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Abstract

Let R be the real numbers and Rn the vector space of all column vectors of length n. Let
Cn be the convex set of all real correlation matrices of size n. If V is a subspace of Rn of
dimension k, we consider the face FV of Cn consisting of all A ∈ Cn such that V ⊂ N(A),
i.e., AV = 0. If FV is nonempty, we say that V is realizable. We give complete geometric
descriptions of FV in the cases k = 1, n = 4, and k = 2, n = 5. For k = 2, n = 5, we provide
a simple algebraic method for describing FV .
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let A be a real symmetric matrix of size n. We say that A is a correlation matrix
if A is positive semidefinite and every main diagonal entry is 1. Let Cn be the set
of all correlation matrices of size n. It is known that Cn is a compact convex set.
The extreme points of Cn are not fully determined, but the vertices are known [10].
(A vertex of a convex set K is an extreme point having a full dimensional normal
cone; the normal cone of a boundary point x0 consists of all normals to supporting
hyperplanes for K at x0.) The vertices of Cn consist exactly of the 2n−1 correlation
matrices of rank 1. In the study of the structure of Cn, the following problem is of
interest. Suppose that V is a subspace of Rn of dimension k. When is V contained
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in the null space of some correlation matrix? This question has been fully answered
in [5] for k = 1, but for higher dimensions the problem is unsolved. To motivate the
discussion, put

FV = {A ∈ Cn : AV = 0},
and for v ∈ V ,

Fv = {A ∈ Cn : Av = 0}.
Then FV is a face of Cn. Furthermore, all faces of Cn are of the form FV for some
subspace V of Rn (see [11]). If we know the faces of Cn, we have a good idea of the
structure. Thus, we would like to have a geometric description of FV . For n = 3, a
complete pictorial description of the faces of C3 is available in [10]. There is some
discussion of this problem in [11]. For other literature on Cn, its faces and extreme
points (see, e.g., [7,9,12]).

The structure of FV is well understood if n = 3 [10] or k = n− 1 or n− 2 [8]. In
this paper, we will give a full geometric description of FV in the case k = 1, n = 4,
and k = 2, n = 5.

2. Preliminary definitions and results

Definition 2.1. Let v ∈ Rn. We say that v = (v1, . . . , vn)
T is balanced (as in [10]

or [11]) if for every i = 1, . . . , n,

|vi | �
∑
j /=i

|vj |.

It is easy to check that any null vector of a correlation matrix is balanced. In fact,
the converse is true [5]. If v is balanced, then there is a correlation matrix A ∈ Cn
such that Av = 0.

Definition 2.2. Let V be a subspace of Rn. We say that V is balanced if every vector
in V is balanced. We say that V is realizable if there is an A ∈ Cn such that Av = 0
for all v ∈ V (write AV = 0).

Clearly any realizable subspace must be balanced. It is also clear from [5] that the
converse is true for dimV = 1. But it is false for dimV > 1. Before proving this,
we present a method for constructing balanced subspaces (Proposition 2.3). We thank
one of the referees for pointing this result out to us, and a resulting simplification in
the proof of Theorem 2.4.

Recall that a seminorm on Rk is a function N : Rk → R with the properties
N(cx) = |c|N(x) for each c ∈ R, x ∈ Rk and N(x + y) � N(x)+N(y) for all
x, y ∈ Rk .
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Proposition 2.3. Let x1, . . . , xn be N-unit vectors in Rk (i.e., N(x1) = · · · =
N(xn) = 1) and let X be the k-by-n matrix whose columns are x1, . . . , xn. Then
N(X), the null space of X, is balanced.

Proof. Let v ∈ N(X). Then

n∑
j=1

vjxj = 0; thus vixi = −
∑
j /=i
vj xj , i = 1, . . . , n.

It follows that

|vi | = N(vixi) = N
(

−
∑
j /=i
vj xj

)
�
∑
j /=i
N(vjxj ) =

∑
j /=i

|vj |.

Thus the null space of X is balanced. �

Theorem 2.4. Let n � 4 be given. Then for every integer k, 2 � k � n− 2, there
exists a subspace V ⊂ Rn of dimension k such that V is balanced but not realizable.

Proof. First we verify the result for k = n− 2. Let

u = (1, 0,−1, 1, . . . , 1), w = (0, 1, 1, . . . , 1)
be row vectors of length n. Let B be the submatrix whose rows are u and w and let
V = N(B). Then dimV = n− 2. For each column x of B, ‖x‖∞ = 1. Since ‖ · ‖∞
is a norm on R2, V is balanced by Proposition 2.3.

Now we show that V is not realizable. Suppose that A is a correlation matrix such
thatAV = 0. We may factorA asA = CTC where the columns of C are unit vectors
in the ‖ · ‖2 norm. Then N(C) = N(A), so V ⊆ N(C). The vectors

y = (1,−1, 1, 0, . . . , 0)T and z = (1, 1, 0,−1, 0, . . . , 0)T

are orthogonal to u and v; thus each is in V and hence in N(C). Let c1, . . . , c4 be the
first four columns of C. Since Cy = Cz = 0, we have c3 = c2 − c1 and c4 = c1 +
c2. Since all cj are unit vectors, a simple calculation shows that 1

2 = c1 · c2 = − 1
2 , a

contradiction. Therefore V is not realizable.
Now suppose that k < n− 2. Construct a k-dimensional subspace W of Rk+2

which is balanced but not realizable. Then append n− k − 2 zeros in W to produce
a subspace V of dimension k in Rn. Clearly, V is balanced. If V were realizable,
and A were a correlation matrix such that AV = 0, then A[1, . . . , k + 2] would be a
correlation matrix which killsW . This contradiction completes the proof. �

Remark 2.5. The example for the case k = 2, n = 4 was provided by Laurent [8].
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Suppose that v and w are balanced vectors in Rn. If there is no common position
where both coordinates of v and w are nonzero, then it is clear that Span{v,w} is
balanced. We can extend this a little as the following result shows.

Lemma 2.6. Let v = (v1, . . . , vr , 0, . . . , 0)T and let w = (0, . . . , 0, wr, . . . , wn)T
be balanced vectors. Then Span{v,w} is balanced.

Proof. Let z = av + bw. Then

|z1| = |av1| � |a|
r∑
i=2

|vi |

=
r−1∑
i=2

|avi | + |avr + bwr | + |avr | − |avr + bwr |

�
r−1∑
i=2

|avi | + |avr + bwr | + |bwr |

�
r−1∑
i=2

|avi | + |avr + bwr | + |b|
n∑

i=r+1

|wi |

=
r−1∑
i=2

|zi | + |zr | +
n∑

i=r+1

|zi | =
n∑
i=2

|zi |.

A similar argument holds for |z2|, . . . , |zn|, except |zr |. But

|zr | = |avr + bwr | � |a||vr | + |b||wr |

� |a|
r−1∑
i=1

|vi | + |b|
n∑

i=r+1

|wi | =
∑
i /=r

|zi |,

which completes the proof. �

Definition 2.7. Let v = (v1, . . . , vn)
T ∈ Rn. Following [10], we define the gap of

v by

gap(v) = min
S⊂{1,...,n}

∣∣∣∣∑
i∈S
vi −

∑
i /∈S
vi

∣∣∣∣.

