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Ozonation has been proved to be a promising approach for eliminating emerging pollutants in waste-
water. In previous studies, emerging pollutants including diverse pharmaceuticals were found to exhibit
significantly different ozonation reactivity. However, how the structural differences of emerging pol-
lutants determine ozonation reactivity and mechanisms are still ambiguous. In this work, ozonation of
dimethylaminophenazone (DMP) and acetylaminophenazone (AAA) with the same parent structure of
phenazone but different substitution groups was investigated, in order to probe influencing mechanisms
of structural differences on ozonation reactivity. Results show that DMP reacts with ozone and HO�

almost 2 and 1 order of magnitude faster than AAA, respectively. At pH 8, HO� accelerates ozonation of
DMP, but decreases ozonation of AAA. Competition simultaneously decreases degradation rate of the two
phenazones, but effects on AAA are more significant than that on DMP. According to theoretical calcu-
lation results, differences in ozonation reactivity and mechanisms of the two phenazones can be mainly
attributed to different substitution groups. The dimethylamino group in the structure of DMP increases
the ozonation reactivity of phenazone by increasing reaction orbital energies and altering reaction sites,
while the acetylamino group in the structure of AAA decreases the reaction orbital energy and therefore
lowers the reactivity.

Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The occurrence of a huge number of pharmaceuticals and their
active metabolites in aquatic environments becomes an issue of
increasing concerns, as these pollutants potentially cause ecological
risks to aquatic organisms and humans. Among the
of Environment Simulation
s Research Center, Tsinghua
79 4006.
Yu).
nications Co., Ltd.

vier on behalf of KeAi

and hosting by Elsevier B.V. on be
by-nc-nd/4.0/).
pharmaceuticals the most commonly detected in aquatic environ-
ments are analgesics [1]. Phenazone-type drugs including phena-
zone and derivatives like dipyrone are frequently prescribed
analgesics. According to Chinese statistical data, several thousand
tons of dipyrone were produced in 2011 [2]. In other countries,
phenazone-type drugs are also widely used, and often detected in
wastewater effluents and surface waters [1,3e5]. An environmental
risk assessment using hazard indexes shows that phenazone-type
pollutants rank among the most relevant pharmaceuticals for in-
vertebrates and algae [6]. In aquatic environments, some dipyrone
metabolites can transform to persistent and toxic photolytic
products [7]. Conventional wastewater treatment plants were
found to remove only up to 30% of phenazone and less than 40% of
acetylaminophenazone (AAA) [8], which is a final metabolite of
dipyrone and frequently detected in wastewater and environ-
mental waters [4,9,10]. Some widely used phenazones, e.g.
half of KeAi Communications Co., Ltd. This is an open access article under the CC BY-

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:yg-den@mail.tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.emcon.2015.05.004&domain=pdf
www.sciencedirect.com/science/journal/24056650
http://www.keaipublishing.com/en/journals/emerging-contaminants/
http://www.keaipublishing.com/en/journals/emerging-contaminants/
http://dx.doi.org/10.1016/j.emcon.2015.05.004
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.emcon.2015.05.004
http://dx.doi.org/10.1016/j.emcon.2015.05.004


S. Zhang et al. / Emerging Contaminants 1 (2015) 2e7 3
phenazone, propyphenazone and dimethylaminophenazone
(DMP), degrade fast through chlorination [11e13]. Unfortunately,
chlorinated products were formed [11] and a high N-nitro-
sodimethylamine formation potential was observed for DMP [14],
raising concerns on potential ecotoxicity. In a previous work, phe-
nazone was found to react fast with O3 with a bimolecular rate
constant (kO3) of 6.2 � 105 M�1 s�1 (pH ¼ 7) [17], implying that
ozonation might be an alternative approach for eliminating these
pollutants in wastewater. However, for other widely detected
phenazones, the ozonation reactivity and mechanisms are scarcely
known.

