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Abstract

We establish extremality of Riemannian metricsg with non-negative curvature operator on symmetric spaces
M = G/K of compact type with rkG − rkK � 1. Let ḡ be another metric with scalar curvatureκ̄ , such that̄g � g

on 2-vectors. We show thatκ̄ � κ everywhere onM implies κ̄ = κ . Under an additional condition on the Ricci
curvature ofg, κ̄ � κ even impliesḡ = g. We also study area-non-increasing spin maps onto such Riemannian
manifolds. 2002 Elsevier Science B.V. All rights reserved.
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There is a well known relation between the existence of metrics of positive scalar curvature on a
compact manifoldM and the topology ofM . Given such a metricg with scalar curvatureκ > 0, it is
interesting to ask how largeκ can become as a function onM when one varies the metricg. Of course
one should not allow scaling of the metric, so one has to compareg with suitable other metrics, e.g., with
metricsḡ which do not decrease areas with respect to the fixed metricg. These are the metrics in

(0.1)M(g) := {
ḡ ∈ Sym2(T M)

∣∣|v ∧ w|ḡ � |v ∧ w|g for all v,w ∈ T M
}
.

For ḡ ∈M(g) we will write ḡ � g on 2-vectors. Using the K-area inequalities, M. Gromov showed in [6]
that there is a finite upper bound for the minimum of the scalar curvature if one varies over metrics in
M(g). However it remains a problem to find sharp upper bounds in terms of the curvature of the fixed
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metricg. A first example for a sharp upper bound was given by M. Llarull in [11]. He considered metrics
on the sphere(Sn, g) whereg is the metric of constant curvature. Ifḡ is any metric onSn with scalar
curvatureκ̄ and withḡ � g on 2-vectors, he showed that (i)κ̄(p) � κ(p) for somep ∈ M and (ii) κ̄ � κ

implies κ̄ = κ . Indeed he showed that (iii)̄κ � κ even impliesḡ = g.
Metrics g having property (ii) will be calledarea-extremal. Note that (i) follows from (ii). If g is

an area-extremal metric of constant scalar curvature, this constant provides a sharp upper bound for the
minimum of the scalar curvature of all metrics inM(g).

Let us relate area-extremality to a theorem of J. Lohkamp, which sharpens earlier results of Kazdan
and Warner [7]. Letg be a Riemannian metric on a manifoldM with dim(M) � 3, and letκ0 :M → R be
any function such thatκ0 � κ everywhere onM . Then by [12], there exists a metricḡ, which isC0-close
to g, such thatκ̄ is C0-close toκ0. In particular, it is always possible to decrease both the metric and
the scalar curvature simultaneously. On the other hand, ifg is area-extremal, then by condition (ii) one
cannot simultaneously increase bothg andκ . We apply the construction of J. Lohkamp to see that not all
metricsg onM are area-extremal if dimM � 3. Let us start with an arbitrary metric̄g onM . Using [12],
we can construct a metricg which isC0-close to1

2ḡ and hasκ 
 κ̄ . Since clearlyḡ ∈ M(g), g is not
area-extremal. IfM admits a metric of positive scalar curvature, we start withκ̄ > 0. Theng can be
chosen such thatκ approximates12 κ̄ in theC0-topology. This shows that there are metrics with positive
scalar curvature that are not area-extremal.

In [6], M. Gromov asked which manifolds possess area-extremal metrics and how such metrics may
look like. He conjectured that Riemannian symmetric spaces should have area-extremal metrics. He also
proposed to investigate not only variations of the metric onM itself, but to consider also area-non-
increasing spin maps of non-vanishinĝA-degree from other Riemannian manifolds toM .

As mentioned above, M. Llarull showed that the standard metric onSn is area-extremal with the
additional rigidity (iii). In [10], he shows that̄κ � κ ◦ f implies κ̄ = κ ◦ f if f is an area-non-increasing
spin map of non-vanishinĝA-degree from a Riemannian manifold(N, ḡ) onto the round sphere. Later,
M. Min-Oo proved that Hermitian symmetric spaces of compact type are area-extremal (cf. [13]). Finally,
W. Kramer proved in [8] that quaternionic projective spaces are length-extremal, which is a slightly
weaker notion than area-extremality. In particular, area-extremality implies length-extremality.

In this paper, we generalize the preceding results. We prove area-extremality and rigidity for a certain
class of Riemannian metrics with non-negative curvature operator onΛ2(T M), see Theorem 0.2 below.
For this, we also require that either the Euler characteristicχ(M) is non-zero, or that a certain mod
2-index, which is related to the Kervaire semi-characteristic, does not vanish.

By the following theorem, a compact, simply connected Riemannian manifold with non-negative
curvature operator is homeomorphic to a symmetric space:

Theorem 0.1 [2,3,15]. If (M,g) is a compact irreducible Riemannian manifold with non-negative
curvature operator, then one of the following cases must occur:

(1) the universal covering ofM is homeomorphic to a sphere,
(2) the universal covering ofM is Kähler and biholomorphic to a complex projective space,
(3) M is locally symmetric.