Remark 2.8. Note that gap(v) = 0 is equivalent to the existence of a vector u ∈
{−1, 1}n such that uTv = 0 which occurs if and only if (uuT)v = 0. Since each rank
1 correlation matrix is of the form uuT, u ∈ {−1, 1}n, we observe that Fv contains a
rank one matrix if and only if gap(v) = 0.
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As we shall see, the rank one correlation matrices that annihilate v play an im-
portant role in analyzing the structure of Fv . It is clear that Cn is invariant under
similarity by a permutation matrix or a diagonal orthogonal matrix. Thus, in study-
ing Fv , we may assume that for v = (v1, . . . , vn)

T, we have v1 = 1 � v2 � · · · �
vn � 0.

For n = 3, 4, it is easy to see which vectors have gap zero. If v = (1, a, b)T,
1 � a � b � 0, then gap(v) = 0 if and only if

(i) 1 = a + b, b > 0, or
(ii) a = 1, b = 0.

In case (i), Fv consists of the single rank one matrix[ 1 −1 −1
−1 1 1
−1 1 1

]
.

In case (ii), Fv consists of all matrices of the form[ 1 −1 x

−1 1 −x
x −x 1

]
, −1 � x � 1,

and thus contains two rank one matrices. The reason we have two rank one matrices
in case (ii) is that gap(1, 1, 0)T = 0 for both S = {1} and S = {1, 3} (as well as their
complements). To make this more precise, consider the following definition.

Definition 2.9. For each v = (v1, . . . , vn)
T ∈ Rn with gap(v) = 0, define

mv = 1

2

∣∣∣∣
{
S ⊂ {1, . . . , n} :

∑
i∈S
vi −

∑
i /=S
vi = 0

}∣∣∣∣. (2.1)

It is evident that mv equals the number of rank 1 matrices in Fv . (The 1/2 is in
the formula because the roles of S and the complement of S can be switched without
producing an additional rank one correlation matrix that kills v.)

Now consider n = 4. Suppose v = (1, a, b, c)T, 1 � a � b � c � 0. Then if
gap(v) = 0, one of the following equations must hold:

(i) 1 − a − b − c = 0,
(ii) 1 − a − b + c = 0,

(iii) 1 − a + b − c = 0,
(iv) 1 + a − b − c = 0,
(v) 1 − a + b + c = 0.

These equations yield six different cases, which are summarized in the following
table. To distinguish cases, all coordinates are taken to lie in (0, 1) unless otherwise
specified.
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(1, a, b, c)T Number of rank one matrices

(1, 1, 0, 0)T 4
(1, a, 1 − a, 0)T 2
(1, 1, 1, 1)T 3
(1, 1, b, b)T 2
(1, a, b, 1 − a − b)T 1
(1, a, b, a + b − 1)T 1

In the following section, we will give a more explicit description of Fv . We con-
clude this section with a few more useful results.

Lemma 2.10. Let A be a symmetric matrix of size n. Assume that the entries of A
are in R = F [x1, . . . , xt ], where F is a field. Suppose that v1, . . . , vr are linearly
independent vectors in Fn and that Avj = 0, j = 1, . . . , r, for all x1, . . . , xt . Let

Cn−r (A)

be the (n− r)th compound matrix ofA. Then there is a nonzero polynomial q(x1, . . . ,

xt ) in R such that

Cn−r (A) = q(x1, . . . , xt )B,

where B ∈ Mn(F), i.e., B is a constant matrix.

Proof. If the rank of A is less than n− r , then Cn−r (A) must be zero and the result
is obvious. Otherwise, the problem is invariant under left or right multiplication of
A by permutation matrices, so we will assume that the leading entry in Cn−r (A)
is nonzero. Since A is symmetric, so is Cn−r (A). Moreover, the rank of Cn−r (A)
must be one (see [13, p. 117–121]). It follows that the column space of Cn−r (A) is
spanned by the first column of Cn−r (A). Denote this first column by (p1, . . . , pk)

T,
where k = (

n
n−r
)
. Then the (i, j) entry in Cn−r (A) must be

pipj

p1
.

Now suppose that pj /= 0. Since Cn−r (A) kills a (k − 1)-dimensional subspace of
Fk , the null space of Cn−r (A) must contain a vector with nonzero coordinates in
positions 1 and j and zeros elsewhere. Thus pj = sp1, where s ∈ F and this proves
the result with q(x1, . . . , xt ) = p1. �

Lemma 2.11. Suppose A = (1 − t)B1 + tB2, 0 < t < 1 where A,B1, B2 are pos-
itive semidefinite. Then

(i) N(A) ⊂ N(Bi), i = 1, 2.
(ii) rankBi � rankA, i = 1, 2.
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Proof. (i) Let x ∈ N(A). Then 0 = xTAx = (1 − t)xTB1x + txTB2x. Since
xTBix � 0, i = 1, 2, xTB1x = xTB2x = 0. Thus B1/2

1 x = B1/2
2 x = 0, so B1x =

B2x = 0. Then x ∈ N(Bi), i = 1, 2.
(ii) By (i) the nullity of Bi is greater than or equal to the nullity ofA, so rankBi �

rankA, i = 1, 2. �

Our next result is a special kind of matrix completion problem. For additional
information on positive semidefinite completions (see [2,14]).

Theorem 2.12. Let

P =
[ 1 bT

b B

]
, and Q =

[
B c

cT 1

]
be correlation matrices of size n− 1. Suppose that[ 1

w

]
∈ N(P ), and

[
z

1

]
∈ N(Q).

Let q = −bTz, and let

A =
[ 1 bT q

b B c

q cT 1

]
.

Then A is a correlation matrix of size n with rankA = rankP . Moreover,[ 1
w

0

]
and

[ 0
z

1

]
∈ N(A).

Proof. By the definition of q,

[
1 bT q

] [ 0
z

1

]
= 0,

and [ 0
z

1

]
∈ N

([
b B c

q cT 1

])
.

Consequently,[ 0
z

1

]
∈ N(A).

It follows that[
q

c

1

]
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is a linear combination of the columns of[
bT

B

cT

]
.

Thus by the symmetry ofA, [q cT 1] is a linear combination of the rows of [b B c].
But [ 1

w

0

]
∈ N([ b B c ]),

so

[ q cT 1 ]
[ 1
w

0

]
= 0.

Therefore,[ 1
w

0

]
∈ N(A).

Since the last row (column) of A is a linear combination of the preceding rows (col-
umns) of A,

rankA = rankP.

Therefore the number of nonzero eigenvalues of A must be the same as the number
of nonzero eigenvalues of P . But P is positive semidefinite. Thus the number of
nonzero eigenvalues of P is the number of positive eigenvalues of P , which by
interlacing is less than or equal to the number of positive eigenvalues of A. Hence A
is positive semidefinite and a correlation matrix. �

The following lemma is a simple exercise; thus we omit the proof.

Lemma 2.13. Let v = (a, b, c)T be balanced, with abc /= 0. Then there is exactly
one correlation matrix A such that Av = 0.

We also need the following column inclusion result (see [1,6]).

Lemma 2.14. Let

A =
[
B C

CT D

]
be a positive semidefinite matrix. Then each column of C is in the column space
of B.
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3. Main results and proofs

We now proceed to describe the set Fv for n = 4. Let

A =



1 r s t

r 1 u y

s u 1 x

t y x 1


 , A(1) =

[ 1 u y

u 1 x

y x 1

]
,

and let v = [1, a, b, c]T.