Ozonation is well-known for its efficiency in eliminating diverse
emerging organic pollutants, e.g. pharmaceuticals and personal
care products (PPCPs) [15]. A fast elimination of emerging pollut-
ants during ozonation can be attributed to oxidation by ozone
molecule (O3) and/or its hydrolytic product, hydroxyl radicals (HO�)
[16]. Due to structurally differences, the reactivity of PPCPs reacting
with O3 ranges several orders of magnitude [17]. Even some PPCPs
and their metabolites having the same parent structure but
different substitution groups may show different ozonation reac-
tivity. For example, N(4)-acetylsulfamethoxazole reacts with O3

more than 3 orders of magnitude slower than sulfamethoxazole
[18]. The role of HO� during ozonation differs among PPCPs. For
example, direct O3 oxidation plays an essential role in ozonation of
many antibiotics at a neutral pH range [18]. But for ibuprofen
reacting slowly with O3, HO� oxidation becomes more important
than direct O3 oxidation [19]. These indicate that the ozonation
reactivity of PPCPs could be highly dependent on molecular
structures.

The ozonation kinetics of PPCPs was previously observed to be
influenced by pH, organic matters, and anions, etc. [20e22] By
employing individual kO3 values, ozonation rates of PPCPs in real
wastewater were usually predicted by considering influence of
wastewater matrix [23]. However, in real wastewater, numerous
PPCPs of different ozonation reactivity coexist. The ozonation rates
of PPCPs may be not only influenced by water matrix, but also by
coexisting PPCPs, as PPCPs show diverse reactivity in ozonation
[15,17]. However, the influence mechanism of coexisting PPCPs at
molecular level is largely ambiguous.

In this work, individual and competition ozonation kinetics of
two phenazones were investigated, including DMP and AAA. The
two phenazones have the same parent structure of phenazone but
different substitution groups on the pyrazole ring. The work shows
that the substitution groups influenced strongly on the ozonation
reactivity of phenazones, and moreover determined the role of HO�

and competition effects. In order to elucidate the influence mech-
anisms of the substitution groups, theoretical computations were
performed for characterizing locations of the frontier molecular
orbitals (FMO) that related with ozonation. The calculation results
show that the substitution groups determine electrophilic reac-
tivity and reacting sites of DMP and AAA.
2. Materials and methods

2.1. Materials

AAA (purity of 97%, Alfa Aesar), DMP (purity of 97%, Acros Or-
ganics), 4-methoxycinnamic acid (MC, purity of 99%, Aldrich) and
p-chlorobenzoic acid (pCBA, purity of 98%, J&K) were used as
received. Methanol and acetonitrile were of HPLC grade. Other
agents used were of analytical grade (A.R. grade, >99% pure). Ul-
trapure water was produced with a Milli-pore filtration system
(Billerica, USA).
2.2. Kinetic experiments

Ozonation experiments were performed in a cylindrical reactor
at room temperature of 20 ± 2 �C. Ozone was generated with an
ozone generator (OL80F/DST, Ozone services, Canada), and passed
into the reactor continuously at a constant feed concentration.
Initial concentrations of AAA and DMP are 0.01 mM except that in
competition experiments, where initial concentrations of the two
compounds were halved in order tomaintain the ratio of pollutants
to import ozone. Kinetic experiments were performed at different
pH conditions (3, 8 and 10) adjusted with phosphate, phosphoric
acid and NaOH, in the presence of HO� scavengers, including tert-
butyl alcohol (t-BuOH, 0.1 M), HCO�

3 (1.6 mM), Br� (0.06 mM), and
NO�

2 (0.1 mM), and in a wastewater effluent (WWEf) sample
collected at 50 m downstream from the wastewater discharge
outlet in Liangshui River receiving sewage effluents in Beijing,
China. The pH value and total organic carbon (TOC) of the waste-
water sample was determined as 7.2 and 12 mg L�1. All the ex-
periments were repeated in duplicate or triplicate.

Second-order reaction rate constants of the phenazones with O3
(kO3) and HO� (kHO�) were determined with competitive kinetic
experiments employing MC and pCBA as reference compounds,
respectively. Experiments were performed at equal concentrations
of reference and target compounds, i.e. 0.01 mM. For determining
kO3, t-BuOHwas added to scavenge HO�. For determining kHO�, H2O2

(10% v/v) was added for improving HO� generation. kO3 and kHO�

values are calculated according to equations (1) and (2),
respectively.

kO3;p ¼ kO3;MC

ln ct;p
c0;p

ln ct;MC
c0;MC

(1)

kHO$;p ¼ kHO$;pCBA
ln ct;p

c0;p

ln ct;pCBA
c0;pCBA

(2)

where, kO3, p and kHO�, p are second-order reaction rate constants of
the phenazones; kO3, MC and kHO�, pCBA are second-order reaction
rate constants of the reference compounds.
2.3. Analytical methods

