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Abstract

We establish extremality of Riemannian metricsvith non-negative curvature operator on symmetric sp
M = G/K of compact type with G — rk K < 1. Letg be another metric with scalar curvaturesuch thag > g
on 2-vectors. We show that> « everywhere onM impliesk = «. Under an additional condition on the Ric
curvature ofg, k > « even impliesg = g. We also study area-non-increasing spin maps onto such Riem:e
manifolds.0 2002 Elsevier Science B.V. All rights reserved.
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There is a well known relation between the existence of metrics of positive scalar curvatul
compact manifoldV and the topology of. Given such a metrig with scalar curvaturg > O, it is
interesting to ask how large can become as a function afi when one varies the metric Of course
one should not allow scaling of the metric, so one has to compuaiith suitable other metrics, e.g., wi
metricsg which do not decrease areas with respect to the fixed metfibese are the metrics in

M(g) :={g e SYym(TM)||v Awlz > v A wl, forall v, w e TM}. (0.1)

Forg e M(g) we will write g > g on 2-vectors. Using the K-area inequalities, M. Gromov showed i
that there is a finite upper bound for the minimum of the scalar curvature if one varies over me
M(g). However it remains a problem to find sharp upper bounds in terms of the curvature of th
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metricg. A first example for a sharp upper bound was given by M. Llarull in [11]. He considered m
on the spherésS”, g) whereg is the metric of constant curvature. gfis any metric onS” with scalar
curvaturex and withg > g on 2-vectors, he showed that &} p) < «(p) for somep € M and (i) k >«
impliesk = k. Indeed he showed that (ii¥) > « even impliesg = g.

Metrics g having property (ii) will be calledarea-extremal Note that (i) follows from (ii). If g is
an area-extremal metric of constant scalar curvature, this constant provides a sharp upper bour
minimum of the scalar curvature of all metricsM (g).

Let us relate area-extremality to a theorem of J. Lohkamp, which sharpens earlier results of
and Warner [7]. Leg be a Riemannian metric on a manifall with dim(a) > 3, and letxg: M — R be
any function such thaty < « everywhere or/. Then by [12], there exists a metti¢ which isC°-close
to g, such thatc is C%-close tokg. In particular, it is always possible to decrease both the metric
the scalar curvature simultaneously. On the other hangjsfarea-extremal, then by condition (ii) o
cannot simultaneously increase bgtand«. We apply the construction of J. Lohkamp to see that nc
metricsg on M are area-extremal if di > 3. Let us start with an arbitrary metrgcon M. Using [12],
we can construct a metrig which is C°-close to%g and hasc « «. Since clearlyg € M(g), g is not
area-extremal. I admits a metric of positive scalar curvature, we start with 0. Theng can be
chosen such that approximate%k in the C°-topology. This shows that there are metrics with posi
scalar curvature that are not area-extremal.

In [6], M. Gromov asked which manifolds possess area-extremal metrics and how such metr
look like. He conjectured that Riemannian symmetric spaces should have area-extremal metrics
proposed to investigate not only variations of the metricddntself, but to consider also area-nc
increasing spin maps of non-vanishiﬁgdegree from other Riemannian manifoldsio

As mentioned above, M. Llarull showed that the standard metri§’ois area-extremal with th
additional rigidity (iii). In [10], he shows that > « o f impliesk =« o f if f is an area-non-increasir
spin map of non-vanishing-degree from a Riemannian manifold&/, g) onto the round sphere. Lat:
M. Min-Oo proved that Hermitian symmetric spaces of compact type are area-extremal (cf. [13]). |
W. Kramer proved in [8] that quaternionic projective spaces are length-extremal, which is a
weaker notion than area-extremality. In particular, area-extremality implies length-extremality.

In this paper, we generalize the preceding results. We prove area-extremality and rigidity for a
class of Riemannian metrics with non-negative curvature operata”¢fiM), see Theorem 0.2 beloy
For this, we also require that either the Euler characteristi¥/) is non-zero, or that a certain m
2-index, which is related to the Kervaire semi-characteristic, does not vanish.

By the following theorem, a compact, simply connected Riemannian manifold with non-ne
curvature operator is homeomorphic to a symmetric space:

Theorem 0.1 [2,3,15]. If (M, g) is a compact irreducible Riemannian manifold with non-negs
curvature operator, then one of the following cases must occur

(1) the universal covering a¥ is homeomorphic to a sphere,
(2) the universal covering a¥f is Kahler and biholomorphic to a complex projective space,
(3) M is locally symmetric.