The Euler characteristic of a Riemannian symmetric spaceG/K of compact type is different from
zero iff rk(G) = rk(K). If the mod 2-index mentioned above is non-zero, then rkG − rk K � 1 and
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dimM ≡ 0,1 mod 4. A certain stabilization trick allows us to treat all compact symmetric spaces with
rk G − rk K � 1. Let us summarize our main results, which are obtained in Theorems 2.1 and 2.7.

Theorem 0.2. Let (M,g) be a compact, connected, oriented Riemannian manifold with non-negative
curvature operator onΛ2(T M), such that the universal covering ofM is homeomorphic to a symmetric
spaceG/K of compact type withrkG � rkK + 1. Let ḡ ∈M(g), thenκ̄ � κ impliesκ̄ = κ . If moreover,
the Ricci curvature ofg satisfiesρ > 0 and2ρ − κ < 0, thenκ̄ � κ impliesḡ = g.

The conditions onρ will be motivated at the end of this preface, where we also conjecture a
generalization of Theorem 0.2.

If rk G = rkK , we also compareκ with the scalar curvatures of metrics on a different Riemannian
manifold N via spin maps of non-vanishinĝA-degree. In Theorem 2.4 we prove again extremality and
rigidity.

The proofs are based on a combination of the Bochner–Lichnerowicz–Weitzenböck (BLW) formula
with the Atiyah–Singer index theorem applied to certain twisted Dirac operators. We also need an
estimate for the curvature term in the BLW formula that uses non-negativity of the curvature operator. In
the odd-dimensional case (rkG = rkK + 1) we use the decomposition of the spinor bundle ofG/H .

In [5], we have established a similar result for Kähler manifolds of positive Ricci curvature using
different estimates.

The rest of the paper is organized as follows: in Section 1, we investigate the BLW formula for a
certain twisted Dirac operator. The main result is contained in Lemma 1.1. In Section 2, we apply this
result. We use the index theorem in various settings to show the existence of harmonic spinors.

We would like to thank Ch. Bär and G. Weingart for helpful comments and continued interest in our
work.

Locally area-extremal metrics. In the rest of this paper, we generally consider globally area-extremal
metrics onM . Here, “globally” means that̄κ � κ implies κ̄ = κ for all metricsḡ ∈M(g). Here, we want
to give a sufficient condition for a metricg to be locally area-extremal as in the following lemma.

Lemma 0.3. Letg be a metric on a compact Riemannian manifoldM whose Ricci curvatureρ is positive
definite. Then there exists no nonconstantC1-path(gt )t∈[0,ε] of Riemannian metrics onM for ε > 0 with
g0 = g, such thatgt � g0 on vectors andκt � κ .

Suppose moreover that2ρ − κ is negative definite. Then there exists no nonconstant path(gt )0�t<ε as
above, such thatgt � g0 on 2-vectors andκt � κ .

Proof. There exists ag-symmetric endomorphismA of T M , such that

gt(·, ·) = g
(
etA·, ·) + o(t).

Let κt be the scalar curvature andρt the Ricci curvature ofgt . By a straightforward calculation in normal
coordinates around a pointp in M , one checks that the derivative ofκt at t = 0 is given by

(0.2)
∂

∂t

∣∣∣∣
t=0

κt = �g(trA) − g
((∇2

eiej
A

)
ei, ej

) − trg ρ(A·, ·).

Here,�g denotes the Laplacian with respect tog, ∇2 denotes the second covariant derivative, and trg

denotes the trace of a two-form with respect tog. Note that the first two terms can be written as
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divergences with respect to the metricg. In particular, these terms either vanish identically, or they
become negative somewhere onM .

Let us assume that the Ricci curvatureρ is positive definite. If the metricsgt are larger or equal
thang = g0 on vectors fort ∈ [0, ε], thenA is positive semi-definite. In this case, the third term in (0.2)
is � 0 everywhere onM , with equality iff A vanishes identically. This implies the first statement of the
lemma.

If we havegt � g only on 2-vectors, then the sum of any two eigenvalues ofA is � 0. In other words,
at most one eigenvaluesai of A can be negative, and its absolute value is not larger than any other
eigenvalue. On the other hand, 2ρ − κ < 0 implies that no eigenvalue ofρ can be larger or equal than the
sum of the other eigenvalues. In particular, the condition 2ρt −κt < 0 guarantees that the last term in (0.2)
is again non-positive, with equality iffA vanishes identically. As above, this proves the lemma.✷

One might be tempted to infer that for a pathgt with g0 = g such thatρt is positive definite (and
2ρ − κ < 0 is negative definite) and withgt � gt ′ on vectors (2-vectors) whenevert � t ′, one would get
κt /�κ for all t > 0, except ifgt is the constant path. If one rewrites (0.2) for a metricgt with t �= 0, then
the first two terms of the new equation are divergences with respect to the new metricgt , and as such,
they are either zero everywhere or negative somewhere onM . However, the integral of the first two terms
over an interval[0, t] gives a functionK on M that is not necessarily a divergence with respect to some
metric onM . In particular, we can not exclude thatK is non-negative everywhere.