A HPLC-UV system (Waters, USA) employing a reverse-phase
TC-C18 column (150 mm � 4.6 mm, 5 mm, Agilent, USA) was used
for analyzing target and reference compounds. Mobile phases and
detected wavelengths are methanol:H2O (3:7), 254 nm for AAA,
acetonitrile:H2O (4:6), 254 nm for DMP, methanol:H2O (4:6) with
0.1% H3PO4, 287 nm for MC, and methanol:H2O (7:3) with 0.5‰
H3PO4, 236 nm for pCBA.
2.4. Calculation methods

Geometries of target compounds and phenazone were opti-
mized based on density functional theory (DFT) at the B3LYP/6-
31þG(d,p) level. Frequency analysis was performed at the same
level to characterize the stationary points. FMO were calculated at
the B3LYP/6-311þG(3df,2p) level for characterizing electrophilic
reactivity and electrophile preferring attack sites. The integral
equation formalism polarized continuum model based on the self-
consistent-reaction-field [24] was employed in all calculations
including geometry optimization. All DFT calculations were per-
formed with Gaussian 09 software package [25].
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Fig. 1. Apparent degradation rate constants (kobs) of AAA and DMP at pH 3, 8 and 10,
and in the presence of t-BuOH.
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3. Results and discussion

3.1. pH-dependence and roles of HO�

Apparent degradation kinetic constants (kobs) of AAA and DMP
determined at different pH conditions and in the presence of t-
BuOH are shown in Fig. 1. No significant pH change was observed
before and after the ozonation experiments. Ozonation of the two
compounds was found to follow pseudo-first-order kinetics. kobs of
AAA shows slight difference at pH 3 and 8, but decreases at pH 10.
kobs of DMP at pH 8 is the highest, followed by that at pH 10 and 3.
Addition of t-BuOH leads to rate increase for AAA but rate decrease
for DMP, implying HO� may play different roles in their degradation.

The pH influence on ozonation of ionizable pollutants is usually
related to deprotonation. For example, deprotonated N is ozone
preferred but protonated N reacts slowly with ozone [26]. As the
dimethylamino group of DMP has a pKa value of 5.0 for an N pro-
tonated form transforming to an unprotonated form [27], the in-
crease in kobs from pH 3 to 8 can be attributed to an increase
percentage of the unprotonated form, which is well known to show
a higher reactivity to ozone than the N protonated form. No exact
dissociation constant (pKa) was found for AAA, but as indicated by a
negative acid dissociation constant reported for N-acetylaniline
[28], AAA was inferred to exist mainly as a neutral form within the
pH range studied in this work. This explains the insignificant dif-
ference observed between kobs values of pH 3 and 8. However, the
Fig. 2. Influence of HCO�
3 (1.6 mM), Br� (0.06 mM), and N
kobs changes from pH 8 to 10 for the two compounds are unlikely
induced by deprotonation, as neither of them deprotonates in this
pH range.

HO� was proposed to be responsible for the kobs changes of AAA
and DMP at high pH values, as increased pH artificially accelerate
ozone decomposition to form HO� [16]. Moreover, the kobs values of
the two target compounds change significantly after t-BuOH
addition, which is a strong HO� scavenger and can save O3 from
decomposition through radical chain reactions. The addition of t-
BuOH is expected to inhibit HO� formation and elongate life of O3,
thus increasing stable-state concentrations of O3. AAA degrades fast
after adding t-BuOH, implying that HO� plays a negative role in AAA
degradation. As HO� is a strong oxidant that can oxidize almost all
organic pollutants non-selectively, the target compounds are sup-
posed to undergo HO� induced oxidation besides reacting with
ozone. It can be inferred that the potential HO� oxidation for AAA
cannot compensate a rate decrease due to loss of ozone from radical
chain reactions. Therefore, kobs of AAA increased significantly when
radical chain reactions were stopped by t-BuOH. The kobs decrease
observed for AAA at pH 10 can be attributed to a similar reason, as
increased pH accelerates HO� formation. For DMP, HO� plays a
positive role in the ozonation at pH 8, as decreased kobs after t-
BuOH addition. But when pH increases to 10, HO� formation rate
increases significantly, and the excess HO� consumes O3 fast,
resulting in a decreased rate for DMP.