The Euler characteristic of a Riemannian symmetric sga¢&€ of compact type is different fror
zero iff rk(G) = rk(K). If the mod 2-index mentioned above is non-zero, the6F tkrk K < 1 and
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dimM = 0,1 mod 4. A certain stabilization trick allows us to treat all compact symmetric space:
rk G —rk K < 1. Let us summarize our main results, which are obtained in Theorems 2.1 and 2.7

Theorem 0.2. Let (M, g) be a compact, connected, oriented Riemannian manifold with non-ne
curvature operator om?(T M), such that the universal covering df is homeomorphic to a symmet
spaceG/K of compact type withk G <rk K + 1. Letg € M(g), thenik > k impliesi = k. If moreover,
the Ricci curvature of satisfieso > 0and2p — k < 0, thenk > « impliesg = g.

The conditions onp will be motivated at the end of this preface, where we also conject
generalization of Theorem 0.2.

If rk G =rkK, we also compare with the scalar curvatures of metrics on a different Rieman
manifold N via spin maps of non-vanishing-degree. In Theorem 2.4 we prove again extremality
rigidity.

The proofs are based on a combination of the Bochner—Lichnerowicz—Weitzenbdck (BLW) f
with the Atiyah—Singer index theorem applied to certain twisted Dirac operators. We also n
estimate for the curvature term in the BLW formula that uses non-negativity of the curvature oper
the odd-dimensional case (k= rk K + 1) we use the decomposition of the spinor bundl&¢H .

In [5], we have established a similar result for Kéhler manifolds of positive Ricci curvature
different estimates.

The rest of the paper is organized as follows: in Section 1, we investigate the BLW formulz
certain twisted Dirac operator. The main result is contained in Lemma 1.1. In Section 2, we ap
result. We use the index theorem in various settings to show the existence of harmonic spinors.

We would like to thank Ch. Bar and G. Weingart for helpful comments and continued interest
work.

Locally area-extremal metrics.In the rest of this paper, we generally consider globally area-extr
metrics onM. Here, “globally” means that > « impliesik = « for all metricsg € M(g). Here, we wan
to give a sufficient condition for a metrigto be locally area-extremal as in the following lemma.

Lemma0.3. Letg be a metric on a compact Riemannian manifdddvhose Ricci curvature is positive
definite. Then there exists no nonconst@htpath (81)re10.) Of Riemannian metrics oM for ¢ > 0 with
go =g, such thatg, > go on vectors and; > «.

Suppose moreover thdp — « is negative definite. Then there exists no nonconstant @atby, - as
above, such thag, > go on 2-vectors andc, > «.

Proof. There exists g-symmetric endomorphism of 7'M, such that

g, ) =g(e, )+ o).
Let«, be the scalar curvature apdthe Ricci curvature of,. By a straightforward calculation in norm
coordinates around a poiptin M, one checks that the derivative gfats = 0 is given by

d

5| = A A) - g((V2, A)ei,ej) —trg p(A-, ). (0.2)
t=0 ’

Here, A, denotes the Laplacian with respectg¢pV? denotes the second covariant derivative, ag

denotes the trace of a two-form with respectgtoNote that the first two terms can be written
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divergences with respect to the metgic In particular, these terms either vanish identically, or t
become negative somewhere &h

Let us assume that the Ricci curvatyseis positive definite. If the metricg, are larger or equz
thang = go on vectors for € [0, ¢], then A is positive semi-definite. In this case, the third term in ((
is < 0 everywhere oM, with equality iff A vanishes identically. This implies the first statement of
lemma.

If we haveg, > g only on 2-vectors, then the sum of any two eigenvalues of > 0. In other words
at most one eigenvaluas of A can be negative, and its absolute value is not larger than any
eigenvalue. On the other hangh 2 ¥ < 0 implies that no eigenvalue gfcan be larger or equal than t
sum of the other eigenvalues. In particular, the condition-2¢, < 0 guarantees that the last term in (C
is again non-positive, with equality iff vanishes identically. As above, this proves the lemnma.

