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Abstract

In this paper, we are concerned with the problem of existence of solutions for generalized reflected
backward stochastic differential equations (GRBSDEs for short) and generalized backward stochastic dif-
ferential equations (GBSDEs for short) when the generator f ds +g dAs is continuous with general growth
with respect to the variable y and stochastic quadratic growth with respect to the variable z. We deal with
the case of a bounded terminal condition ξ and a bounded barrier L as well as the case of unbounded ones.
This is done by using the notion of generalized BSDEs with two reflecting barriers studied in Essaky and
Hassani (submitted for publication) [14]. The work is suggested by the interest the results might have in
finance, control and game theory.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Originally motivated by questions arising in stochastic control theory, backward stochastic
differential equations have found important applications in fields as stochastic control, mathe-
matical finance, Dynkin games and the second order PDE theory (see, for example, [11,16,25,
24,8,9] and the references therein).
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The particular case of linear BSDEs has appeared long time ago both as the equations for the
adjoint process in stochastic control, as well as the model behind the Black and Scholes formula
for the pricing and hedging of options in mathematical finance. However the notion of nonlinear
BSDEs has been introduced in 1990 by Pardoux and Peng [24]. A solution for such an equation
is a couple of adapted processes (Y,Z) with values in R × R

d satisfying

Yt = ξ +
T∫

t

f (s, Ys,Zs) ds −
T∫

t

Zs dBs, 0 � t � T . (1)

In [24], the authors have proved the existence and uniqueness of the solution under conditions
including basically the Lipschitz continuity of the generator f .

From the beginning, many authors attempted to improve the result of [24] by weakening the
Lipschitz continuity of the coefficient f , see e.g. [1–5,10,15,17,18,22,7], or the L2-integrability
of the initial data ξ , see [11,5].

When the generator f is only continuous there exists a solution to Eq. (1) under one of the
following group of conditions:

• ξ is square integrable and f has a uniform linear growth in y, z (see Lepeltier and
San Martin [21]).

• ξ is bounded and f has a superlinear growth in y and quadratic growth in z, i.e. there exist
a positive constant C and a positive function φ, such that∣∣f (t,ω, y, z)

∣∣ � φ(y) + C|z|2,
where

∫ +∞
0

ds
φ(s)

= ∫ 0
−∞

ds
φ(s)

= ∞ (see Lepeltier and San Martin [20]; Kobylanski [18]).
• ξ is bounded and f satisfies the following condition∣∣f (t,ω, y, z)

∣∣ � C + Rt |z| + 1

2
|z|2,

where C is a positive constant and R is a square integrable process with respect to the
measure dt dP (see Hamadène and El Karoui [13]).

• There exist two constants β � 0 and γ > 0 together with a progressively measurable non-
negative stochastic process {α(t)}t�T and a deterministic continuous nondecreasing function
ϕ : R+ → R

+ with ϕ(0) = 0 such that, P -a.s.,
(i) for each (t, y, z), y(f (t, y, z) − f (t,0, z)) � β|y|2,

(ii) for each (t, y, z), |f (t,ω, y, z)| � α(t) + ϕ(|y|) + γ
2 |z|2,

(iii) Eeγ eβT (|ξ |+∫ T
0 α(s) ds) < +∞

(see Briand and Hu [6]).

The notion of reflected BSDE has been introduced by El Karoui et al. [12]. A solution of such
an equation, associated with a coefficient f ; a terminal value ξ and a barrier L, is a triple of
processes (Y,Z,K) with values in R × R

d × R+ satisfying

Yt = ξ +
T∫

t

f (s, Ys,Zs) ds + KT − Kt −
T∫

t

Zs dBs, Yt � Lt , ∀t � T . (2)

Here the additional process K is continuous nondecreasing and its role is to push upwards the
process Y in order to keep it above the barrier L and moreover it satisfies

∫ T
(Ys − Ls)dKs = 0,
0



444 E.H. Essaky, M. Hassani / Bull. Sci. math. 135 (2011) 442–466
this means that the process K acts only when the process Y reaches the barrier L. Once more
under square integrability of the terminal condition ξ and the barrier L and Lipschitz property of
the coefficient f , the authors have proved that Eq. (2) has a unique solution.

When the generator f is only continuous there exists a solution to Eq. (2) under one of the
following group of conditions:

• ξ and L are square integrable and f has a uniform linear growth in y, z (see Matoussi [23]).
• ξ and L are bounded and f has a superlinear growth in y and quadratic growth in z, i.e.

there exist a positive constant C and a positive function φ, such that∣∣f (t,ω, y, z)
∣∣ � φ(y) + C|z|2,

where
∫ +∞

0
ds

φ(s)
= ∫ 0

−∞
ds

φ(s)
= ∞ (see Kobylanski, Lepeltier, Quenez and Torres [19]).

