On a ConJecture of Phadke and Thakare

Jochen Briining *Fachbereich Mathemutik der Universitiit Miinchen* Theresienstrasse 39 8000 *Miinchen 2 Federal Republic of Germuny*

and

Ki Hang Kim and Fred N. Roush *Mathematics Research Group Alabama State University Montgnne y, Alabama 36101*

Submitted by Bichard A. Bmaldi

ABSTRACT

We prove the connectedness of the set of all nonzero bounded linear operators on a complex Hilbert space having a generalized inverse.

In a recent paper [3] S. V. Phadke and N. K. Thakare conjectured that in a complex Hilbert space H the set of operators having a generalized inverse is not connected. The purpose of this note is to disprove this conjecture. We recall that a bounded linear operator $A \neq 0$ on *H* is said to have a generalized inverse if there is a bounded linear operator B on *H* such that

$$
ABA=A.\tag{1}
$$

As usual we write $|A| := (A^*A)^{1/2}$ and denote by $s(|A|)$ the support of $|A|$. Then (1) is easily seen to be equivalent to the following condition: there is $C > 0$ such that

$$
A^*A \geq C_s(|A|). \tag{2}
$$

The set of all operators with generalized inverse will be denoted by $GI(H)$.

LINEAR ALGEBRA AND ITS APPLZCAZ7ONS 32:113-114(1980) 113

0 Elsevier North Holland, Inc., 1980 0024-3795/80/040113+2\$01.75

THEOREM. $GI(H)$ is pathwise connected.

Proof. Let $A \neq 0$ be a bounded linear operator on *H* with generalized inverse, and let $U[A] = A$ be the polar decomposition of A. Then

$$
t \mapsto U((1-t)|A|+ts(|A|)), \qquad t \in [0,1],
$$

is a path in GI(H) in view of (2), connecting *A* and U. The operators $P: = UU^*$ and $Q: = U^*U$ are orthogonal projections on *H*, and we may assume that $\dim (1_H - P)(H) \leq \dim (1_H - Q)(H)$. Now if P is finite, then these dimensions are equal. Consequently, there exists a partial isometry V on *H* with $VV^*=1_H-P$, $V^*V=1_H-Q$. But then $U+V$ is unitary and can be connected with U through a path in $GI(H)$, namely

$$
t \mapsto U + tV, \qquad t \in [0,1].
$$

Next we assume that P is infinite. Then we can find a partial isometry V on *H* with $VV^* = 1_H - P$ and $V^* V \le 1_H - Q$. As before, *U* can be connected with $U + V$ in $GI(H)$, so we may assume $P = 1_H$ from now on. We pick projections P_1, P_2 on *H* with $P_1P_2 = 0$, $P_1 + P_2 = 1_H$, and $\dim P_1(H) = \dim P_2(H)$ $=$ dim *H*. Then the operators $Q_i := U^*P_iU$, $i=1,2$, are orthogonal projections, too, satisfying $Q_1 Q_2 = 0$, $Q_1 + Q_2 = Q$, and $\dim Q_i(H) = \dim P_i(H) =$ dim *H*, $i = 1, 2$. But then also dim $(\overline{1}_H - \overline{Q}_1)(H) = \dim H$, implying that there is a partial isometry *W* on *H* with $WW^* = P_2$ and $W^* W = 1_H - Q_1$. We now define

$$
U(t) := \begin{cases} UQ_1 + (1-t)UQ_2, & t \in [0,1], \\ UQ_1 + (t-1)W, & t \in [1,2]. \end{cases}
$$

Then $U(0) = U$, and $U(2)$ is again unitary. Moreover, using (2), it follows that $U(t) \in \mathrm{GI}(H)$ for $t \in [0,2]$. Since the set of all invertible bounded linear operators on *H* is connected [2, p. 70], *U* can be connected with 1_H and the theorem is proved.

We remark that (1) makes sense in an arbitrary W^* -algebra. The above statement holds also in this more general case; the details of the proof can be found in [l].

REFERENCES

- 1 J. Brüning, Über Windungszahlen in endlichen W^{*}-Algebren und verwandte **Fragen, Habilitationsschrift, Marburg, 1977.**
- 2 P. R. Halmos, A *Hilbert Space Problem Book. Princeton*, Van Nostrand, 1967.
- **3 S. V. Phadke and N. K. Thakare, Generalized inverses and operator equations,** Linear Algebra and Appl. 23:191-199 (1979).

Received 13 June 1979