Lemma 3.1. Let (x, y) be one of the points

(1, 1), (1,−1), (−1, 1), (−1,−1).

Assume that v ∈ N(A) and that detA(1) � 0. ThenA is a rank 1 correlation matrix.

Proof. We have

detA(1)= 1 + 2uxy − u2 − x2 − y2

= −1 + 2xyu− u2 = −(1 − xyu)2 � 0.

Thus u = 1/xy = xy. Then A(1) = wwT, for w = [1, xy, y]T, so A(1) is a rank 1
correlation matrix. Since Av = 0 and A is symmetric, the first column (row) of A
is a linear combination of the following columns (rows). Thus rank(A) = 1 also.
By interlacing, the nonzero eigenvalue of A is positive, so A is a rank 1 correlation
matrix. �

Written out, the equation Av = 0 is:


1 r s t

r 1 u y

s u 1 x

t y x 1






1
a

b

c


 = 0.

Assume from now on that ab /= 0. The equation Av = 0 gives a set of four lin-
ear equations in the unknowns r, s, t, u, x, y. Letting x, y be the free variables and
solving for r, s, t, u we find that the matrix A has the parametric form [11] given by

A(x, y) =


1 −a2+b2+c2−1
2a + bcx

a
a2−b2+c2−1

2b + acy
b

−c − ay − bx
−a2+b2+c2−1

2a + bcx
a

1 1−a2−b2−c2

2ab − cy
b

− cx
a

y

a2−b2+c2−1
2b + acy

b
1−a2−b2−c2

2ab − cy
b

− cx
a

1 x

−c − ay − bx y x 1


 .

(3.1)
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Necessarily A(x, y) is singular for all x, y ∈ R. Before analyzing A(x, y) in detail,
we begin with an example. This example is a degenerate case for which Fv contains
three matrices of rank one.

Example 3.2. a = b = c = 1.

Then A(x, y) becomes:

A =



1 x y −1 − y − x
x 1 −1 − y − x y

y −1 − y − x 1 x

−1 − y − x y x 1


 .

In order that A be a correlation matrix it is necessary that |x|, |y| � 1, and −1 − x −
y � −1. Then (x, y) must lie in the triangle T determined by the lines x + y = 0,
x = −1, y = −1.

The vertices of T are (1,−1), (−1, 1), (−1,−1). Substituting in A above, we see
that each of these three points gives rise to a rank one correlation matrix. (Note that
we could have arrived at the same conclusion by applying Lemma 3.1.) Since each
point (x, y) in T is a convex combination of the vertices of T , each corresponding
matrix, A(x, y) is a convex combination of rank one correlation matrices, and hence
is also a correlation matrix. Therefore, there is a one-to-one correspondence between
T and Fv .

We now apply Lemma 2.10 to the general A(x, y) with n = 4, k = 1. (We have
replaced r with k to avoid notational problems.) Upon calculating the (1, 1) entry of
C3(A), we find that

q(x, y)= −(1/4a2b2)(1 + 4y2a2b2 + 4c2x2b2 + 4c2y2a2 + 4c3xb

+ 4c3ya + 4b3cx + 4a3cy − 4cya − 4cxb + 12c2xyab

+ c4 + 8cy2a2xb + 8cx2b2ya + a4 + b4 + 2a2c2 + 2b2c2

+ 4x2a2b2 + 4b2cya + 4b3xya + 4a2cxb + 4a3xyb

− 2a2b2 − 4xyab − 2a2 − 2b2 − 2c2). (3.2)

For convenience, we replace q(x, y) with a scalar multiple:

p(x, y)= 8cb2ax2y + 8ca2bxy2 + 4a2b2x2 + 4c2b2x2 + 4b3axy

+ 4a3bxy + 12c2abxy − 4abxy + 4a2b2y2 + 4c2a2y2

+ 4c3bx + 4b3cx + 4a2cbx − 4cbx − 4cay + 4b2cay

+ 4a3cy + 4c3ay + 1 + b4 + 2a2c2 + 2b2c2 + a4

− 2a2b2 + c4 − 2a2 − 2b2 − 2c2. (3.3)

Note that p(x, y) � 0 if A(x, y) ∈ Fv .
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Definition 3.3. Let B be the unit square {(x, y) ∈ R2 : −1 � x, y � 1}.

The following is an immediate consequence of Lemma 3.1.

Corollary 3.4. If p(x, y) vanishes at one of the four corners of B, the correspond-
ing matrix A(x, y) is a rank 1 correlation matrix.

We now show that the boundary of Fv is determined by the polynomial p insideB.

Definition 3.5. Let Bv = {(x, y) ∈ B : A(x, y) ∈ Fv}.

Theorem 3.6. A point (x0, y0) is on �Bv if and only if (x0, y0) ∈ B and p(x0, y0) =
0.

Proof. First, suppose (x0, y0) is on �Bv . Then by definition, (x0, y0) ∈ B. Since
A(x0, y0) is positive semidefinite, we have p(x0, y0) � 0. Suppose p(x0, y0) < 0.
ThenA(x0, y0)[{2, 3, 4}] is positive definite so |x0|, |y0| < 1. But thenA(x, y)[{2, 3,
4}] is positive definite for (x, y) sufficiently close to (x0, y0), and therefore, A(x, y)
∈ Fv for (x, y) sufficiently close to (x0, y0) implying that (x0, y0) is in the interior
of Bv , a contradiction. Consequently, p(x0, y0) = 0.

Now suppose (x0, y0) ∈ B and p(x0, y0) = 0. There are two cases:
I. If (x0, y0) is a corner of B, then A(x0, y0) is a rank one correlation matrix.

Thus, (x0, y0) ∈ Bv , and since Bv ⊂ B, (x0, y0) is on �Bv .
II. (x0, y0) is not a corner of B. By Lemma 2.10 with n = 4, r = 1, rankA(x0,

y0) � 2. Now either |x0| < 1 or |y0| < 1. Without loss of generality, say |x0| < 1,
Then [ 1 x0

x0 1

]
is positive definite, so A(x0, y0) has two positive eigenvalues by interlacing. Thus
A(x0, y0) is positive semidefinite and (x0, y0) ∈ Bv . But if (x0, y0) is in the inte-
rior of Bv , then the points (x, y) sufficiently close to (x0, y0) are on a line con-
taining (x0, y0) and are in Bv . By Lemma 2.11, rankA(x, y) � 2 at all such points.
Then p(x, y) vanishes identically in a neighborhood of (x0, y0), which is impossible.
Therefore, (x0, y0) is on �Bv . �

Theorem 3.6 shows that finding the boundary of Fv reduces to finding where the
plane cubic algebraic curve p(x, y) vanishes. We now look at a second example.

Example 3.7. a = 1, b = 0.5, c = 0.5.

In this case, we have the equation under Fig. 1 for the cubic curve. The plot of this
equation shows (see Corollary 3.4) that there are two rank one correlation matrices
on �Bv , and hence there is a straight line as a component.
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Fig. 1. (1 + x)(xy + 1.25x + 2y2 + y − 0.75) = 0.

More generally, substituting a = 1, c = b into p(x, y) we obtain the polynomial

4b2(1 + x)(2bxy + x + b2x + 2y2 + 2by − 1 + b2).