Note that in Lemma 0.3, we need precisely the same conditions onρ as in Theorem 0.2. One might
even dare to ask the following

Question 0.4. Are all Riemannian metricsg on compact manifoldsM with ρ > 0 and 2ρ − κ < 0 area-
extremal?

For Kähler metrics, this has been answered affirmatively in [5].

1. Scalar curvature estimates

In this section, we use the BLW formula to derive estimates on the scalar curvature.
Let (M,g) be a Riemannian manifold. The Riemannian curvature tensorRM induces a self-adjoint

curvature operatorRM on Λ2T M , such that

(1.1)g
(
RM(ei ∧ ej ), ek ∧ el

) = −g
(
RM

ei,ej
ek, el

)
,

where e1, . . . , em is an orthonormal base ofT M . The sign has been chosen such that all sectional
curvatures ofM are non-negative whenRM is non-negative, i.e., all eigenvalues ofRM are� 0.

Let (M,g) and (N, ḡ) be compact oriented Riemannian manifolds, and letf :N → M be an area-
non-increasing spin map. That is,

(1.2)|v ∧ w|ḡ � |f∗v ∧ f∗w|g
for all v, w ∈ TqN and allq ∈ N ; and the second Stiefel–Whitney classes ofT M andT N are related by

(1.3)w2(T N) = f ∗(w2(T M)
)
.
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Because the total Stiefel–Whitney class is multiplicative, condition (1.3) is equivalent tow2(T N ⊕
f ∗T M) = 0. In particular, the bundleT N ⊕ f ∗T M admits a spin structure. Thus we may chose a
principal bundlePSpinn ·Spinm → N with fiber Spinn ·Spinm = (Spinn ×Spinm)/{±1} that projects down to
the frame bundle ofT N ⊕ f ∗T M . LetSN ⊗ f ∗SM denote the bundle associated to the tensor product
of the spinor representations. Note that ifM is spin, so isN by (1.3), and we may fix compatible spin
structures onM andN . Then the bundlesSM andSN exist, andSN ⊗f ∗SM is precisely the bundle we
have just defined. The bundleSN ⊗f ∗SM carries a natural Hermitian metric and a unitary connection∇
compatible with Clifford multiplication by elements of C)T N ⊗ f ∗ C)T M . We will denote Clifford
multiplication withv ∈ T N by c̄(v) and Clifford multiplication withw ∈ f ∗T M by c(w).

Let D̄ be the Dirac operator onSN ⊗ f ∗SM → N , which can locally be expressed as

D̄ =
n∑

i=1

c̄(ēi )∇ēi
,

in terms of an orthonormal baseē1, . . . , ēn with respect tōg. By the BLW formula,

(1.4)D̄2 = ∇∗∇ + κ̄

4
+ 1

8

n∑
i,j=1

m∑
k,l=1

g
(
f ∗RM

ēi ,ēj
ek, el

)
c̄(ēi)c̄(ēj ) ⊗ c(ek)c(el),

wheree1, . . . , em is a local orthonormal base off ∗T M , κ̄ denotes the scalar curvature ofN , andf ∗RM

is the curvature of the bundlef ∗T M . Let us define Clifford multiplication by 2-forms by

c̄(v̄ ∧ w̄) = c̄(v̄)c̄(w̄) and c(v ∧ w) = c(v)c(w),

for q ∈ N , v̄, w̄ ∈ TqN andv, w ∈ (f ∗T M)q with ḡ(v̄, w̄) = g(v,w) = 0. If {ωi} and{ω̄j} are orthonor-
mal bases off ∗Λ2T M andΛ2T N , we may rewrite Eq. (1.4) as

(1.5)D̄2 = ∇∗ ∇ + κ̄

4
− 1

2

∑
i,j

g
(
RM(f∗ω̄j ),ωi

)
c̄(ω̄j ) ⊗ c(ωi).

Let κ and ρ denote the scalar and Ricci curvature ofM . In the rest of this section, we prove the
following

Lemma 1.1. Let (M,g) and (N, ḡ) be compact, connected, oriented Riemannian manifolds, and let
f :N → M be an area-non-increasing spin map. Suppose that the curvature operator ofM is non-
negative and that the bundleSN ⊗ f ∗SM admits aD̄-harmonic spinor. Then̄κ � κ ◦ f everywhere
on N implies thatκ̄ = κ ◦ f . If moreover,ρ > 0 and 2ρ − κ < 0, then κ̄ � κ ◦ f implies thatf is a
Riemannian submersion.

1.1. The estimate

In this subsection, we prove the first part of Lemma 1.1: we show thatκ̄ � κ ◦ f together with the
existence of aD̄-harmonic spinor implies that̄κ = κ ◦ f .

We start by investigating the last term on the right hand side of the BLW formula (1.4). Since we have
assumed thatRM is non-negative, it possesses a self-adjoint square rootL ∈ End(Λ2T M) such that

g
(
RMωi,ωj

) = g(Lωi,Lωj).
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Let us write

(1.6)L̄ωk :=
∑

i

g(Lωk, f∗ω̄i)ω̄i ∈ Λ2T N.