One might be tempted to infer that for a pathwith go = g such thatp, is positive definite (an
2p — k < 0 is negative definite) and wityy > g, on vectors (2-vectors) whenevel: ¢, one would ge
Kk, # k for all t > 0, except ifg, is the constant path. If one rewrites (0.2) for a megievith 7 £ 0, then
the first two terms of the new equation are divergences with respect to the new gnetiicl as suct
they are either zero everywhere or negative somewhend .ddowever, the integral of the first two terr
over an interval0, ¢] gives a functionk on M that is not necessarily a divergence with respect to s
metric onM. In particular, we can not exclude th&tis non-negative everywhere.

Note that in Lemma 0.3, we need precisely the same conditionsamin Theorem 0.2. One mig
even dare to ask the following

Question 0.4. Are all Riemannian metricg on compact manifoldd/ with o > 0 and 2 — x < 0 area-
extremal?

For Kahler metrics, this has been answered affirmatively in [5].

1. Scalar curvature estimates

In this section, we use the BLW formula to derive estimates on the scalar curvature.
Let (M, g) be a Riemannian manifold. The Riemannian curvature teR8binduces a self-adjoir
curvature operatoRY on AT M, such that

g(RM(ei/\ej),ek/\el):—g(RM _ek,el), (1.1)

€i,ej

whereey, ..., e, is an orthonormal base d&f M. The sign has been chosen such that all sect
curvatures of\f are non-negative wheR" is non-negative, i.e., all eigenvalues®f are> 0.

Let (M, g) and (N, g) be compact oriented Riemannian manifolds, andfleN — M be an area
non-increasing spin map. That is,

|v/\w|g>|f*v/\f*w|g (12)
forall v, w e T, N and allg € N; and the second Stiefel-Whitney classeg'df and7T N are related b
wo(TN) = f*(wa(TM)). (1.3)
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Because the total Stiefel-Whitney class is multiplicative, condition (1.3) is equivaleni(foN &
f*TM) = 0. In particular, the bundl@ N & f*T M admits a spin structure. Thus we may chos
principal bundlePsyy .spin, — N with fiber Spin, - Spin, = (Spin, x Spin,)/{#1} that projects down t
the frame bundle of N & f*TM. LetSN ® f*SM denote the bundle associated to the tensor prc
of the spinor representations. Note thatdfis spin, so isN by (1.3), and we may fix compatible sf
structures orM andN. Then the bundle§ M andSN exist, andSN ® f*SM is precisely the bundle w
have just defined. The bundf&V ® f*SM carries a natural Hermitian metric and a unitary connecic
compatible with Clifford multiplication by elements oftf@'N @ f*C¢T M. We will denote Clifford
multiplication withv € TN by ¢(v) and Clifford multiplication withw € f*T M by c(w).

Let D be the Dirac operator ofN ® f*SM — N, which can locally be expressed as

D =) &@)Ve,
i=1
in terms of an orthonormal baseg, . .., e, with respect tqz. By the BLW formula,

_ - 1 n m
D?=vV*V + % +3 Z D e(F RY e, @)E(@)E@)) ® cler)e(en), (1.4)
i,j=1k,JI=1
wheree;, ..., e, is a local orthonormal base ¢f*T M, i denotes the scalar curvature @f and f*RY
is the curvature of the bundlg*T M. Let us define Clifford multiplication by 2-forms by

conw)=c@)c(w) and c(vAw)=c)c(w),

forge N,v,weT,N andv, w e (f*TM), with g(v, w) = g(v, w) = 0. If {w;} and{w;} are orthonor-
mal bases off * A>T M and A2T N, we may rewrite Eq. (1.4) as

_ k1 - o
D?>=vV*V + 15 le:g(RM(f*a)j), @) E(®)) ® (). (1.5)
Let « and p denote the scalar and Ricci curvature Mt In the rest of this section, we prove t
following

Lemma 1.1. Let (M, g) and (N, g) be compact, connected, oriented Riemannian manifolds, ar
f:N — M be an area-non-increasing spin map. Suppose that the curvature operatdr isfnon-
negative and that the bundi8N ® f*SM admits aD-harmonic spinor. Thelr > k o f everywhere
on N implies thatk =« o f. If moreover,p > 0 and2p — k < 0, thenk >« o f implies thatf is a
Riemannian submersion.

1.1. The estimate

In this subsection, we prove the first part of Lemma 1.1: we showithat o f together with the
existence of aD-harmonic spinor implies that =« o f.