The two factors on the right hand side are the two components of the curve and
intersect at the two left corners of B, so by Corollary 3.4, these correspond to rank 1
correlation matrices. These intersection points are singular points of p(x, y) defined
as follows.

Definition 3.8. A singular point (x0, y0) of p(x, y) is a point simultaneously satis-
fying the equations:

p(x, y) = 0, px(x, y) = 0, py(x, y) = 0.

As we shall see, each singular point of p(x, y) corresponds to a rank 1 correlation
matrix in Fv . In Example 3.2 there are three singular points and in Example 3.7 there
are two. We shall show that in all other cases in the following theorem, there is at
most one singular point, and generically there are zero.

Theorem 3.9. Let v = (1, a, b, c)T with 1 � a � b � c � 0. Assume that there is at
least one rank one matrix associated with �Bv, i.e., gap(v) = 0. If v = (1, 1, 0, 0)T,
then Fv is essentially C3. If v = (1, a, 1 − a, 0)T, a /= 1, then Fv is a line segment.
In all other cases, �Bv is the intersection of a plane cubic algebraic curve with
B. The singularities of this curve occur where the curve meets the vertices of B,
and correspond to rank one correlation matrices. The nature of this intersection is
described by the following table. Once again, note that all coordinates of v lie in
(0, 1) unless otherwise specified.
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v �Bv

(1, 1, 1, 1)T A right triangle with vertices at three corners of B
(1, 1, b, b)T A line segment connecting two corners of B and a

quadratic curve passing through those two corners
(1, a, b, 1 − a − b)T An isolated point (1, 1)
(1, a, b, a + b − 1)T Part of a cubic curve with a node at (−1,−1), the

only corner of B that the curve meets

Remark 3.10. Theorem 3.9 shows that there is a one-to-one correspondence be-
tween each singular point and each rank one correlation matrix in Fv . In particular,
for c > 0, if a /= 1 or b /= c, there can be at most one rank one correlation matrix
in Fv . Also, each rank two correlation matrix in Fv corresponds to a zero of p(x, y)
(and thus a point on �Bv) which is not a singular point. Each rank three correlation
matrix in Fv corresponds to a point at which p(x, y) < 0, i.e., an interior point of
Bv .

Proof of theorem 3.9. Let v = (1, 1, 0, 0)T. Let C be any 3 × 3 correlation matrix.
Extend C to a 4 × 4 correlation matrix A with the requirement that the second row
(and second column) be the negative of the first. Then A has the form


1 −1 −r −s

−1 1 r s

−r r 1 t

−s s t 1




and this completely describes Fv .
Now let v = (1, a, 1 − a, 0)T, a < 1. By Lemma 2.13 A[1, 2, 3] is uniquely de-

termined and in fact must be
 1 −1 −1

−1 1 1
−1 1 1


 .

It follows from Lemma 2.14 that any 4 × 4 correlation matrix A such that Av = 0
must have the form

A =




1 −1 −1 −x
−1 1 1 x

−1 1 1 x

−x x x 1


 ,

where −1 � x � 1. Thus Fv is a line segment.
We now assume that c > 0, and then find those a, b, c which allow singular

points. Taking partial derivatives we find

px = 16cb2axy + 8ca2by2 + 8b2a2x + 8c2b2x + 4a3by + 4ab3y

− 4aby + 12c2aby + 4c3b + 4b3c + 4a2cb − 4cb, (3.4)



142 W. Barrett, S. Pierce / Linear Algebra and its Applications 368 (2003) 129–157

and

py = 8cb2ax2 + 16ca2bxy + 4a3bx + 4b3ax − 4abx + 12c2abx

+ 8c2a2y + 8a2b2y + 4c3a + 4b2ca + 4a3c − 4ca. (3.5)

We use resultants [4, pp. 71–73] to find the common zeros of p, px, py . We con-
sider p, py as polynomials of degree 2 and 1 in y. Their resultant is the 3 × 3 matrix
R with rows,[

8a2cbx + 4a2c2 + 4a2b2 16a2cbx + 8a2c2 + 8a2b2 0
]
,

[
8cb2ax2 + 4a3bx + 12c2abx − 4abx + 4b3ax − 4ca + 4a3c + 4c3a

+ 4cb2a 8cb2ax2 + 4a3bx + 12c2abx − 4abx + 4b3ax − 4ca

+ 4a3c + 4c3a + 4cb2a 16a2cbx + 8a2c2 + 8a2b2],
and [

4c2b2x2 + 4a2b2x2 + 4b3cx + 4c3bx + 4a2cbx − 4cbx + 2a2c2 + 2b2c2

+ 1 + b4 + c4 − 2a2b2 + a4 − 2a2 − 2b2 − 2c2 0 8cb2ax2 + 4a3bx

+ 12c2abx − 4abx + 4b3ax − 4ca + 4a3c + 4c3a + 4cb2a
]
.

Then

detR = −64b2a4(x − 1)(x + 1)(2cbx + c2 + b2)

× (2cbx − 1 + 2a − a2 + c2 + b2)(2cbx − 1 − 2a − a2 + c2 + b2)

(3.6)

vanishes at any common zero of p and py .
We consider its five possible zeros in turn.

I. If x = 1, then substituting in py = 0 gives

y1 = −b
2 + 2cb − 1 + a2 + c2

2 (b + c) a .

II. Substituting x = −1 into py = 0 gives

y2 = b2 − 2cb − 1 + a2 + c2

2 (−c + b) a .

III. Substituting x3 = −(c2 + b2)/2cb into py = 0 gives

−2a(−c + b)(b + c)(−1 + a)(1 + a)
c

= 0.

IV. Substituting x4 = (1 − 2a + a2 − c2 − b2)/2cb into py = 0 gives

y4 = −a
2 − 2a + 1 − b2 + c2

2c(−1 + a) .
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V. Substituting x5 = (1 + 2a + a2 − c2 − b2)/2cb into py = 0 gives

y5 = −a
2 + 2a + 1 − b2 + c2

2c (1 + a) .

First consider case III. In order for py = 0 we must have a = 1 or c = b. Suppose
a = 1. Substituting a = 1, x3 = −(c2 + b2)/2cb into p(x, y) = 0 yields

(−c + b)2 (b + c)2
c2

= 0,

so c = b. We have already treated this case in Examples 3.2 and 3.7. There are three
singular points if a = b = c = 1 and two if a = 1 > b = c. In either case these are
corners of B.

Now suppose c = b. Then x3 = −1. Substituting these into p(x, y) = 0 yields
(−1 + a)2(1 + a)2 = 0 so a = 1. This is identical to the previous case.

We now substitute each of I, II, IV, V into px = 0.

I.

−2b2(a + 1 + c + b)(1 + a − c − b)(a − 1 + c + b)(a − 1 − c − b)
(b + c)2 = 0.

This can occur if a = b = c = 1 or c = 1 − a − b. We have already treated the first
possibility.

Therefore we suppose that c = 1 − a − b. Then y1 = 1 and we have a singularity
at (1, 1). Consider the first row [1 a12 a13 a14] of the correlation matrix A. Then

0 = 1 + a12a + a13b + a14(1 − a − b) � 1 − a − b − (1 − a − b) = 0.

so the first row must be [1 −1 −1 −1]. It follows also that a23 = 1 and Fv consists
of the unique matrix


1 −1 −1 −1

−1 1 1 1
−1 1 1 1
−1 1 1 1


 .