Now the last term on the right hand side of (1.5) can be rewritten as

−1

2

∑
i,j

g
(
RM(f∗ω̄j ),ωi

)
c̄(ω̄j ) ⊗ c(ωi)

= −1

2

∑
i,j,k

g
(
L(f∗ω̄j ),ωk

)
g(Lωi,ωk)c̄(ω̄j ) ⊗ c(ωi)

= −1

2

∑
k

c̄
(
L̄(ωk)

) ⊗ c(Lωk)

= 1

4

∑
k

(−(
c̄
(
L̄ωk

) ⊗ 1+ 1⊗ c(Lωk)
)2 + c̄

(
L̄ωk

)2 ⊗ 1+ 1⊗ c(Lωk)
2)

(1.7)� 1

4

∑
k

(
c̄
(
L̄ωk

)2 ⊗ 1+ 1⊗ c(Lωk)
2).

Here we have used that Clifford multiplication with 2-forms is skew symmetric and that squares of
skew-symmetric endomorphisms are non-positive, so−(c̄(L̄ωk) ⊗ 1 + 1 ⊗ c(Lωk))

2 is a non-negative
endomorphism.

We claim that the operators
∑

k c̄(L̄ωk)
2 and

∑
k c(Lωk)

2 act on spinors as multiplication by functions
on N , and moreover,

(1.8)
∑

k

c̄
(
L̄ωk

)2 � −κ ◦ f

2
, and

∑
k

c(Lωk)
2 = −κ ◦ f

2
.

The term−1
2κ ◦f in the second statement of (1.8) arises in precisely the way as the termκ

4 in the classical
BLW formula, cf. [9].

The proof of the first statement is similar: By definition ofL̄ in (1.6),∑
k

c̄
(
L̄ωk

)2 =
∑
i,j,k

g(Lωk, f∗ω̄i)g(Lωk, f∗ω̄j )c̄(ω̄i)c̄(ω̄j )

(1.9)=
∑
i,j

g
(
RM(f∗ω̄i), f∗ω̄j

)
c̄(ω̄i)c̄(ω̄j ).

At this point, we choose a local̄g-orthonormal framēe1, . . . , ēn and a localg-orthonormal frame
e1, . . . , em, such that there existsµ1, . . . ,µmin(m,n) � 0 with

f∗ēi =
{

µiei if i � min(m,n), and
0 otherwise.

This can be done by diagonalizingf ∗g with respect to the metric̄g. Then we have the orthonormal bases
ēi ∧ ēj of Λ2T N andek ∧ el of Λ2T M , with

f∗(ēi ∧ ēj ) = µiµj ei ∧ ej and µiµj � 1

for 1� i < j � min(m,n), because we have assumedf to be area-non-increasing.
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We rewrite Eq. (1.9) in these bases, using the definition (1.1) ofRM :∑
k

c̄
(
L̄ωk

)2 = −
∑

i<j, k<l

g
(
RM

f∗ēi ,f∗ēj
f∗ēk, f∗ēl

)
c̄(ēi )c̄(ēj )c̄(ēk)c̄(ēl)

= −1

4

∑
i,j, k,l

µiµj µkµl

(
RM

ijkl ◦ f
)
c̄(ēi)c̄(ēj )c̄(ēk)c̄(ēl )

(1.10)= −1

2

∑
i,j

µ2
i µ

2
j

(
RM

ijji ◦ f
)
� −κ ◦ f

2
.

Here, all terms with four different indices are eliminated by Bianchi’s first identity, while all terms with
three different indices vanish for symmetry reasons. This proves our claim (1.8).

We are now ready to prove the first statement in Lemma 1.1. Assume thatκ̄ � κ ◦ f . Let 0 �= ψ ∈
Γ (SN ⊗f ∗SM) be aD̄-harmonic spinor, and let‖·‖ and〈·, ·〉 denote theL2 norm andL2 scalar product
on Γ (SN ⊗ f ∗SM). Then by Eqs. (1.5), (1.7) and (1.8),

0= ‖D̄ψ‖2 = ‖∇ψ‖2 +
〈
ψ,

(
κ̄

4
− 1

2

∑
i,j

g
(
RM(f∗ω̄j ),ωi

)
c̄(ω̄j ) ⊗ c(ωi)

)
ψ

〉

(1.11)� ‖∇ψ‖2 +
〈
ψ,

κ̄ − κ ◦ f

4
ψ

〉
� 0.

BecauseN is connected andψ �= 0 is D̄-harmonic, the subset ofN whereψ is non-zero is open and
dense inN . In particular, estimate (1.11) now impliesκ̄ = κ ◦f . This proves the first claim of Lemma 1.1.

1.2. The rigidity statement

We will now establish the second claim in Lemma 1.1. We have to show thatκ̄ � κ ◦ f implies thatf
is a Riemannian submersion if̄D possesses a harmonic spinor and the Ricci curvature satisfiesρ > 0 and
2ρ − κ < 0.

By the arguments of the last section,κ̄ � κ ◦ f implies that all inequalities in (1.7), (1.10) and (1.11)
turn into equalities. From (1.10), we get in particular that∑

i,j

µ2
i µ

2
j

(
RM

ijji ◦ f
) = κ ◦ f =

∑
i,j

RM
ijji ◦ f,

so

(1.12)0=
∑
i,j

(
1− µ2

i µ
2
j

)(
RM

ijji ◦ f
)
.