We start by investigating the last term on the right hand side of the BLW formula (1.4). Since w
assumed thaR" is non-negative, it possesses a self-adjoint squarelredEnd( AT M) such that

g(RMa),-, a)j) =g(Lw;, Lwj).
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Let us write
Log:=) " g(Loy, fud)@; € A’TN. (1.6)

Now the last term on the right hand side of (1.5) can be rewritten as

1
-5 Z g(RM(f*a_)j), a),-)E(cf)j) ® c(w;)
i,J

1
=-3 Zg(L(f*cDj), wi)§(Lwi, 0)E(@;) ® c(w;)

i,j.k

1 -
=3 Z ¢(L(@p)) ® c(Lay)

= Z e(Lay) ®1+1® C(La)k)) + E(l_,a)k)z ®1+1® c(Lay)?)

1 -
> 2 Xk:(c(ka) ®R1+1® C(La)k)z). 1.7)

Here we have used that Clifford multiplication with 2-forms is skew symmetric and that squa
skew-symmetric endomorphisms are non-positive—$&(Lw;) ® 1+ 1 ® c(Lwy))? is a hon-negativ
endomorphism.

We claim that the operatop’s,, ¢(Lay)? and)_, c(Lwy)? act on spinors as multiplication by functio
on N, and moreover,

Xk:c_‘(l_,a)k)z > —%, and Xk:c(La)k)z =k (;f. (1.8)

The term—%x o f inthe second statement of (1.8) arises in precisely the way as the tierthe classica
BLW formula, cf. [9]. _
The proof of the first statement is similar: By definitionoin (1.6),

S e(Low)’ =Y gL, frdn)g(Lo, f.o)E@)E(@;)
k i,j,k
=" g(RM(fudn). fudo)E(@:)E(@;). (1.9)
ij
At this point, we choose a locd-orthonormal framezy, ..., e, and a localg-orthonormal frame
e1, ..., ey, such that there exisgss, ..., minm.n = 0 with
fi; = {,uiei if i <min(m,n), and
! 0 otherwise.

This can be done by diagonalizing g with respect to the metrig. Then we have the orthonormal ba
e Ae; of AT N ande; A ¢, of AT M, with

fileine)) =pipmjei ne; and piu; <1
for 1<i < j < min(m, n), because we have assumgdo be area-non-increasing.
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We rewrite Eg. (1.9) in these bases, using the definition (1.R)"%f

Yod(Law) == Y g(RYs o fule, £18)E(@)EE)E@E)EE)

k i<j, k<l
1 e e
=2 Z itk (Rl o f)e(@c(e)c(enc(a)
ij, k.l
kof
:__Zﬂl H’j z]]z )> 2 . (llo)

Here, all terms with four dlfferent indices are eliminated by Bianchi’s first identity, while all terms
three different indices vanish for symmetry reasons. This proves our claim (1.8).

We are now ready to prove the first statement in Lemma 1.1. Assume thato f. Let 0£ ¢ €
I'(SN ® f*SM) be aD-harmonic spinor, and lét || and(-, -) denote the.? norm andL? scalar produc
onI'(SN ® f*SM). Then by Egs. (1.5), (1.7) and (1.8),

_ K 1
0= Dy *=IIVy*+ <w, (% -5 ;g(RMmcbj), w;)C(@;) ® c(wi>)w>

> ||wn2+<w, Mw> >o0. (1.11)

4
BecauseV is connected angs # 0 is D-harmonic, the subset @f where is non-zero is open ar
dense inV. In particular, estimate (1.11) now impli€s= k o f. This proves the first claim of Lemma 1.

1.2. The rigidity statement

We will now establish the second claim in Lemma 1.1. We have to showtthat o f implies thatf
is a Riemannian submersioniif possesses a harmonic spinor and the Ricci curvature sagisfigsand
20 —k < 0.

By the arguments of the last sectianz « o f implies that all inequalities in (1.7), (1.10) and (1.
turn into equalities. From (1.10), we get in particular that

ZM’MJ lJJlof)_Kof Zlejl

SO

0= 21 12u3) (R o f). (1.12)

SinceR{?ﬁ > 0 andu;; < 1 becausef is area-non-increasing, all summands are non-negative.
Assume first thatf is length-non-increasing, i.ey; < 1 for all i. Because we have assumed
Ricci curvaturep to be positive definite, we have; = Z RW > 0. Thus for anyi there is aj with
lm o f # 0. Hence,u;u; = 1, sou; = u; = 1. Since we can start with anye {1, ..., m}, we get
u1=---=u, =1. This implies in particular that = dimM < n =dimN and thatf is a Riemanniat
submersion.
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We turn to the general case, i.¢.ijs now only area-non-increasing. The conditign-2« < 0 implies
for fixed k that

M M M
2) Ry <) Rl so 0< ) R,
J ij i#k, j#k
Hence, there is at least one péirj) with i #k, j #k, andRi’y.ﬁ # 0. Then we have again; iu; = 1.
Together withp,; e < 1 and ;e < 1, this clearly impliesy, < 1. It follows that f is length-non-
increasing. The arguments above show tfids a Riemannian submersion. This finishes the proc
Lemma 1.1.