We now show that (1, 1) is an isolated point on the curve p(x, y) = 0. LetA(x, y)
be the generic symmetric matrix with all ones on the main diagonal that kills v. There
are two ways we can find p(x, y) for c = 1 − a − b. One is to substitute directly
into Eq. (3.3) as we did in the paragraph following Example 3.7. A second way is
to substitute c = 1 − a − b in any 3 × 3 submatrix of A(x, y). By Lemma 2.10, the
determinant of this submatrix is a constant multiple of p(x, y). We will utilize both
methods in this paper and illustrate both in this proof. Using the second here, we put
c = 1 − a − b in detA(x, y)[2, 3, 4] and obtain
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1 −a2−b2+a+b−ab−ya+ya2+yab−xb+xba+xb2

ab
y

−a2−b2+a+b−ab−ya+ya2+yab−xb+xba+xb2

ab
1 x

y x 1

∣∣∣∣∣∣∣ ,

which we set equal to zero. Since p(x, y) contains no x3 or y3 term, we may solve
for y in terms of x using the quadratic formula and in the solution we obtain the
following formula for the discriminant:

b3(x + 1)(x − 1)2(b + a − 1)(bxa + 2a − ab + b2x − bx + b − b2).

In this case, the only rank one correlation matrix that kills v requires that x = y =
1. When x = 1, the factors in the discriminant other than (x − 1)2 become

b3(2)(−c)(2a),
which is always negative. Therefore, for values of x near 1, we cannot get any values
for y. It follows that (1, 1) must be an isolated point on the curve.

II.

2b2(a + 1 + c − b)(a + 1 − c + b)(a − 1 + c − b)(a − 1 − c + b)
(−c + b)2 = 0.

This can occur if a = 1, b = c which we have already treated, or if c = a + b − 1.
In the latter case y2 = −1 also. Before treating this case, we consider cases IV and
V.

IV.

2ba(a − 1 + c − b)(a − 1 − c + b)(a − 1 + c + b)(a − 1 − c − b)
c(−1 + a)2 = 0.

This can occur in three ways, two of which a = 1, c = b and c = 1 − a − b we have
already considered. The third is c = a + b − 1, which also occurs in II. In this case
x4 = y4 = −1 so this turns out to be the same singular point as in II.
V.

−2ba(a + 1 − c + b)(a + 1 + c + b)(1 + a − c − b)(a + 1 + c − b)
c(1 + a)2 = 0.

This occurs only if 1 + a = b + c, i.e. if a = b = c = 1 which we considered above.
To conclude our discussion of singular points, it remains to consider the case

c = a + b − 1. To illuminate this discussion, we first consider a special case.

Example 3.11. Let v = (4, 3, 2, 1)T. (For convenience, we do not normalize the
first coordinate.) Clearly only one rank one correlation matrix kills v, corresponding
to (−1,−1), the only singularity. Note that the curve can be tangent to other points
on B.
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− 35
64 + 5

8 x
2 − 3

32 y − 1
16 x + 45

64 y
2 + 9

16 y
2x + 3

8 yx
2 = 0.

Note that the singular point (−1,−1) is a node for this v. We show that this is always
the case. Substituting c = a + b − 1 into 1

4p(x, y) gives the polynomial

2b2a2x2y + 2b3ax2y − 2b2ax2y + 2b2a2xy2 + 2a3bxy2 − 2a2bxy2

+ b2x2 + 2b3ax2 + b4x2 + 2a2b2x2 − 2b3x2 − 2b2ax2 + 4a3bxy

+ 2abxy + 6a2b2xy − 6a2bxy + 4b3axy − 6ab2xy + a2y2 − 2a2by2

− 2a3y2 + 2a2b2y2 + a4y2 + 2a3by2 + 2a3bx + 2abx − 4a2bx − 4b3x

+ 4b3ax − 6b2ax + 4a2b2x + 2b2x + 2b4x + 2a2y + 2a4y − 4b2ay

+ 4a2b2y + 2b3ay + 4a3by + 2aby − 6a2by − 4a3y + 2a2b2 − 2b3

− 4a2b + b2 + 2b3a + a2 − 2a3 + 2ba − 4b2a + 2a3b + a4 + b4. (3.7)

To analyze the singularity, we translate it to the origin by replacing x by u− 1, and
y by v − 1 (not the same v as in Fv), keeping only the quadratic terms. The result is

q(u, v) = b2(1 − b)2u2 + 2ab(1 − a − b − ab)uv + a2(1 − a)2v2.

The discriminant of this quadratic form is 16a3b3(a + b − 1) = 16a3b3c /= 0. So
there are two tangent lines to the curve at the singular point and it follows that the
singularity must be a node.

Finally, substituting x = y = −1, c = a + b − 1 into A(x, y) we obtain the rank
one correlation matrix


1 −1 −1 1

−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


 .

This concludes the proof. �
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Remark 3.12. If the curve p(x, y) = 0 crosses the boundary of B, it must do so
at a corner. Otherwise, by continuity, points on the curve sufficiently close to the
crossing point would represent rank 2 correlation matrices, a contradiction, since x
or y would have modulus larger than 1.

Theorem 3.13. Let v be as in Theorem 3.9 and balanced. Assume that �Bv has no
singularities, i.e., gap(v) /= 0. If v = (1, a, b, 0)T, then �Bv is an ellipse tangent
to B at four points. If v = (1, a, b, c)T, c > 0, then �Bv is a smooth topological
component (in the Euclidean topology) of an irreducible plane algebraic curve.

Proof. Let v = (1, a, b, 0)T with 1 � a � b > 0 be balanced, so that a + b > 1.
We want to describe the boundary of Fv , the face of the correlation matrices that kill
v. Now the generic matrix A(x, y) of Fv can be parameterized as follows:


1 r s −ay − bx
r 1 t y

s t 1 x

−ay − bx y x 1


 .

By Lemma 2.13 r, s, and t are uniquely determined. Since a + b > 1, none of them
is ±1. Since

detA[2, 3, 4] = 1 + 2txy − x2 − y2 − t2,
p(x, y) = 0 is the equation of an ellipse. Note that if we set x = 1, this forces y = t
and if x = −1, then y = −t . A similar statement holds if we choose y = ±1. By
Remark 3.12 the ellipse �Bv is tangent toB at the four points (±1,±t) and (±t,±1).

Now consider v = (1, a, b, c)T, c > 0. It follows from (3.3) that the curve p(x,
y) = 0 is cubic with no x3 or y3 term. If p(x, y) reduced, one component would be
a straight line. If this line does not intersect the square B, then all boundary points
of Bv lie on a quadratic curve and because Bv is bounded this curve must be an
ellipse. But then p(x, y) must have x3 and y3 terms, a contradiction. If the line does
intersect B, it must also cross the boundary of B. By Remark 3.12, it must do so at a
corner. By Lemma 3.1,A(x0, y0) is a rank 1 correlation matrix forcing gap(v) = 0, a
contradiction. Therefore, p(x, y) is irreducible and �Bv is a topological component
of p(x, y) = 0. �

The following example will illustrate the first possibility.
Take v = 1

4 (4, 3, 2, 0)
T. Any correlation matrix that kills v must have the form

(for suitable x, y)


1 −7/8 −11/16 z

−7/8 1 1/4 y

−11/16 1/4 1 x

z y x 1


 .
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Fig. 2. 15
16 − y2 + 1

2 xy − x2 = 0.