In order to confirm the role of HO� in ozonation of the target
compounds in wastewaters, influence of some HO� scavengers
ubiquitous present in wastewaters was investigated. As shown in
Fig. 2, acceleration of AAA degradation and decrease of DMP
degradation were observed, though not as significant as that in the
presence of t-BuOH. This is consistent with the conclusions stated
above.
3.2. Bimolecular rate constants of reacting with O3 and HO�

Curves of ln(ct, p/c0, p) vs ln(ct, MC/c0, MC) and ln(ct, p/c0, p) vs ln(ct,
pCBA/c0, pCBA) are shown in Fig. 3. According to equations (1) and (2),
kO3 and kHO� values of AAA and DMP were calculated with known
kO3, MC (6.8 � 105 M�1 s�1 [29]), kHO�, pCBA (5.2 � 109 M�1 s�1 [30])
values and slopes (Table 1).

The kO3 value of DMP is almost 2 orders of magnitude higher
than that of AAA. This is consistent with the result that DMP de-
grades faster than AAA in the presence of an equal import amount
of O3. Nevertheless, adding t-BuOH that saves O3 from decompo-
sition to form HO� results in a decreased rate for DMP but an in-
crease for AAA. This can be attributed to a significantly higher kHO�

value of DMP than that of AAA. As kHO� of DMP (9.1 ± 2.3 �
O�
2 (0.1 mM) on ozonation of AAA and DMP (pH 8).



Fig. 3. Curves of ln(ct, p/c0, p) vs ln(ct, MC/c0, MC) and ln(ct, p/c0, p) vs ln(ct, pCBA/c0, pCBA).

Table 1
Second-order rate constants of AAA and DMP reacting with O3 (kO3) and HO� (kHO�).

Chemicals kO3 (M�1 s�1) kHO� (M�1 s�1)

AAA 5.3 ± 0.3 � 104 8.4 ± 0.7 � 109

DMP 3.0 ± 0.3 � 106 9.1 ± 2.3 � 1010
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1010 M�1 s�1) is almost 2 orders of magnitude higher than that of
ozone (1 � 108 e 2 � 109 M�1 s�1), it can be inferred that most HO�

formed due to O3 alkaline decomposition reacts with DMP at pH 8
rather than inducing radical chain reactions. However, O3 alkaline
decompositionwas accelerated at pH 10, and therewas enough HO�

inducing radical chain reactions of O3. Therefore, the fast loss of O3
at the alkaline pH results in degradation decreased of DMP.
3.3. Competitive ozonation of AAA and DMP

As AAA and DMP can represent emerging organic pollutants
exhibiting significantly different ozonation reactivity, competition
of the two compounds in ozonation was investigated. Competitive
kobs values (C-kobs) determined at pH 8 are listed in Table 2.
Competitive ozonation of the two phenazones was found to
follow pseudo-first-order kinetics. For AAA, C-kobs value
(3.0 ± 0.15 s�1) is close to the individual kobs value (3.1 ± 0.56 s�1).
For DMP, C-kobs value (7.5 ± 0.82 s�1) is lower than the individual
kobs value (9.2 ± 0.95 s�1), but the difference is statistically
insignificant (p > 0.05) as tested by t-test. As the initial concen-
trations of the two compounds are halved in the competitive
ozonation experiments, the steady-state concentration of O3 or
HO� is close to that in the individual experiments. The slight
decrease in degradation of DMP can be attributed to a competi-
tion effect of AAA.

In a WWEf sample, the competition of AAA and DMP was
found to be more significant than that in the buffer solution. The
C-kobs value of DMP in WWEf solution decreased by 20%
compared with that in the pH 8 solution, while that of AAA
Table 2
Apparent degradation kinetic constants (kobs) of AAA and DMP in pH 8 solutions and
in a WWEf sample.