Remark 1.2. Let (M, g) and (N, g) be as in Lemma 1.1, and aga® > 0, but assume thaf is a
length-non-increasing spin map. Suppose #hatx o f, thatp > 0, and the bundl&N ® f*SM admits
a D-harmonic spinor. Thek = k o f everywhere onv, and f is a Riemannian submersion.

Note that 2 — « < 0 implies that dimV > 3: the condition 2 — k < 0 can be rephrased by sayi
that no eigenvalue of the Ricci curvature is larger or equal than the sum of the remaining eigel
Clearly this implies the existence of at least three (not necessarily different) eigenvajues of

On the other hand, iM is a locally symmetric space of compact type and sifine 3, then the
conditionsp > 0 and 2 — k < 0 are automatically satisfied. Indeed, splits locally into irreducible
components of dimensior 2 which are Einstein. In particular, all eigenvaluesodadre strictly positive
and each eigenvalue has multiplicity at least 2. Together withidipa 3, this implies that no eigenvalt
of p can be larger or equal than the sum of the remaining eigenvalues.

Finally, we remark that for manifolds with a non-negative curvature operator, the two conditione
and 2 — « < 0 are only restrictive if the universal cover df contains factors which are either flat
non-symmetric spheres or complex projective spaces.

2. Index-theoretic considerations

In order to apply the results of the previous section to a specific fiap — M, we have to ensur
that the operatoD of Section 1 has a non-zero kernel. We list some criteria that imply the existel
D-harmonic spinors.

2.1. Manifolds with non-vanishing Euler characteristic

In the simplest application of Lemma 1.1, we take a Riemannian maniflcg) with R > 0 and
non-vanishing Euler characteristig M). Recall thatM (g) was defined in (0.1). If we takg € M(g),
then the identity map id: (M, g) — (M, g) is area-non-increasing and spin by (1.2) and (1.3).

Theorem 2.1. Let (M, g) be a compact, connected, oriented Riemannian manifold with non-nel
curvature operator and non-vanishing Euler characteristic. fet M(g), theni > « impliesik = «. If
moreover, the Ricci curvature gfsatisfieso > 0 and2p — « <0, thenk > k impliesg = g.

Proof. Let S denote the spinor bundle af, which exists over all sufficiently small open subset3gb
even if M is not spin. We equig with the metric and connection induced pyif the Euler characteristi
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x (M) of M is non-zero, theM is even-dimensional, and the local spinor bundle splitS asS* & S~
It is a well known fact that

AYTM = (STR®ST) (S ®S) and AMTM=(STRS7)® (S ®S"),

that the Dirac operator on*TM =S ® S is precisely the operatdd = d + d*, and that the index c
D : 2% M) — 2°¥(M) equalsy (M).

Let S denote the (local) spinor bundle 8f, equipped with the metric and connection inducedzb
Then the operatoD considered in Section 1 is precisely the twisted Dirac operatof anS. If we
introduce a grading of ® S analogous to the grading of*T M by even and odd degree, then
index of D with respect to this grading again equaléM). In particular, there is @-harmonic spino
04y e I'(S®S). Now our claim follows from Lemma 1.1. O

Recall that a symmetric spadé = G/K of compact type ha®k¥ > 0. Moreover, x (M) # 0 iff
rk G =rk K. Hence we have

Corollary 2.2. Let (M = G/K, g) be a compact Riemannian symmetric space wWttq = rk K. If
g € M(g), theni >« impliesg = g.

Remark 2.3. We could also consider another grading of the buritii® S analogous to the splitting
A*T M into self-dual and anti-self-dual forms. The indexidivith respect to this grading is the signat
Sign(M). By Hirzebruch’s signature theorem, S{@ii) can be expressed as a certain Pontrjagin nut
of M. A classical result of Bott implies that all Pontrjagin numbers of a quotienk of compact Lie
groups vanish unless tk=rk K . Thus, we do not gain anything here if we consider the signature in
of the Euler characteristic.