Note that detA[2, 3, 4] = 15
16 − y2 + 1

2xy − x2. If we set this quadratic polynomial
equal to zero, we get an ellipse. Moreover, it is easy to see that the points of tangency
to B of the ellipse are (1, 1

4 ), (−1,− 1
4 ), (

1
4 , 1) and (− 1

4 ,−1). Fig. 2 shows the plot.

Remark 3.14. For k = 1, n = 4, a description of these faces is given in [11]. We
point out a minor error at the end of the paper about faces of dimension 2. The
paragraph following Eq. (6.3) on page 546 says that the boundary of these faces is
described by a polynomial of degree less than or equal to 2. As we have seen above,
the boundary is given by the polynomial p(x, y), which is generically of degree 3.
The description we have given of these two dimensional faces is also more detailed
and complete.

We will use the information for the case k = 1, n = 4 to develop the case k = 2,
n = 5. Let v, w be linearly independent vectors in R5. If there is a common compo-
nent zero, then we are in the 4 × 4 case, so assume that v and w have no common
zero component. Then by taking suitable permutations and linear combinations of v
and w, we may assume that they have the form

v = (1, a, b, c, 0)T, w = (0, d, e, f, 1)T.
Assume that 1 � a � b � c � 0, and set v1 = (1, a, b, c)T, w1 = (d, e, f, 1)T. Let
V = Span {v,w}, so that

FV = {A ∈ C5 : Av = Aw = 0}.
If either v or w is not balanced, V is not realizable (FV = ∅), so we will assume that
both vectors are balanced. Even so, as we saw in Section 2, it is still possible that V
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may not be realizable. We wish to discuss a process for determining the geometric
structure of FV . For convenience, put

GV = {symmetric A: aii = 1, i = 1, . . . , 5, and Av = Aw = 0}.
Before we discuss the general method, we first eliminate some cases where addition-
al coordinates of v1 or w1 are zero.

Theorem 3.15. Suppose that v = (1, 1, 0, 0, 0)T. Then FV is in 1–1 correspondence
with Fw1 .

Proof. Let S be any 4 × 4 correlation matrix such that Sw1 = 0. Then, as in the
first part of the proof of Theorem 3.9, we extend S to a unique correlation matrix in
FV . �

Theorem 3.16. Let v = (1, a, b, 0, 0)T, and w = (0, 0, e, f, 1)T be balanced vec-
tors with abef /= 0. Then V is realizable.

Proof. Note from Lemma 2.6 that V is already balanced. By Lemma 2.13 any ma-
trixAwhich kills both v andw hasA[1, 2, 3] andA[3, 4, 5] uniquely determined and
both are in C3. We now assert that such a matrix A can be chosen in FV . Designate
the (2, 4) and (4, 2) entry to be y. If we require AV = 0, then a calculation shows
that every other entry must be linear in y, i.e., GV can be parameterized with one
variable. Thus we will denote GV by A(y). Now we examine

A(y)[2, 3, 4] =

1 α y

α 1 β

y β 1


 ,

where |α|, |β| � 1. Let p(y) = detA[2, 3, 4]. By Lemma 2.10, C3(A(y)) = p(y)B,
and we can take p(y) = detA[2, 3, 4]. Note that p(y) is quadratic in y and that the
discriminant of p(y) is 4(1 − α2)(1 − β2). Thus both roots of p(y) are real. Let y0
be a root of p(y). Then C3(A(y0)) = 0, so rankA(y0) � 2. There are two cases:

(i) Either |α| < 1 or |β| < 1. Then either[1 α

α 1

]
or

[1 β

β 1

]
has two positive eigenvalues. By interlacing, A(y0) is a rank 2 correlation matrix in
FV .

(ii) Both |α| and |β| are 1. Then by the same calculation as in the proof of Lemma
3.1, y0 = αβ and A(y0)[2, 3, 4] is a rank 1 correlation matrix. Because |β| = |y0| =
1, and detA(y0)[2, 3, 4] = 0, by Lemma 3.1 A(y0)[1, 2, 3, 4] is a rank 1 correlation
matrix. A similar argument using |α| = |y0| = 1 shows that A(y0)[2, 3, 4, 5] is a
rank 1 correlation matrix. By Theorem 2.12, A(y0) is a rank 1 correlation matrix
with v and w in its null space. Therefore V is realizable. �
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We now discuss the general case. Recall that

GV = {symmetric A : aii = 1, i = 1, . . . 5, and Av = Aw = 0}.

Clearly GV is the solution set to a system of ten linear equations in ten unknowns,
and FV ⊂ GV . If v and w have at most one common non-zero coordinate, then V
is realizable by Theorem 3.15 or Theorem 3.16. Otherwise, we may assume that
abde /= 0. Recall that

A[1, 2, 3, 4]v1 = 0 = A[2, 3, 4, 5]w1. (3.8)

Let y and x be, respectively, the (2, 4) and (3, 4) entries of A. Recalling the discus-
sion following Lemma 3.1, we see that the equation A[1, 2, 3, 4]v1 = 0 determines
the (2, 3) entry of A and that this entry is linear in x and y. Call this entry L(x, y).
Similarly the equation A[2, 3, 4, 5]w1 = 0 determines the (2, 3) entry of A as a lin-
ear function of x and y which we call M(x, y). We then have the following three
possibilities for GV .

Theorem 3.17. Let GV ,A, v1, w1, L(x, y),M(x, y) be as in the previous para-
graph. Then

(a) GV is empty if the equation L(x, y) = M(x, y) is inconsistent.
(b) GV can be expressed as a 1-parameter matrixA(x) (orA(y)) depending linearly

on x if L(x, y) = M(x, y) is the equation of a straight line.
(c) GV can be expressed as a two parameter matrix A(x, y) depending linearly on

x and y if L(x, y) = M(x, y) for all x and y.

Proof. (a) Having L(x, y) = M(x, y) be inconsistent implies that the Eqs. (3.8) are
inconsistent, so GV is empty.

(b) Write L(x, y) = M(x, y) as rx + sy + t = 0. Then either r /= 0 or s /= 0. We
assume that s /= 0. (The argument for r /= 0 is similar.) Then in order for the Eqs.
(3.8) to be consistent we must have y = −(rx/s)− (t/s). Let f (x) = −(rx/s)−
(t/s). Then L(x, f (x)) = M(x, f (x)) identically. The Eqs. (3.8) also determine the
(1, 2), (1, 3), (1, 4) and (2, 5), (3, 5), (4, 5) entries of A as linear functions of x
and y. Replace each y with f (x). Then these entries become linear functions of x.
Finally, as in the proof of Theorem 2.12, the equations Av = Aw = 0 determine the
(1, 5) entry of A uniquely, which must be a linear function of x. This completes the
proof of (b).

(c) Since L(x, y) = M(x, y) identically, the Eqs. (3.8) are consistent for all x and
y, and they determine the (1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 5), (4, 5) entries of
A as linear functions of x and y. Then again, the equations Ax = Ay = 0 determine
the (1, 5) entry of A uniquely as a function of x and y. �
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We now develop a theorem similar to Theorem 3.17 for FV . We will need the
following modification of Definition 3.5.

