Journal of Mathematical Analysis and Applications 244, 564–567 (2000)

NOTE

A Certain Functional–Differential Equation

J. K. Langley
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Submitted by William F. Ames
Received September 30, 1999

We resolve some conjectures concerning the zeros t_n of the solution f of the initial value problem $f'(t) = -f(qt)$, $0 < q < 1$, $f(0) = 1$. In particular,

$$\lim_{n \to \infty} t_{n+1}/t_n = 1/q.$$

Let $0 < q < 1$. Then the initial value problem

$$y'(t) = -y(qt), \quad y(0) = 1, \quad (1)$$

has the unique solution [1–3]

$$f(z) = \prod_{n=0}^{\infty} \left(1 - z/t_n\right), \quad 0 < t_0 < t_1 < t_2 < \cdots, \quad (2)$$

with positive zeros t_i. The equation (1) is the simplest of a class of functional–differential equations which have been subject to widespread recent study (see [2] for references), and the following conjectures, labelled as in [2], have been raised concerning the t_i:

(A) t_{n+1}/t_n is monotone decreasing [3];

(B) $\lim_{n \to \infty} t_{n+1}/t_n = 1/q$ [3];

(D) $t_n = \mu q^{-n} + \nu + o(1)$ as $n \to \infty$, with real constants μ, ν [1].

It was proved in [2] that $t_{n+1} > q^{-1}t_n$ for all n and that $\limsup_{n \to \infty} t_{n+1}/t_n \leq q^{-2}$.

564
Theorem. We have, as \(n \to \infty \),
\[
\frac{t_{n+1}}{t_n} = \frac{1}{q}\left(1 + \frac{1}{n + 1}\right) + o(n^{-2})
\]
(3)
and, with \(\gamma \) a positive constant,
\[
t_n = q^{-n}(\gamma + o(1)).
\]
(4)
Further, the conjecture (C) is true but (D) is false, and \(t_{n+1}/t_n \) is decreasing for large \(n \).

Proof of the Theorem

For convenience, set \(\lambda = 1/q \). As noted above, it was shown in [2] that
\[
t_{n+1} > \lambda t_n, \quad n \geq 0.
\]
(5)
In fact, (5) may be proved by the following method, different to that of [2]:
Since \(f' \) has a zero \(s \) in \((t_0, t_1) \) and \(0 = f(qs) \), by (1), it follows at once that \(t_1 > s = \lambda t_0 \). Repeating this gives (5).
Again, since \(f'(s) = 0 \) implies that \(f(qs) = 0 \), it now follows that \(f' \) has precisely one zero \(s_n = \lambda t_n \) in the interval \((t_n, t_{n+1}) \), for each \(n \geq 0 \). But
\[
\frac{f'(z)}{f(z)} = \sum_{n=0}^{\infty} \frac{1}{z - t_n}
\]
vanishes at \(s_n \), and so we get
\[
\frac{s_n}{t_{n+1} - s_n} = \sum_{\mu \geq 0, \mu \neq n+1} \frac{1}{1 - t_{\mu}/s_n}.
\]
(6)
Next, (5) gives
\[
t_{n+j}/s_n = qt_{n+j}/t_n > \lambda^{-j}, \quad j \geq 2,
\]
and so
\[
\sum_{\mu \geq n+2} \left|\frac{1}{1 - t_{\mu}/s_n}\right| \leq \sum_{k=1}^{\infty} \frac{1}{\lambda^k - 1} = c_0 < \infty.
\]
(7)
On the other hand, for \(m \leq n \) we have, using (5),

\[
0 < \frac{1}{1 - t_m/s_n} - 1 = \frac{t_m}{(1 - t_m/s_n)s_n} \leq \frac{t_m}{(1 - q)s_n} \leq \frac{1}{(1 - q)\lambda^{n-m+1}}
\]

(8)

and hence

\[
\sum_{\mu=0}^{n} \frac{1}{1 - t_\mu/s_n} = n + 1 + h_n, \quad 0 < h_n < \sum_{k=1}^{\infty} \frac{1}{(1 - q)\lambda^k} < \infty.
\]

(9)

Thus (6), (7), and (9) give, for large \(n \),

\[
x_n = \frac{s_n}{t_{n+1} - s_n} = n + O(1)
\]

(10)

and so

\[
\frac{t_{n+1}}{\lambda t_n} - 1 = \frac{1}{n} + O(n^{-2}).
\]

(11)

From (11) we see at once that the conjecture (C) is true, but (D) is false. Further, (11) gives

\[
\log \frac{t_{n+1}}{t_n} = \log \lambda + \frac{1}{n} + O(n^{-2}),
\]

which leads at once to (4). Note also that if \(\lambda \) is large enough then \(c_0 + h_n < 1/4 \), so that \(x_n \) is increasing and (A) is true.

To prove (3), from which it follows that \(t_{n+1}/t_n \) is eventually decreasing, for every \(q \) in \((0, 1)\), we need to refine (10) somewhat. Since, for fixed \(m \), we now have \(t_{n+m}/t_n \to \lambda^m \), the dominated convergence theorem and (7) give

\[
\sum_{\mu \geq n+2} \frac{1}{1 - t_\mu/s_n} = \sum_{m=2}^{\infty} \frac{1}{1 - t_{n+m}/\lambda t_n} = c_1 + o(1), \quad c_1 = \sum_{k=1}^{\infty} \frac{1}{1 - \lambda^k},
\]

(12)
as $n \to \infty$. Let $0 < \delta < \frac{1}{4}$ and fix Q, chosen so large that

$$\sum_{k=Q+2}^{\infty} \frac{1}{\lambda^k - 1} < \frac{\delta}{8}, \quad \sum_{k=Q+2}^{\infty} \frac{1}{(1-q)\lambda^k} < \frac{\delta}{8}. \quad (13)$$

For large n we then have

$$\sum_{\mu=n-Q}^{n} \frac{t_\mu}{(1-t_\mu/s_n)s_n} = \sum_{k=0}^{Q} \frac{t_{n-k}}{(1-t_{n-k}/s_n)s_n} = \sigma_Q + o(1), \quad (14)$$
in which

$$\sigma_Q = \sum_{k=0}^{Q} \frac{1}{(1-q^{k+1})\lambda^{k+1}} = \sum_{k=1}^{Q+1} \frac{1}{\lambda^k - 1} = -c_1 - \rho_Q,$$

$$0 < \rho_Q < \frac{\delta}{8}. \quad (15)$$

and, using (8) and (13),

$$\left| \sum_{\mu=0}^{n-Q-1} \frac{t_\mu}{(1-t_\mu/s_n)s_n} \right| \leq \sum_{k=Q+1}^{\infty} \frac{1}{(1-q)\lambda^{k+1}} < \frac{\delta}{8}. \quad (16)$$

Using (6), (12), (14), (15), and (16), the estimate (10) now becomes, for large n,

$$x_n = \frac{s_n}{t_{n+1}/s_n} = n + 1 + c_1 + \sigma_Q + d_n$$

$$= n + 1 + L_n, \quad |d_n| < \delta/2, |L_n| < \delta,$$

which proves (3).

REFERENCES

