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A b s t r a c t - - I n  this  paper, we investigate the monotonic properties of the hazard (failure) rate and 
mean residual life function (life expectancy) of the beta  distribution. The monotonic properties are 
sometimes very useful in identifying an appropriate model. © 2000 Elsevier Science Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

The family of beta distributions is composed of all distributions with probability density function 
(PDF) of the form 

1 ( y -  a) p-1 ( b -  y)q-1 
Z (P, q) (b - a) p+q-1 ' a < y ~ b (1.1) 

f Y  (y )  = _ _  

w i t h p > 0 ,  q > 0 ,  and 

~0 
1 

(p, q) = yp-1 (1 - y)q-1 dy. 

If we make the transformation X = ( Y  - a) / (b  - a), we obtain the PDF of X as 

1 
f x  ( x )  = Z(p,q---~x p-1 (1 - ~ ) q - 1 ,  0 < ~ < 1. (1.2) 

This is the standard form of the beta distribution with parameters p and q. 
Beta distributions are very versatile and a variety of uncertainties can be usefully modeled by 

them. Many of the finite range distributions encountered in practice can be easily transformed 
into the standard distribution. In reliability and life testing experiments, many times the data  
are modeled by finite range distributions, see for example [1]. For some applications of the beta 
distribution in reliability, see [2,3]. 

In this paper, we shall investigate the monotonic properties of the reliability measures namely 
the hazard (failure) rate and the mean residual life function (life expectancy). The monotonic 
properties are, sometimes, very useful in choosing the appropriate model. 
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2. T H E  B A C K G R O U N D  A N D  D E F I N I T I O N  

Let X be a nonnegative random variable denoting the life of a component having distribution 
function F(x)  and PDF f ( x )  which is twice differentiable. Then the failure rate is defined 
as A(t) = f ( t ) /S ( t ) ,  where S(t) = 1 - F(t) is called the survival (reliability) function. The mean 
residual life function (MRLF), #(t), assuming it exists, is defined as 

( t )  = E ( X  - t I X > t) = 

It can be easily verified that  

(z) 

f ~  S (x) dx 
s ( t )  ' 

# = E ( X )  < oc. 

1 + p' (t) 
A ( t ) =  , ( t )  ' 

(2) 
,(o) [_ dx 1 

(t) = ~ - ~ e x p  [ J0 #(x) J" 

Thus, S(t), A(t), and #(t) are equivalent in the sense that  given one of them, the other two 
can be determined. Hence, in the analysis of survival data, one sometimes estimates A(t) or #(t) 
instead of S(t) acording to the convenience of the procedure available. It is easily seen that  the 
constancy of A(t) or tt(t) characterizes the exponential distribution. Note that  both A(t) and it(t) 
are conditional concepts. The failure rate at t provides information about the immediate future 
after time t while the MRLF provides information about the whole future after t. Guess and 
Proschan [4] remark that  it is possible for the MRLF to exist but the failure rate function not 
to exist. Likewise, it is possible for the failure rate function to exist while the MRLF does not 
exist. For further discussion of these and related measures, see [5]. 

We now present the definitions of monotonic and nonmonotonic failure rates. 
The failure rate is said to be 

(i) increasing if Al(t) > O, for all t and is denoted by I, 
(ii) decreasing if At(t) < O, for all t and is denoted by D, 

(iii) bathtub shaped if A'(t) < O, for t ~ (O, to),Y(to) = O,A'(t) > 0 for t > to and is denoted 
b y B ,  

(iv) upside down bathtub shaped if A'(t) > O, for t E (0, to), A'(to) = O, A'(t) < 0 for t > to and 
is denoted by U. 

3. M O N O T O N I C I T Y  O F  

The failure rate of the beta distribution is given by 

where 

F A I L U R E  R A T E  

t , - ~  (1 - t)  (3 .1 )  
A (t)  = f~ (p, q) _ ~t (p, q ) ,  

fo 
t 

~t (P,q) = x p-1 (1 - x) q-1 dx 

is the incomplete beta function. 
Since the failure rate has a complex expression because of the integral in the denominator, the 

determination of the monotonicity is not straight forward. To alleviate this difficulty, Glaser [6] 
presented a method to determine the monotonicity of the failure rate having one turning point. 
The extension to more than one turning point has been studied by Gupta and Warren [7]. 

In the following, we presnt Glaser's procedure to determine the monotonicity of A(t). 
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Define r/(t) = - f ' ( t ) / f ( t ) .  
This function contains useful information about A(t), but it is simpler because it does not 

involve S(t) .  In particular, the shape of ~ (I, D, B, U), often determines the shape of the failure 
rate. The relation between A(t) and ~/(t) is given by d In A(t) = A(t) -- r/(t). We now present the 
following result due to [6], which helps us to determine the shape of the failure rates of the four 
types described earlier. 

THEOREM 1. 

(a) I f  77(t ) is I ,  then A(t) is I (IFR). 
(b) I fr l ( t  ) is D, then ,k(t) is D. 
(c) I f  ~(t) is B and 

(i) i f  there exists a Yo such that A'(yo) = O, then ~(t) is B ,  
(ii) otherwise )~(t) is I.  