SinceRM
ijji � 0 andµiµj � 1 becausef is area-non-increasing, all summands are non-negative.

Assume first thatf is length-non-increasing, i.e.,µi � 1 for all i. Because we have assumed the
Ricci curvatureρ to be positive definite, we haveρii = ∑

j RM
ijji > 0. Thus for anyi there is aj with

RM
ijji ◦ f �= 0. Hence,µiµj = 1, soµi = µj = 1. Since we can start with anyi ∈ {1, . . . ,m}, we get

µ1 = · · · = µm = 1. This implies in particular thatm = dimM � n = dimN and thatf is a Riemannian
submersion.
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We turn to the general case, i.e.,f is now only area-non-increasing. The condition 2ρ − κ < 0 implies
for fixed k that

2
∑

j

RM
kjjk <

∑
i,j

RM
ijji , so 0<

∑
i �=k, j �=k

RM
ijji .

Hence, there is at least one pair(i, j) with i �= k, j �= k, andRM
ijji �= 0. Then we have againµiµj = 1.

Together withµiµk � 1 andµjµk � 1, this clearly impliesµk � 1. It follows thatf is length-non-
increasing. The arguments above show thatf is a Riemannian submersion. This finishes the proof of
Lemma 1.1.

Remark 1.2. Let (M,g) and (N, ḡ) be as in Lemma 1.1, and againRM � 0, but assume thatf is a
length-non-increasing spin map. Suppose thatκ̄ � κ ◦f , thatρ > 0, and the bundleSN ⊗f ∗SM admits
a D̄-harmonic spinor. Then̄κ = κ ◦ f everywhere onN , andf is a Riemannian submersion.

Note that 2ρ − κ < 0 implies that dimM � 3: the condition 2ρ − κ < 0 can be rephrased by saying
that no eigenvalue of the Ricci curvature is larger or equal than the sum of the remaining eigenvalues.
Clearly this implies the existence of at least three (not necessarily different) eigenvalues ofρ.

On the other hand, ifM is a locally symmetric space of compact type and dimM � 3, then the
conditionsρ > 0 and 2ρ − κ < 0 are automatically satisfied. Indeed,M splits locally into irreducible
components of dimension� 2 which are Einstein. In particular, all eigenvalues ofρ are strictly positive,
and each eigenvalue has multiplicity at least 2. Together with dimM � 3, this implies that no eigenvalue
of ρ can be larger or equal than the sum of the remaining eigenvalues.

Finally, we remark that for manifolds with a non-negative curvature operator, the two conditionsρ > 0
and 2ρ − κ < 0 are only restrictive if the universal cover ofM contains factors which are either flat or
non-symmetric spheres or complex projective spaces.

2. Index-theoretic considerations

In order to apply the results of the previous section to a specific mapf :N → M , we have to ensure
that the operator̄D of Section 1 has a non-zero kernel. We list some criteria that imply the existence of
D̄-harmonic spinors.

2.1. Manifolds with non-vanishing Euler characteristic

In the simplest application of Lemma 1.1, we take a Riemannian manifold(M,g) with RM � 0 and
non-vanishing Euler characteristicχ(M). Recall thatM(g) was defined in (0.1). If we takēg ∈ M(g),
then the identity map idM : (M, ḡ) → (M,g) is area-non-increasing and spin by (1.2) and (1.3).

Theorem 2.1. Let (M,g) be a compact, connected, oriented Riemannian manifold with non-negative
curvature operator and non-vanishing Euler characteristic. Letḡ ∈ M(g), thenκ̄ � κ impliesκ̄ = κ . If
moreover, the Ricci curvature ofg satisfiesρ > 0 and2ρ − κ < 0, thenκ̄ � κ impliesḡ = g.

Proof. Let S denote the spinor bundle ofM , which exists over all sufficiently small open subsets ofM

even ifM is not spin. We equipS with the metric and connection induced byg. If the Euler characteristic
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χ(M) of M is non-zero, thenM is even-dimensional, and the local spinor bundle splits asS = S+ ⊕S−.
It is a well known fact that

ΛevenT M = (
S+ ⊗ S+) ⊕ (S− ⊗ S−) and ΛoddT M = (

S+ ⊗ S−) ⊕ (
S− ⊗ S+)

,

that the Dirac operator onΛ∗T M = S ⊗ S is precisely the operatorD = d + d∗, and that the index of
D :Ωeven(M) → Ωodd(M) equalsχ(M).

Let S̄ denote the (local) spinor bundle ofM , equipped with the metric and connection induced byḡ.
Then the operator̄D considered in Section 1 is precisely the twisted Dirac operator onS̄ ⊗ S . If we
introduce a grading ofS̄ ⊗ S analogous to the grading ofΛ∗T M by even and odd degree, then the
index of D̄ with respect to this grading again equalsχ(M). In particular, there is āD-harmonic spinor
0 �= ψ ∈ Γ (S̄ ⊗ S). Now our claim follows from Lemma 1.1. ✷

Recall that a symmetric spaceM = G/K of compact type hasRM � 0. Moreover,χ(M) �= 0 iff
rk G = rkK . Hence we have

Corollary 2.2. Let (M = G/K,g) be a compact Riemannian symmetric space withrkG = rk K . If
ḡ ∈M(g), thenκ̄ � κ impliesḡ = g.