Solution kobs � 103 (s�1) of AAA kobs � 103 (s�1) of DMP

Individual Competitive Individual Competitive

pH8 3.1 ± 0.6 (0.99a) 3.0 ± 0.2 (0.99) 9.2 ± 1.0 (0.96) 7.5 ± 0.8 (0.98)
WWEf eb 0.9 ± 0.1 (0.96) eb 6.1 ± 0.6 (0.97)

a Average R2 (n ¼ 3).
b Not determined.
decreased by 70% (Table 2). As shown in Fig. 2, ubiquitous anions
slightly reduce DMP degradation but accelerate AAA degradation,
which cannot explain the large rate decrease observed for AAA.
Dissolved organic matters were found to scavenge either O3 or
HO� [31]. Therefore, O3 or HO� in the WWEf solution with TOC of
12 mg L�1 is lower than that in the pH 8 solution. This means that
the competition between AAA and DMP is stronger in the WWEf
solution, where O3 or HO� is less abundant. As DMP reacts with O3
or HO� much faster than AAA, the decreased C-kobs observed for
AAA is more significant than that observed for DMP. Accordingly,
the decrease of ozonation rates for coexisting pollutants is not
only dependent on wastewater matrix but also vary with
pollutants.
3.4. Computational interpretations on different ozonation reactivity

FMO energy and electron distributions of AAA, DMP and phe-
nazone are shown in Fig. 4. As either ozone or HO� acts mainly as
electrophiles, preferring to attack the highest occupied molecular
orbitals (HOMO) of organic pollutants, ozonation reactivity of the
phenazones is expected to be related with HOMO energies (EHOMO)
and distributions. The order of kO3 or kHO�: DMP > phenazone
(kO3 ¼ 6.2 � 105 M�1 s�1, pH ¼ 7 [17]; kHO� ¼ 4.86 � 109 M�1 s�1

[32]) > AAA, was found to be consistent with the order of EHOMO:
DMP (�5.63 eV) > phenazone (�6.17 eV) > AAA (�6.27 eV).
Moreover, a positive linear correlation was found between EHOMO
and kO3 values: kO3 ¼ 1 � 108 EHOMO þ 3 � 107 (R2 ¼ 0.99).
Therefore, the HOMO characteristics were vital influencing pa-
rameters for determining the ozonation reactivity of the
phenazones.

As shown in Fig. 4, AAA and DMP have the same phenazone
parent structure, but different substituted R groups, that is
CH3CON(H)e for AAA, (CH3)2Ne for DMP. Either CH3CON(H)e or
(CH3)2Ne exhibits an electron donating conjugative effect, however,
it causes opposite influence on the reactivity of phenazone. The
amino group in sulfamethoxazole almost resists to ozone after
acetylation, implying low reactivity of the CH3CON(H)e group to
ozone [18].Moreover, the presence of CH3CON(H)e groupdecreases
reactivity of other reaction sites in ozonation as indicated by kO3,
kHO� and EHOMO of phenazone and AAA. DMP has a higher EHOMO

value than AAA and phenazone, therefore, showing higher reac-
tivitywith electrophiles. As shownby theHOMOprofile (Fig. 4), AAA
and phenazone have similar HOMO electron distributions while
that of DMP is significantly different. For AAA and phenazone, ozone
or HO� prefers to attack the benzene ring and the pyrazol ring. But
for DMP, electrophilic attacks mainly occur on the (CH3)2Ne group
and the pyrazol ring. As tertiary N atoms usually react 1 or 2 orders
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of magnitude faster than the benzene ring with ozone [31], the
different reactivity of AAA and DMP can be attributed to different
electrophilic reacting sites caused by substitution effects.
4. Conclusions

In this work, the ozonation of two phenazone-type pollutants
was investigated. The results show that HO� exhibits dual roles in
the ozonation of the two phenazones. At pH 8, HO� accelerates DMP
degradation, but decreases AAA degradation. Competition in a
WWEf solution is stronger than that in pH 8 buffer solutions, and
results in unequal rate decreases for DMP and AAA, i.e. 20% and 70%
respectively. Accordingly, kobs values obtained in ozonation exper-
iments of individual pollutant or employing unreal wastewater
cannot be arbitrarily used for predicting degradation rate of coex-
isting pollutants in real wastewater, especially the pollutants ex-
hibits significantly different ozonation reactivity. The dual roles of
HO� and the significant competitive effects can bemainly attributed
to different ozonation reactivity of the two phenazones, as DMP
reacts with O3 or HO� more than one order of magnitude faster than
AAA. As indicated by DFT calculations, the different reactivity is
mainly related with EHOMO values and different reaction sites
determined by substitution groups.
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