is obtained by multiplying eq. (20) by 〈nl| from the left. Since 
〈
nl

∣∣∣�(i)
nl

〉
= 0 for i ≥ 1, the only remaining 

term on the right-hand side is E(N)

nl . Then we obtain

E(N)

nl = V (N)

nl;nl +
N−1∑
i=1

∑
l′′ �=l

V (N−i)
nl;nl′′ c̃(i)

nl′′;nl +
N−1∑
i=1

∑
n′′ �=n, l′′

V (N−i)
nl;n′′l′′ d̃

(i)
n′′l′′;nl. (21)

Next we consider the correction to the wave function. Multiplying eq. (20) by 〈n′l′| from the left, we obtain

V (N)

n′l′;nl +
N−1∑
i=1

∑
l′′ �=l

V (N−i)
n′l′;nl′′ c̃

(i)
nl′′;nl +

N−1∑
i=1

∑
n′′ �=n, l′′

V (N−i)
n′l′;n′′l′′ d̃

(i)
n′′l′′;nl + E(0)

n′ d̃(N)

n′l′;nl =
N−1∑
i=1

E(N−i)
nl d̃(i)

n′l′;nl + E(0)
n d̃(N)

n′l′;nl, (22)

where d̃(N)

n′l′;nl is separated outside the summation. Solving eq. (22) for d(N)

n′l′;nl , we obtain

d(N)

n′l′;nl = V (N)

n′l′;nl +
N−1∑
i=1

∑
l′′ �=l

V (N−i)
n′l′;nl′′ c̃

(i)
nl′′;nl +

N−1∑
i=1

∑
n′′ �=n, l′′

V (N−i)
n′l′;n′′l′′ d̃

(i)
n′′l′′;nl −

N−1∑
i=1

E(N−i)
nl d̃(i)

n′l′;nl. (23)

Note that the left-hand-side of eq. (23) is not d̃(N)

n′l′;nl but d(N)

n′l′;nl .

The case with c̃(N)

nl′;nl is similar to that of d̃(N)

n′l′;nl except that we first need to replace N → N + 1 in eq. (20). Then multiplying it by 〈nl′|
from the left, we obtain

V (N+1)

nl′;nl +
N−1∑
i=1

∑
l′′ �=l

V (N−i+1)

nl′;nl′′ c̃(i)
nl′′;nl + E(1)

nl′ c̃(N)

nl′;nl +
N∑

i=1

∑
n′′ �=n, l′′

V (N−i+1)

nl′;n′′l′′ d̃(i)
n′′l′′;nl =

N−1∑
i=1

E(N−i+1)

nl c̃(i)
nl′;nl + E(1)

nl c̃(N)

nl′;nl. (24)

Solving for c(N)

nl′;nl , we obtain

c(N)

nl′;nl = V (N+1)

nl′;nl +
N−1∑
i=1

∑
l′′ �=l

V (N−i+1)

nl′;nl′′ c̃(i)
nl′′;nl +

N∑
i=1

∑
n′′ �=n, l′′

V (N−i+1)

nl′;n′′l′′ d̃(i)
n′′l′′;nl −

N−1∑
i=1

E(N−i+1)

nl c̃(i)
nl′;nl. (25)

Again we note the difference between c and c̃, d̃ on both sides.
Thus, we obtain the energy level correction (21) and wave function correction (23), (25) at the N-th order in a recursive form.
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