Remark 2.3. We could also consider another grading of the bundleS̄ ⊗ S analogous to the splitting of
Λ∗T M into self-dual and anti-self-dual forms. The index ofD̄ with respect to this grading is the signature
Sign(M). By Hirzebruch’s signature theorem, Sign(M) can be expressed as a certain Pontrjagin number
of M . A classical result of Bott implies that all Pontrjagin numbers of a quotientG/K of compact Lie
groups vanish unless rkG = rkK . Thus, we do not gain anything here if we consider the signature instead
of the Euler characteristic.

2.2. Maps of non-vanishinĝA-degree

In this section, we investigate a certain class of maps to manifolds with a non-negative curvature
operator on 2-vectors. In order to state our result, let us recall the following definition: theÂ-degreeof f

is given by

deĝA f = (
Â(N)f ∗ω

)[N],
whereω ∈ H m(M,Z) is the fundamental class ofM corresponding to the orientation ofM . Recall that
the notion of an area-non-increasing spin map was defined in (1.2) and (1.3).

Theorem 2.4. Let (M, g) be a compact connected oriented Riemannian manifold with non-negative
curvature operator and with non-vanishing Euler characteristic. Let(N, ḡ) be a compact connected
oriented Riemannian manifold, and letf :N → M be an area-non-increasing spin map of non-vanishing
Â-degree. Then̄κ � κ ◦ f impliesκ̄ = κ ◦ f . If moreover, the Ricci curvatureρ of M satisfiesρ > 0 and
2ρ − κ < 0, thenf :N → M is a Riemannian submersion.

Proof. Since f is spin, we can construct the bundleSN ⊗ f ∗SM and the Dirac operator̄D on
Γ (SN ⊗ f ∗SM) as in Section 1. By the Atiyah–Singer index theorem, the index of

D̄ :
(
S+N ⊗ f ∗S+M

) ⊕ (S−N ⊗ f ∗S−M) → (
S−N ⊗ f ∗S+M

) ⊕ (
S+N ⊗ f ∗S−M

)
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is given by

ind(D̄) = (
Â(N)f ∗ ch

(
S+M − S−M

))[N] = deĝA f · χ(M),

because ch(S+M − S−M) ∈ H m(M,R) equals the Euler class ofM . Under the hypotheses of the
theorem, we have ind(D̄) �= 0. Now, the theorem follows from Lemma 1.1.✷
Remark 2.5. The conditions thatf be spin and deĝA(f ) �= 0 look very technical. To see that they are
necessary, suppose thatM is a point. In this situation, Theorem 2.4 becomes precisely Lichnerowicz’
theorem, which states that a compact, connected, oriented spin manifoldN of non-vanishingÂ-genus
cannot carry a metric̄g with κ̄ � 0 and strict inequality somewhere onN . This gives us a hint how
to construct counterexamples to Theorem 2.4 without the assumptions mentioned above: ifN is the
Riemannian productM × CP k for k � 1, then clearly the projectionf onto the first factor is area-non-
increasing, but̄κ > κ ◦ f . However, it is easy to see in this situation that

deĝA(f ) = Â
(
CP k

)[
CP k

]
which vanishes ifk is odd, while the mapf is spin iff CP k is spin, which is not the case for evenk.

We do not know if the conditionχ(M) �= 0, which we need to ensure the existence of harmonic
spinors, can be omitted entirely. However, it can be replaced by different conditions. Here is one possible
example:

Remark 2.6. In the proof of Theorem 2.4, we worked with the Dirac operator onN , twisted by the virtual
bundlef ∗(S+M − S−M). We could equally well twist with only one componentf ∗S±M , or with the
sumf ∗SM . In the latter case, the index of the corresponding Dirac operator onM is given by(

Â(N)f ∗ ch(SM)
)[N] =: degSign(f ),

which we will call thesignature degreeof f , because for the identity idM , we get the signature ofM :(
Â(M)ch(SM)

)[M] = L(M)[M] = Sign(M).

Thus, in Theorem 2.4, we can replace the two conditionsχ(M) �= 0 and deĝA(f ) �= 0 by the single
condition degSign(f ) �= 0 to obtain another version of the theorem.

2.3. Odd-dimensional manifolds

In this section, we present an analogue of Theorem 2.1 for a certain class of odd-dimensional manifolds
with non-negative curvature operator. The idea here is to use the invariance of the mod 2-index of an anti-
self-adjoint real Fredholm operator in order to find aD̄-harmonic spinor. We consider a mod 2-index that
is related to the Kervaire semi-characteristic, as we will explain in Remark 2.10 below.

