On a Conjecture of Phadke and Thakare

Jochen Brüning
Fachbereich Mathematik der Universität München
Theresienstrasse 39
8000 München 2
Federal Republic of Germany
and

Ki Hang Kim and Fred N. Roush Mathematics Research Group Alabama State University Montgomery, Alabama 36101

Submitted by Richard A. Brualdi

ABSTRACT

We prove the connectedness of the set of all nonzero bounded linear operators on a complex Hilbert space having a generalized inverse.

In a recent paper [3] S. V. Phadke and N. K. Thakare conjectured that in a complex Hilbert space H the set of operators having a generalized inverse is not connected. The purpose of this note is to disprove this conjecture. We recall that a bounded linear operator $A \neq 0$ on H is said to have a generalized inverse if there is a bounded linear operator B on H such that

$$ABA = A. (1)$$

As usual we write $|A| := (A*A)^{1/2}$ and denote by s(|A|) the support of |A|. Then (1) is easily seen to be equivalent to the following condition: there is C > 0 such that

$$A*A \ge Cs(|A|). \tag{2}$$

The set of all operators with generalized inverse will be denoted by GI(H).

THEOREM. GI(H) is pathwise connected.

Proof. Let $A \neq 0$ be a bounded linear operator on H with generalized inverse, and let U|A| = A be the polar decomposition of A. Then

$$t \mapsto U((1-t)|A| + ts(|A|)), \quad t \in [0,1],$$

is a path in $\mathrm{GI}(H)$ in view of (2), connecting A and U. The operators $P:=UU^*$ and $Q:=U^*U$ are orthogonal projections on H, and we may assume that $\dim(1_H-P)(H) \leq \dim(1_H-Q)(H)$. Now if P is finite, then these dimensions are equal. Consequently, there exists a partial isometry V on H with $VV^*=1_H-P$, $V^*V=1_H-Q$. But then U+V is unitary and can be connected with U through a path in $\mathrm{GI}(H)$, namely

$$t \mapsto U + tV$$
, $t \in [0,1]$.

Next we assume that P is infinite. Then we can find a partial isometry V on H with $VV^*=1_H-P$ and $V^*V\leqslant 1_H-Q$. As before, U can be connected with U+V in $\mathrm{GI}(H)$, so we may assume $P=1_H$ from now on. We pick projections P_1,P_2 on H with $P_1P_2=0$, $P_1+P_2=1_H$, and $\dim P_1(H)=\dim P_2(H)=\dim H$. Then the operators $Q_i:=U^*P_iU$, i=1,2, are orthogonal projections, too, satisfying $Q_1Q_2=0$, $Q_1+Q_2=Q$, and $\dim Q_i(H)=\dim P_i(H)=\dim H$, i=1,2. But then also $\dim (1_H-Q_1)(H)=\dim H$, implying that there is a partial isometry W on H with $WW^*=P_2$ and $W^*W=1_H-Q_1$. We now define

$$U(t) := \begin{cases} UQ_1 + (1-t)UQ_2, & t \in [0,1], \\ UQ_1 + (t-1)W, & t \in [1,2]. \end{cases}$$

Then U(0) = U, and U(2) is again unitary. Moreover, using (2), it follows that $U(t) \in GI(H)$ for $t \in [0,2]$. Since the set of all invertible bounded linear operators on H is connected [2, p. 70], U can be connected with 1_H and the theorem is proved.

We remark that (1) makes sense in an arbitrary W^* -algebra. The above statement holds also in this more general case; the details of the proof can be found in [1].

REFERENCES

- J. Brüning, Über Windungszahlen in endlichen W*-Algebren und verwandte Fragen, Habilitationsschrift, Marburg, 1977.
- 2 P. R. Halmos, A Hilbert Space Problem Book. Princeton, Van Nostrand, 1967.
- 3 S. V. Phadke and N. K. Thakare, Generalized inverses and operator equations, Linear Algebra and Appl. 23:191-199 (1979).