(d) If~?(t) is U and 
(i) i f  there exists a Yo such that )~'(Yo) = O, then A(t) is U, 

(ii) otherwise ~(t) is D. 

In the last two cases, determining the existence of Y0 leaves us with the original difficulty of 
evaluating the derivative of A(t). However, we can simplify this problem in many situations with 
the following lemma. 

LEMMA 2. Let  ~ = limt---.0 f ( t )  and 5 = limt---.og(t)rl(t), where g(t) = 1/,k(t). 

1. Suppose 7?(t) 
(a) i f  either 
(b) i f  either 

2. Suppose ~(t) 
(a) i f  either 
(b) i f  either 

is B ,  then 
s = 0 or 6 < 1, then A(t) is I,  and 
e = co or 5 > 1, then A(t) is B. 
is U, then 
e = 0 or 5 < 1, then A(t) is U, and 
e = 0 or 5 > 1, then A(t) is D. 

3.1 .  F a i l u r e  R a t e  o f  B e t a  D i s t r i b u t i o n  

For the PDF (1.2), it can be verified that  

t ( p +  q -  2) - ( p -  1) 
,1 ( t )  = t - t2 

and 
p - 1  q - 1  

, '  ( t )  = - p -  + (1 - t )  

CASE 1. p _ > l ,  q > l .  
In this case, ~'(t) > 0 for all t and hence, X has IFR. 

CASE 2. p < 1, q _< 1. 
In this case, ~?'(t) < 0 for all t and hence, X has DFR. 
In order to discuss the other cases, we consider the critical points of r~(t), which are given by 

solving rf(t)  = 0. 

Or 

- 

In the following cases, we will see if the critical points are points of maxima or minima and 
investigate the shape of the failure rate of X. 

CASE 3. 0 < q < l  a n d p > l .  
In this case, 1 - t / t = ~ x / 1 - q / p - 1 .  Let t l -  1 / l + ~ / 1 - q / p - 1  and t2 = 1/1 - v/1 - q / p -  1. 

It is clear t h a t 0 < t l < l a n d t 2 < 0 i f v / 1 - q / p - l > l  a n d t 2 > l i f x / 1 - q / p - 1  < 1. 
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Therefore, tl  is a critical point of ~(t). Now we want to test if tl  is a point of maxima or 
minima. For that  consider 

p-1 l-q] 
C ( t ) = - 2  - V - + T : ~  < 0 ,  fo r t l  = 

1 + V/(1 - q)/(p - 1) 

Hence, t l  is a point of maxima for ~?(t). Since limt--.o f ( t )  = O, X has U-shaped failure rate. 

CASE 4. q >  l a n d 0 < p < l .  

As before, 1 - t / t  = T x / ( q -  1 ) / ( 1 - p ) .  Let t~ = 1 / ( 1 +  x / ( q -  1 ) / ( 1 - p ) )  and t~ = 
1/(1 - x/(q - 1)/(1 - p)). By the same arguments as in Case 3, we conclude that  0 < t~ < 1 and 
t~ < 0 or t~ > 1. Therefore, t~ = 1/(1 + x/(q - 1)/(1 - p)) is a critical point of ~(t). 

Proceeding as before, it can be verified that  t~ is a point of minima for ~?(t). Also in this case, 
limt--~0 f ( t )  = oc. Thus, X has a B shaped failure rate. 

Thus, we have shown the following. 

(1) I fp  > 1 and q :> 1, then X has IFR. 
(2) I fp  _< 1 and q < 1, then X has DFR. 
(3) If 0 < q < 1 and p > 1, then X has U shaped failure rate. 
(4) If 0 < p < 1 and q > 1, then X has B shaped failure rate. 

4. M O N O T O N I C I T Y  O F  M E A N  R E S I D U A L  L I F E  F U N C T I O N  

The MRLF of the beta distribution (1.2) is given by 

(t) = f ~  (13 (p, q) - j3~ (p, q) ) dx 
~3 (p, q) - j3t (p, q) (4.1) 

It is clear that  #(t) is a complicated function of t and the parameters. In order to investigate 
the monotonicity of #(t), we consider the four cases as before. 

CASE 1. p >_ 1 and q> 1. 
Since X has IFR, X has DMRL (decreasing mean residual life), see [8]. 

CASE 2. p < 1 and q <_ 1. 
Since X has DFR, X has IMRL (increasing mean residual life). 

To discuss the other two cases, we use the following results due to [9]. 

LEMMA 3. Suppose A(t) is of the type B, then 

(1) #(t) is decreasing i/A(O) _< 1//4 
(2) #(t) is of the type U irA(o) < 1//~. 

LEMMA 4. Suppose A(t), is of the type U, then 

(1) #(t) is decreasing/fA(O) __ 1/#, 
(2) #(t) is of the type B ifA(O) < 1/#. 

CASE 3. 0 < q < l  a n d p > l .  
In this case, X has a U-shaped failure rate and )~(0) < 1/#. Hence, #(t) is of the type B. 

CASE 4. 0 < p < l a n d q > l .  
In this case, X has B-shaped failure rate and A(0) > 1/#. Hence, #(t) is of the type U. 

REMARK. For the location of the turning points in Cases 3 and 4, see [9]. 
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