2.2. Maps of non-vanishing-degree

In this section, we investigate a certain class of maps to manifolds with a non-negative ct
operator on 2-vectors. In order to state our result, let us recall the following definitioA-tegreeof f
is given by

deg; f = (A(N) f*w)[N]

wherew € H™ (M, 7) is the fundamental class &f corresponding to the orientation 8f. Recall tha
the notion of an area-non-increasing spin map was defined in (1.2) and (1.3).

Theorem 2.4. Let (M, g) be a compact connected oriented Riemannian manifold with non-ne
curvature operator and with non-vanishing Euler characteristic. (&t g) be a compact connecte
oriented Riemannian manifold, and |6t N — M be an area-non-increasing spin map of non-vanist
A-degree. Ther > « o f impliesk =« o f. If moreover, the Ricci curvature of M satisfiesp > 0 and
2p —k <0, thenf: N — M is a Riemannian submersion.

Proof. Since f is spin, we can construct the bund®V ® f*SM and the Dirac operatoD on
I'(SN ® f*SM) as in Section 1. By the Atiyah—Singer index theorem, the index of

D:(S'TNQf*STM)® (S NQf*S M)~ (S NQ f*STM)® (STN® f*S M)
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is given by
ind(D) = (A(N) f*ch(S*M — S™M))[N]1=deg; f - x(M),

because off ™M — S™M) € H"(M,R) equals the Euler class dff. Under the hypotheses of t
theorem, we have id®) # 0. Now, the theorem follows from Lemma 1.10

Remark 2.5. The conditions thayf be spin and deg( /) # O look very technical. To see that they
necessary, suppose thét is a point. In this situation, Theorem 2.4 becomes precisely Lichnero
theorem, which states that a compact, connected, oriented spin manifolchon-vanishingA-genus
cannot carry a metrig with & > 0 and strict inequality somewhere @. This gives us a hint ho
to construct counterexamples to Theorem 2.4 without the assumptions mentioned alidve: tiie
Riemannian product/ x CP* for k > 1, then clearly the projectiorf onto the first factor is area-no
increasing, buk > x o f. However, it is easy to see in this situation that

deg;(f) = A(CP*)[CP]
which vanishes ik is odd, while the mayg is spin iff C P¥ is spin, which is not the case for evén

We do not know if the conditiory (M) # 0, which we need to ensure the existence of harm
spinors, can be omitted entirely. However, it can be replaced by different conditions. Here is one |
example:

Remark 2.6. In the proof of Theorem 2.4, we worked with the Dirac operatoNgitwisted by the virtua
bundle f*(S*M — S~ M). We could equally well twist with only one componefitS*M, or with the
sum f*SM. In the latter case, the index of the corresponding Dirac operatd angiven by

(A(N) £* ch(SM))[N] =: degsgq( ),
which we will call thesignature degreef f, because for the identity jgl we get the signature G

(A(M) ch(SM))[M] = L(M)[M] = Sign(M).

Thus, in Theorem 2.4, we can replace the two conditignad?) = 0 and deg(f) # 0 by the single
condition deg;,(f) # O to obtain another version of the theorem.

2.3. Odd-dimensional manifolds

In this section, we present an analogue of Theorem 2.1 for a certain class of odd-dimensional rr
with non-negative curvature operator. The idea here is to use the invariance of the mod 2-index of
self-adjoint real Fredholm operator in order to findaharmonic spinor. We consider a mod 2-index |
is related to the Kervaire semi-characteristic, as we will explain in Remark 2.10 below.

Theorem 2.7. Let (M, g) be an odd-dimensional compact, connected, oriented Riemannian mz
with non-negative curvature operator an’(T M), and assume that the universal covering Mfis
homeomorphic to a Riemannian symmetric sp&y&K of compact type withkG = rk K + 1. Let
g € M(g), thenk > k impliesk = k. Moreover, ifo > 0and2p — k < 0, theni > « impliesg = g.
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Note that our assumption oW rules out the possibility that the universal coveringMfcontains
a Euclidean de Rham factor. We recall the following description of the complex spinor bundle
necessarily irreducible symmetric spaces:

Proposition 2.8 [4,14]. Let M = G/K be a symmetric space witkG =rk K + k. Then the comple
spinor bundlesS is locally induced by a representatienof the Lie algebré of K, which splits as

q
k
o =22 @oi,
i=1
whereoy, ..., o0, are certain pairwise non-isomorphic irreducible complex representatioris of

Using this proposition, we derive a splitting of the bundl®®"T M of even, real exterior forms oM.
We refer the reader to [1] and [9] for all technical details concerning real representations of rec
simple Lie algebras and real Clifford algebras.