Definition 3.18. Let BV = {(x, y) ∈ B : A ∈ FV }.
(a) If L(x, y) = M(x, y) for all x and y, let

Bv1 = {(x, y) ∈ B : A(x, y)[1, 2, 3, 4] ∈ Fv1},
Bw1 = {(x, y) ∈ B : A(x, y)[2, 3, 4, 5] ∈ Fw1}.

(b) If L(x, y) = M(x, y) is the equation of a nonvertical line, let

Cv1 = {x ∈ [−1, 1] : A(x)[1, 2, 3, 4] ∈ Fv1},
Cw1 = {x ∈ [−1, 1] : A(x)[2, 3, 4, 5] ∈ Fw1}.

Note that the equations in part (a) of this definition are also meaningful in the
case that L(x, y) = M(x, y) is the equation of a line as long as we understand that
there is no 5 × 5 matrix A(x, y) in this case, just two 4 × 4 matrices determined as
in the beginning of Section 3. Also note that by convexity and continuity, both Cv1

and Cw1 are closed intervals.

Theorem 3.19. Let the notation be as in the discussion above. Assume that v,w are
balanced. Then

(i) if L(x, y) = M(x, y) is inconsistent, V is not realizable, i.e., FV is empty.
(ii) if L(x, y) = M(x, y) for all x, y, BV = Bv1 = Bw1 .
(iii) ifL(x, y) = M(x, y) is the equation of a non-vertical line, V is realizable if and

only if Cv1 ∩ Cw1 is nonempty. If we let Cv1 ∩ Cw1 = [s, t], then FV is the line
segment {A(x) : s � x � t}. (Similar statements apply if L(x, y) = M(x, y) is
a vertical line.) Moreover, (s, f (s)) and (t, f (t)) are in �Bv1 ∩ �Bw1 .

Proof. (i) Since FV ⊂ GV , and GV is empty in this case, FV is empty.
(ii) Let (x, y) ∈ Bv1 . Then A(x, y)[1, 2, 3, 4] ∈ Fv1 , so A(x, y)[2, 3, 4] is also a

correlation matrix. SinceA(x, y)[2, 3, 4, 5]w1 = 0, rankA[2, 3, 4, 5] = rankA[2, 3,
4]. ThenA[2, 3, 4, 5] is also a correlation matrix. By Theorem 2.12,A(x, y) is also a
correlation matrix and (x, y) ∈ BV . Therefore, Bv1 ⊂ BV . But trivially, BV ⊂ Bv1 .
Thus Bv1 = BV and similarly Bw1 = BV .

(iii) If V is realizable, then A(x) ∈ FV for some x ∈ [−1, 1]. Then A(x)[1, 2, 3,
4] ∈ Fv1 andA(x)[2, 3, 4, 5] ∈ Fw1 , so Cv1 ∩ Cw1 is nonempty. If Cv1 ∩ Cw1 is non-
empty, it follows from Theorem 2.12 that A(x) ∈ FV , so V is realizable. Repeating
this argument shows that {A(x) : s � x � t} = FV .

In order to verify the final statement, consider the left-hand endpoint s of Cv1 ∩
Cw1 . Then s is a left-hand endpoint of either Cv1 or Cw1 , say Cv1 . The fact that
A(x) ∈ GV for all x implies that rankA(x)[1, 2, 3, 4] � 3 for all x. If rankA(s)[1, 2,
3, 4] = 3, then A(s)[1, 2, 3, 4] has three positive eigenvalues, and so does A(s −
ε)[1, 2, 3, 4] for ε > 0 sufficiently small. Then A(s − ε)[1, 2, 3, 4] ∈ Fv1 , a con-
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tradiction. Therefore, rankA(s)[1, 2, 3, 4] � 2. If we now regard A[1, 2, 3, 4] as
a linear function of both x and y as in the discussion following Lemma 3.1, we
have rankA(s, f (s))[1, 2, 3, 4] � 2. By Remark 3.10, (s, f (s)) is a zero of p(x, y)
and a point on �Bv1 . Recall that p(x, y) is a multiple of detA(x, y)[2, 3, 4]. Thus
detA(s, f (s))[2, 3, 4] = 0. If we instead take the underlying matrix to beA(x, y)[2,
3, 4, 5] ∈ Fw1 , and define p̂(x, y) to be a multiple of detA(x, y)[2, 3, 4], in that
matrix, then p̂(s, f (s)) = 0 (though p̂ /= p in general). Applying Theorem 3.6 with
a suitable permutation similarity to A(x, y)[2, 3, 4, 5], we conclude that (s, f (s))
is also a point on �Bw1 . Similarly, (t, f (t)) ∈ �Bv1 ∩ �Bw1 . This completes the
proof. �

The generic case, part (iii) of Theorem 3.19 gives a geometric description of FV .
It is a line segment with endpoints in �Bv1 ∩ �Bw1 . By Bezout’s Theorem [3], this
intersection could have as many as nine points. Thus, if we separately find �Bv1

and �Bw1 and then their points of intersection, we have insufficient information to
determine which are the endpoints of FV . In the next section we will produce a
number of illustrative examples.

Theorem 3.19(iii) gives one criterion that V be realizable. We conclude this sec-
tion by giving a simple algebraic criterion.

Theorem 3.20. Assume that L(x, y) = M(x, y) is the equation of a line, where
L(x, y),M(x, y), A(x) (or A(y)) are as in the discussion above. Let

g(x) = detA(x)[2, 3, 4],
a polynomial of degree � 3. Find its roots.

(i) If there is a root x0 ∈ (−1, 1), A(x0) is a rank 2 correlation matrix and FV is
nonempty.

(ii) If x0 = ±1, is a root, then A(x0) is a correlation matrix if and only if |f (x0)| �
1. Its rank is 2 if |f (x0)| < 1 and is 1 if |f (x0)| = 1.

(iii) If all roots of g lie outside [−1, 1], then FV is empty.

Proof. (i) Suppose x0 is a root of g in (−1, 1). Then A(x0)[2, 3, 4] is singular and
A(x0)[3, 4] is positive definite. Therefore, A(x0)[2, 3, 4] is a rank 2 correlation ma-
trix. It follows from the form of v1 and w1 that

rankA(x0)[1, 2, 3, 4] = rankA(x0)[2, 3, 4] = rankA(x0)[2, 3, 4, 5].
Therefore, A(x0)[1, 2, 3, 4] and A(x0)[2, 3, 4, 5] are rank 2 correlation matrices and
it follows from Theorem 2.12 that A(x0) is a rank 2 correlation matrix.

(ii) Suppose x0 = ±1 is a root of g(x). If |f (x0)| > 1, then

A(x0)[2, 3, 4] =

 1 L(x0, f (x0)) f (x0)

L(x0, f (x0)) 1 x0
f (x0) x0 1




is not a correlation matrix and hence neither is A(x0).
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If |f (x0)| < 1, we repeat the argument in (i) to show that A(x0) is a rank 2 corre-
lation matrix.

If |f (x0)| = 1, it follows from Lemma 3.1 thatA(x0)[1, 2, 3, 4] andA(x0)[2, 3, 4,
5] are rank 1 correlation matrices and from Theorem 2.12 that A(x0) is a rank 1
correlation matrix.