Theorem 2.7. Let (M,g) be an odd-dimensional compact, connected, oriented Riemannian manifold
with non-negative curvature operator onΛ2(T M), and assume that the universal covering ofM is
homeomorphic to a Riemannian symmetric spaceG/K of compact type withrkG = rk K + 1. Let
ḡ ∈M(g), thenκ̄ � κ impliesκ̄ = κ . Moreover, ifρ > 0 and2ρ − κ < 0, thenκ̄ � κ impliesḡ = g.
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Note that our assumption onM rules out the possibility that the universal covering ofM contains
a Euclidean de Rham factor. We recall the following description of the complex spinor bundle of not
necessarily irreducible symmetric spaces:

Proposition 2.8 [4,14]. Let M = G/K be a symmetric space withrkG = rkK + k. Then the complex
spinor bundleS is locally induced by a representationσ of the Lie algebrak of K , which splits as

σ = 2[ k
2 ]

q⊕
i=1

σi,

whereσ1, . . . ,σq are certain pairwise non-isomorphic irreducible complex representations ofk.

Using this proposition, we derive a splitting of the bundleΛevenT M of even, real exterior forms onM .
We refer the reader to [1] and [9] for all technical details concerning real representations of real semi-
simple Lie algebras and real Clifford algebras.

Proposition 2.9. Let M = G/K be a symmetric space of dimensionm = 8p + 1 such thatrkG =
rk K + 1. Then the bundleΛevenT M splits as a direct sum

ΛevenT M =
q⊕

i=1

E i ,

such that eachE i is a parallel,G-invariant subbundle ofΛevenT M which is invariant under the natural
left action ofC)evenT M . Moreover, for eachE i , the space of parallel sections has real dimension1, and
each parallel section isG-invariant.

Proof. Recall that form = 8p + 1, the real spinor representationσR of Spinm acts on a real vector
spaceSR of real dimension 24p [9]. The complex spinor representation arises asσ = σR ⊗R C on
S = SR ⊗R C. Complex conjugation induces aC-antilinear involution·̄ on S, which commutes withσ .
If we restrictσ andσR to the Lie algebrak, then ·̄ descends to aC-antilinear involution on each of the
irreducible subrepresentationsσi of Proposition 2.8. LetSR,i be the(+1)-eigenspace of̄· on Si , then
σi = σR,i ⊗R C, and

σR =
q⊕

i=1

σR,i.

By [9], we haveΛevenp ∼= C)evenp ∼= SR ⊗R SR. Setting

E i := G ×K (SR ⊗R SR,i),

we obtain the decomposition of the proposition. By Proposition 2.8 and Schur’s Lemma, the trivialK-
isotypical component ofσ ⊗ σi is one-dimensional overC. Arguing with complex conjugation as above,
we see that the trivialK-isotypical component ofσR ⊗R σR,i is one-dimensional overR. This implies
that the space of parallel sections ofE i is also one-dimensional andG-invariant. ✷
Proof of Theorem 2.7. We start with the following basic case: Assume that(M,g) is a Riemannian
locally symmetric space of compact type withm = dimM = 8p + 1. Let e1, . . . , em be a local
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g-orthonormal base ofT M , and let

ωR = c(e1) . . . c(em) ∈ End(Λ∗T M)

denote the real Clifford volume element. We consider the real Dirac operator

(2.1)DR :=
m∑

i=1

ωRc(ei)∇ei
.

Note thatωRc(ei) ∈ C)even(T M) for all i, so DR acts onΩevenM . Because the adjoint ofωR equals
ω∗

R
= −ωR for m ≡ 1 mod 4, and becauseωR is parallel and commutes with Clifford multiplicationc(ei),

the operatorDR is formally anti-self-adjoint. Moreover,−D2
R

is equal to the Hodge–Laplacian
(d + d∗)2.

SinceM is of compact type, after passing to a finite cover, we may assume thatM = G/K is simply
connected. We assume that rkG = rkK +1. By Proposition 2.9, the bundleΛevenM splits as a direct sum
of parallel sub-bundles

(2.2)ΛevenM =
q⊕

i=1

E i =
q⊕

i=1

SR ⊗R SR,i

with an obvious notation; and for each of these sub-bundles, the space of parallel sections has real
dimension 1. The operatorDR respects this splitting. BecauseM is symmetric, a formα ∈ Ω∗M is
DR-harmonic iff it is d + d∗-harmonic iff it is parallel. In particular, the restrictionDR,i of DR to
G ×K (SR ⊗R SR,i) has a one-dimensional kernel.

Now let ḡ ∈ M(g). Let S̄R be the real spinor bundle ofM , equipped with the metric and
connection induced bȳg, which exists over all sufficiently small open subsets ofM . Then the vector
bundles

S̄R ⊗R SR,i

exist globally onM . BecauseS̄R ⊗RSR,i is a Dirac bundle with respect tōg, we may define real operators
D̄R,i as in (2.1). ThenD̄R,i is an anti-self-adjoint deformation of the operatorDR,i. For an anti-self-adjoint
real Fredholm operator, the parity of the dimension of its kernel is invariant under deformations. Thus
D̄R,i has an odd-dimensional and in particular non-empty kernel. After complexification, the operator
D̄ of Section 1 also has a non-empty kernel, so the theorem follows from Lemma 1.1 in this special
case.