Proposition 2.9. Let M = G/K be a symmetric space of dimensien= 8p + 1 such thatrkG =
rk K + 1. Then the bundlt®¥®"T M splits as a direct sum

q
ABvenr — @gi’
i=1
such that eaclg’ is a parallel, G-invariant subbundle ofA®®"T M which is invariant under the natur:

left action of C¢®V*"T M. Moreover, for eaclt’, the space of parallel sections has real dimensipand
each parallel section i&/-invariant.

Proof. Recall that form = 8p + 1, the real spinor representatien of Spin, acts on a real vectc
spaceSg of real dimension % [9]. The complex spinor representation arisescas: or @z C on
S = Sg ®r C. Complex conjugation induces@antilinear involution- on S, which commutes witla .
If we restricto andoy to the Lie algebr&, then- descends to &-antilinear involution on each of tt
irreducible subrepresentations of Proposition 2.8. LefSz ; be the(41)-eigenspace of on S;, then
0; =OR,; ®R (C, al’ld

q
OR = @ O'R,,'.
i=1
By [9], we haveA®®h = C¢®V*"p = Si ®r Sk. Setting

£ =G xk (Sr ®r Sr.),

we obtain the decomposition of the proposition. By Proposition 2.8 and Schur’'s Lemma, theKr
isotypical component of ® o; is one-dimensional ove. Arguing with complex conjugation as abo
we see that the triviaK -isotypical component ofg ®g og; IS one-dimensional oveR. This implies
that the space of parallel sections&fis also one-dimensional ar@-invariant. O

Proof of Theorem 2.7. We start with the following basic case: Assume that, ¢) is a Riemannial
locally symmetric space of compact type with = dimM = 8p + 1. Letey, ..., ¢, be a loca



76 S. Goette, U. Semmelmann / Differential Geometry and its Applications 16 (2002) 6578

g-orthonormal base df M, and let
wr =c(ey)...c(e,) € ENA*T M)

denote the real Clifford volume element. We consider the real Dirac operator

Dp = Z wrc(e;)V,,. (2.1)
i=1

Note thatwgrc(e;) € CL*(T M) for all i, so Dr acts on§2¢®*"M. Because the adjoint abr equals
w}, = —owr form =1 mod 4, and because: is parallel and commutes with Clifford multiplicatiare; ),
the operatorDg is formally anti-self-adjoint. Moreover—D3Z is equal to the Hodge—Laplaci
(d +d*)2.

SinceM is of compact type, after passing to a finite cover, we may assuméfthaiG /K is simply
connected. We assume thatGk=rk K 4+ 1. By Proposition 2.9, the bundl&®V*"M splits as a direct sur
of parallel sub-bundles

q q
2% =P = Sk ®r Sr. (2.2)
i=1 i=1
with an obvious notation; and for each of these sub-bundles, the space of parallel sections
dimension 1. The operatdDg respects this splitting. Becaud¢ is symmetric, a fornw € 2*M is
Dg-harmonic iff it is d + d*-harmonic iff it is parallel. In particular, the restrictiobr; of Dy to
G xk (Sr ®r Sr.;) has a one-dimensional kernel.
Now let g € M(g). Let Sg be the real spinor bundle o#f, equipped with the metric ar
connection induced by, which exists over all sufficiently small open subsetsidf Then the vecto
bundles

Sk ®r Sr.i

exist globally onM . BecauseSy ®r Sk ; is a Dirac bundle with respect i we may define real operatc
Dy ; asin (2.1). TheDy, is an anti-self-adjoint deformation of the operaiwy ;. For an anti-self-adjoir
real Fredholm operator, the parity of the dimension of its kernel is invariant under deformations
Dg,; has an odd-dimensional and in particular non-empty kernel. After complexification, the o
D of Section 1 also has a non-empty kernel, so the theorem follows from Lemma 1.1 in this
case.