(iii) Suppose FV is nonempty. In Theorem 3.19(iii), (s, f (s)) ∈ �Bv1 , which
means that |s| � 1 and p(s, f (s)) = 0. Since g(s) = detA(s)[2, 3, 4] is a multiple
of p(s, f (s)), g(s) = 0 and thus g has a root in [−1, 1]. �

4. Illustrative examples

In this section, we will provide some plots to illustrate some of the ideas. In most
cases, we are plotting only �Bv . We display a scalar multiple of the polynomial
p(x, y) whose zero set is the curve we illustrate. In some cases, as in Figs. 1 and 2
and the next example, we are plotting just one curve with k = 1, n = 4. In the others,
we have k = 2, n = 5, and there are two curves as well as the line determined in
Theorem 3.19.

Example 4.1. Here we let v = (5, 3, 2, 1)T. (Once again, we do not normalize the
first coordinate of v.) Since gap(v) /= 0, Fv has no rank one matrices; thus �Bv is
smooth. Observe part of another topological component of the curve which must be
outside of B.

23
144 − 10

9 x
2 + 11

12 y + 11
18 x + 3

2 yx − 5
4y

2 − y2x − 2
3 yx

2 = 0.

The rest of our illustrations involve k = 2, n = 5. We obtain the pictures by plot-
ting the zero set of the product of the two cubic polynomials corresponding to �Bv1
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and �Bw1 and the linear function L(x, y)−M(x, y) = 0. In some cases, we have
chosen some of the coordinates of v or w to be negative. This is strictly for conve-
nience. The following example is one in which FV is empty. The two curves �Bv1 and
�Bw1 have non-empty intersection in B. However, the line L(x, y)−M(x, y) = 0
misses B.

Example 4.2. Let v = 1
3 (3, 3, 2, 1, 0)

T, and w = 1
4 (0, 1, 2, 2,−4)T. Put V =

Span{v,w}. The curves and line are plotted simultaneously. The illustration shows
that BV is empty even though the two cubic curves meet. Observe that the line
L(x, y)−M(x, y) = 0 meets B only at (1, 1). In this example, we outline some
of the calculations.

[
3 −3 −2 −1

]



1 m n p

m 1 l y

n l 1 x

p y x 1






3
3
2
1


 = −5 − 12l − 6y − 4x = 0.

Hence l = − 5
12 − 1

2y − 1
3x.

det




1 − 5
12 − 1

2y − 1
3x y

− 5
12 − 1

2y − 1
3x 1 x

y x 1




= 119
144 − 10

9 x
2 − 5

12y − 5
18x − 7

6yx − 5
4y

2 − y2x − 2
3yx

2.

[
1 2 2 4

]



1 l y r

l 1 x s

y x 1 t

r s t 1






1
2
2

−4


 = −7 + 4l + 4y + 8x = 0.

Hence l = 7
4 − y − 2x.

det




1 7
4 − y − 2x y

7
4 − y − 2x 1 x

y x 1




= − 33
16 − 5x2 + 7

2y + 7x − 1
2yx − 2y2 − 2y2x − 4yx2.
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(
−33

16 − 5x2 + 7
2 y + 7x − 1

2yx − 2y2 − 2y2x − 4yx2
)

×
(

119
144 − 10

9 x
2 − 5

12 y − 5
18 x − 7

6yx − 5
4 y

2 − y2x − 2
3yx

2
) (
y − 13

3 + 10
3 x
)

= 0.

Example 4.3. Let V = Span{v,w}, where v = 1
3 (3, 3, 1, 0, 0)

T, w = (0,−3,−3, 2,
2)T. By Theorems 3.9 and 3.13, �Bv1 is an ellipse and �Bw1 will be determined by a
line and a quadratic curve (in this case a hyperbola). Note that the intersection of the
two curves consists of six points, the maximum allowed by Bezout’s Theorem. We
give the polynomial but not the calculations. The second factor is clearly that of the
ellipse and the last that of the line L(x, y) = M(x, y). Observe that FV is nonempty
and is clearly a line segment.

(− 13
9 y

2 + 4
3x + 4

3y − 26
9 xy − 13

9 x
2 + 4

3x
2y + 4

3xy
2
)

× ( 35
36 − y2 − 1

3xy − x2
)(− 5

6 + 2
3x + 2

3y
) = 0.
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Example 4.4. Let V = Span{v,w}, where v = 1
4 (4, 3, 2, 1, 0)

T, w = 1
4 (0, 1, 2, 3,

4)T. Note that both �Bv1 and �Bw1 have nodes, but in different locations. In this case
FV is a line.

(
3
4 − 10x2 + 3

2 y + 3x − 8xy − 13
4 y

2 − 3y2x − 6yx2
)

×
(

35
36 − 10

9 x
2 + 1

6 y + 1
9 x − 5

4y
2 − y2x − 2

3 yx
2
)(
x − 1

8 + 3
8 y
)

= 0.

We continue with this example to illustrate Theorem 3.20, using algebraic means
to find the endpoints of the line segment illustrated above. To be on the straight line,
we must have x = 1

8 (1 − 3y). We substitute this value for x in A(x, y)[2, 3, 4] and
compute the determinant, obtaining

det




1 1
6 − 1

2y − 1
3

( 1
8 (1 − 3y)

)
y

1
6 − 1

2y − 1
3

( 1
8 (1 − 3y)

)
1 1

8 (1 − 3y)

y 1
8 (1 − 3y) 1




= 31
32 + 7

32y − 47
32y

2 + 9
32y

3.

The roots of this polynomial are 1, 19
9 ± 8

9

√
10, two of which are � 1 in absolute

value. This yields the endpoints of the line segment to be (− 1
4 , 1), and approximately

(0.3875,−0.7) as the illustration above will confirm.

Example 4.5. Here we will have the two cubic curves with a common node. There
are other points of intersection in B but FV has only one matrix, namely at the node.
Let v = 1

4 (4, 3, 2, 1, 0)
T, w = (0, 3, 2, 4, 1)T. Note that there is a common rank one

correlation matrix in FV . In fact, FV is a single point. We will give the plot and
illustrate again the algebraic process of Theorem 3.20.
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The polynomial and its plot is

(
− 40

9 − 25
9 x

2 − 28
3 y − 56

9 x − 10yx − 5y2 − 4y2x − 8
3 yx

2
)

×
(

35
36 − 10

9 x
2 + 1

6y + 1
9x − 5

4 y
2 − y2x − 2

3yx
2
)(

−x − 5
2 − 3

2 y
)

= 0.

From the equation above, we see that the line is given by x = − 5
2 − 3

2y. We
compute

detA(x, y)[2, 3, 4]

= det




1 − 7
3 − 2y − 4

3

(− 5
2 − 3

2y
)

y

− 7
3 − 2y − 4

3

(− 5
2 − 3

2y
)

1 − 5
2 − 3

2y

y − 5
2 − 3

2y 1




= − 25
4 − 25

2 y − 25
4 y

2.

The roots are both −1, yielding (−1,−1) as the only point on �BV .

Remark 4.6. Consider the case k = 2, n = 5. Suppose that V turns out not to be
realizable. Of course it is still possible that V could be balanced. Is it possible to look
at the relative positions of �Bv1 , �Bw1 , and the line L(x, y) = M(x, y) to determine
if V is balanced?
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