Next, suppose that(M,g) is an (8p + 1)-dimensional, closed, compact Riemannian manifold with
non-positive curvature operator on 2-vectors, and thatḡ ∈ M(g). Assume that the universal covering
of M is homeomorphic to a Riemannian symmetric spaceG/K of compact type with rkG = rkK + 1.
We may assume thatM is itself homeomorphic toG/K . Then Theorem 0.1 implies thatM has the same
holonomy asG/K . In particular, we still have a splitting ofΛ∗T M as in (2.2), and for each of the bundles
E i , the real dimension of the space of parallel sections is 1. Because the sum of the even Betti numbers
is the same forM andG/K , there are no non-parallelDR,i-harmonic forms (this also follows directly
becauseRM � 0, cf. [3]). Now, the argument continues as above.

Finally, assume that(M,g) is as in the theorem, i.e.,M is as above, but of arbitrary odd dimension.
Then there is an even numberr � 2, such thatM ′ := M × Sr is (8p + 1)-dimensional for somep.
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Suppose that̄g ∈M(g). We equipSr with its standard metricg0 and define two metrics

g′ := g ⊕ g0 and ḡ′ := ḡ ⊕ g0

on M ′. Now, M ′ is a Riemannian manifold of the type we have just considered. In particular, if we
constructD̄′

R,i using the real spinor bundles ofM ′ with respect to the metricsg′ andḡ′, thenD̄′
R,i has a

non-empty kernel, so the complex Dirac operatorD̄′ also has a non-empty kernel.
Nevertheless, we cannot apply Lemma 1.1 directly, because in general,ḡ′ � g′ does not hold on

2-vectors, cf. [8]. By diagonalizinḡg with respect tog, we construct ag-orthonormal framee1, . . . , em

at p ∈ M as in Section 1.1, such that the vectorsē1 = µ1e1, . . . , ēm = µmem form an orthonormal base
with respect toḡ for scalarsµ1, . . . ,µm � 0. We also choose ag0-orthonormal frameem+1, . . . , em+r

on Sr , and definēem+1 = em+1, . . . , ēm+r = em+r as above withµm+1 = · · · = µm+r = 1. We note that
RM ′

ijkl = 0 unlessi, j, k, l � m or i, j, k, l > m. Because we know thatµiµj � 1 if i, j � m or i, j > m,
the inequality (1.10) still holds, so our arguments of Section 1.1 still show thatκ̄ ′ � κ ′ implies κ̄ ′ = κ ′.
Becauseκ ′ = κ + κ0 and κ̄ ′ = κ̄ + κ0, whereκ0 denotes the (constant) scalar curvature ofSr , we have
proved that̄κ � κ implies κ̄ = κ .

Suppose that̄κ � κ and thatρ > 0 and 2ρ − κ . Then as before, the inequality (1.10) becomes an
equality, and the analogue of (1.12) holds forM ′:

(2.3)0=
m+r∑
i,j=1

(
1− µ2

i µ
2
j

)
RM ′

ijj i .

Becauseµi = 1 for i > m andRM ′
ijj i = 0 for i � m < j or vice versa, we only have to sum over 1� i,

j � m, so (2.3) turns into (1.12). Then the reasoning of Section 1.2 shows that the metricsḡ andg are
equal. This finishes the proof of Theorem 2.7.✷
Remark 2.10. Recall that theKervaire semi-characteristicσ (M) ∈ Z2 of M4k+1 is defined as∑2k

i=0 b2i mod 2, wherebj := dimH j(M;R) denotes thej th Betti number overR. If M4k+1 = G/K is a
Riemannian symmetric space of compact type, thenσ (M) �= 0 iff rk G = rkK + 1 and the numberq in
Propositions 2.8 and 2.9 is odd. For a compact, oriented manifold of dimension 4k+1 with σ (M) �= 0, we
see immediately that the operatorD̄R constructed above has a non-trivial kernel, cf. [9, Example II.7.7].
We can thus reformulate Theorem 2.7 for compact, connected, oriented Riemannian manifoldsM with
σ (M) �= 0 andRM � 0. However, it is not clear if such a reformulation will give us any new example of
a compact, connected, oriented Riemannian manifold withRM � 0 that carries an area-extremal metric.
Such a new example could be of the typeM/Γ , whereM = G/K is a symmetric space of compact type
with rk G > rk K + 1, andΓ acts nontrivially onH ∗(M,R) (in particular,Γ does not act as a subgroup
of G).

Remark 2.11. One could give a generalisation of Theorem 2.4 to area-non-increasing spin mapsf :N →
M between compact, connected, oriented Riemannian manifolds(M,g) and(N, ḡ) with RM � 0, where
dimM and dimN are not necessarily even. For certain pairs of dimensions, the Atiyah–Singer index
theorem provides aK-theoretic condition onf that is sufficient for the existence of āD-harmonic spinor
in Γ (SN ⊗ f ∗SM), so that one can apply Lemma 1.1. In general, thisK-theoretic condition will not
admit a reformulation in terms of characteristic classes (even the Kervaire semi-characteristic mentioned
above cannot be expressed in terms of characteristic classes).
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