Next, suppose thatM, g) is an(8p + 1)-dimensional, closed, compact Riemannian manifold
non-positive curvature operator on 2-vectors, and ghatM(g). Assume that the universal coveri
of M is homeomorphic to a Riemannian symmetric sp@¢& of compact type with rkG =rk K + 1.
We may assume thaf is itself homeomorphic t6;/ K. Then Theorem 0.1 implies thM has the sam
holonomy asG /K. In particular, we still have a splitting of*7 M as in (2.2), and for each of the bund
&', the real dimension of the space of parallel sections is 1. Because the sum of the even Betti
is the same foM and G /K, there are no non-paralléy ;-harmonic forms (this also follows direct
becauseR™ > 0, cf. [3]). Now, the argument continues as above.

Finally, assume thatM, g) is as in the theorem, i.eM is as above, but of arbitrary odd dimensi
Then there is an even number> 2, such thatM’ := M x S” is (8p + 1)-dimensional for some.
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Suppose thag € M(g). We equipS” with its standard metrigg and define two metrics

g =g®g and g :=gdgo

on M’. Now, M’ is a Riemannian manifold of the type we have just considered. In particular,
constructDﬁM using the real spinor bundles &t with respect to the metricg’ andg’, thenD{RJ has &
non-empty kernel, so the complex Dirac operairalso has a non-empty kernel.

Nevertheless, we cannot apply Lemma 1.1 directly, because in gegéetalg’ does not hold ol
2-vectors, cf. [8]. By diagonalizing with respect tog, we construct &-orthonormal frame, ..., e,
at p € M as in Section 1.1, such that the vectérs= uie, ..., e, = une, form an orthonormal bas
with respect tog for scalarsus, ..., u, = 0. We also choose go-orthonormal framez,,.1, ..., enir
on §”, and definez,,.1 = ey, - .., Emar = €y, s above withu,, 1 = -+ = une, = 1. We note tha
R{ﬂ, =0unless, j, k,l <mori, j k,| >m. Because we know that;u; <1ifi, j <mori, j>m,
the inequality (1.10) still holds, so our arguments of Section 1.1 still showkthatc’ impliesk’ = «’.
Becausec’ = k + kg andk’ = i + kg, Wherex denotes the (constant) scalar curvatures’gfwe have
proved thak > « impliesk = «.

Suppose that > « and thatp > 0 and 2 — «. Then as before, the inequality (1.10) become:
equality, and the analogue of (1.12) holds st

m+r

0=> (1-u?ud)RY,. (2.3)
i,j=1

Becauseu; = 1 fori > m and R{?]fi =0 fori <m < j or vice versa, we only have to sum overl,
Jj < m, so (2.3) turns into (1.12). Then the reasoning of Section 1.2 shows that the ngednck; are
equal. This finishes the proof of Theorem 2.7

Remark 2.10. Recall that theKervaire semi-characteristicc (M) € Z, of M**! is defined a:
2 bs mod 2, whereh, := dim H/(M; R) denotes thg'th Betti number oveR. If M%+1=G/K is a
Riemannian symmetric space of compact type, héd) # 0 iff rk G =rk K + 1 and the numbey in
Propositions 2.8 and 2.9 is odd. For a compact, oriented manifold of dimerisioh with o (M) # 0, we
see immediately that the operatby, constructed above has a non-trivial kernel, cf. [9, Example II.
We can thus reformulate Theorem 2.7 for compact, connected, oriented Riemannian madifwltts
o (M) # 0 andRM™ > 0. However, it is not clear if such a reformulation will give us any new examp
a compact, connected, oriented Riemannian manifold Rith> 0 that carries an area-extremal met
Such a new example could be of the tyg I", whereM = G /K is a symmetric space of compact ty
with rkG > rk K 4+ 1, andI” acts nontrivially onH* (M, R) (in particular,I” does not act as a subgro
of G).

Remark 2.11. One could give a generalisation of Theorem 2.4 to area-non-increasing spirymaps-

M between compact, connected, oriented Riemannian maniféddg) and(N, g) with RM > 0, where
dimM and dimN are not necessarily even. For certain pairs of dimensions, the Atiyah—Singer
theorem provides & -theoretic condition orf that is sufficient for the existence offa-harmonic spino
in I'(SN ® f*SM), so that one can apply Lemma 1.1. In general, #itheoretic condition will no
admit a reformulation in terms of characteristic classes (even the Kervaire semi-characteristic me
above cannot be expressed in terms of characteristic classes).
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