We should point out here that, in the previous works, the existence of a solution for RBSDE
or BSDE has been proved in the case when the quadratic condition imposed on the coefficient
f is uniform in ω and hence those works cannot cover, for example, a generator with stochastic
quadratic growth of the form Cs(ω)ψ(|y|)|z|2. Moreover, most of the previous works require that
the terminal condition ξ and the barrier L are bounded random variables in the case of GRBSDEs
or ξ is bounded in the case of GBSDEs. These conditions on f , ξ and L seem to be restrictive
and are not necessary to have a solution.

One of the main purposes of this work is to study the GRBSDE with one barrier L which is
a reflected BSDE which involves an integral with respect to a continuous and increasing process
A of the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs +
T∫

t

dKs −
T∫

t

Zs dBs, t � T ,

(ii) ∀t � T , Lt � Yt ,

(iii)

T∫
0

(Yt − Lt) dKt = 0, a.s.,

(iv) Y ∈ C, K ∈ K, Z ∈ L2,d .

(3)

We prove existence of solutions for GRBSDE (3) when the generator f ds +g dAs is continuous
with general growth with respect to the variable y and stochastic quadratic growth with respect to
the variable z. This allows us to cover some BSDEs having a generator satisfying, for example,
the following condition: for each (s,ω, y, z)

∣∣f (s,ω, y, z)
∣∣ � αsφ

(|y|) + Csψ(|y|)
2

|z|2 + Rs |z|,∣∣g(s,ω, y)
∣∣ � βsφ

(|y|),
where α, φ, C, ψ , R and β are given later. We deal with the case of a bounded terminal condition
ξ and a bounded barrier L as well as the case of unbounded ones. We give some examples which
are covered by our result and, to our knowledge, not covered by the previous works. Moreover,
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as we will see later, the existence of a solution for our GRBSDE (3) is related to the existence of
a solution (x, z, k) for the following BSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt = ξ ∨ sup
s�T

Ls +
T∫

t

φ(xs) dηs +
T∫

t

Csψ(xs)

2
|zs |2 ds

+
T∫

t

Rs |zs |ds +
T∫

t

dks −
T∫

t

zs dBs,

xs � 0, ∀s � T , k ∈ K, z ∈ L2,d .

(4)

Roughly speaking, we prove that if the BSDE (4) has a solution and the coefficient f ds + g dAs

is continuous with general growth with respect to the variable y and stochastic quadratic growth
with respect to the variable z (see condition (H.2) below), then the GRBSDE (3) has a solution.
Therefore a natural question arises: under which condition on (ξ,L,φ,ψ,C,η), the BSDE (4)
has a solution? This is the second purpose of this work.

The third purpose of this work is to prove the existence of solutions for the GRBSDE (3) when
the barrier L ≡ −∞ which is nothing else than a GBSDE of the form:⎧⎪⎪⎨⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs −
T∫

t

Zs dBs, t � T ,

(ii) Y ∈ C, Z ∈ L2,d .

(5)

As a very particular case of our result, when ξ is not bounded, we obtain that the following BSDE

Yt = ξ +
T∫

t

γs

2
|Zs |2 ds −

T∫
t

Zs dBs (6)

has a solution if

E

[
eCT |ξ | − 1

CT

1{CT >0} + |ξ |1{CT =0}
]

< +∞,

where γ be a nonnegative process which is Ft -adapted and Ct = sup0�s�t |γs |, ∀t ∈ [0, T ].
Moreover

|Yt | � ln(1 + CtE(Λ|Ft ))

Ct

1{Ct>0} + E(Λ|Ft )1{Ct=0},

where Λ = eCT |ξ |−1
CT

1{CT >0} + |ξ |1{CT =0}.
To prove our results, we will use an approach based upon the recent result obtained in the

preprint of Essaky and Hassani [14] where the authors have proved the existence of a solution for
a generalized BSDE with two reflecting barriers when the generator f ds + g dAs is continuous
with general growth with respect to the variable y and stochastic quadratic growth with respect to
the variable z and without assuming any P -integrability conditions on the data. This result allows
a simple treatment of the problem of existence of solutions for one barrier reflected BSDEs and
also for BSDEs without reflection. This approach seems to be new.

Let us describe our plan. First, some notation is fixed in Section 2. In Section 3, we recall
the existence of solutions for GBSDE with two reflecting barriers studied in [14]. Section 4 is
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devoted to the proof of a general existence result for GRBSDE and GBSDE when the coefficient
f ds + g dAs is continuous with general growth with respect to the variable y and stochastic
quadratic growth with respect to the variable z. In Section 5, we give sufficient conditions under
which the BSDE (4) has a solution. In Section 6, we give some important consequences and
examples of our results.

2. Notations

The purpose of this section is to introduce some basic notations, which will be needed
throughout this paper.

Let (Ω, F , (Ft )t�T ,P ) be a stochastic basis on which is defined a Brownian motion (Bt )t�T

such that (Ft )t�T is the natural filtration of (Bt )t�T and F0 contains all P -null sets of F . Note
that (Ft )t�T satisfies the usual conditions, i.e. it is right continuous and complete.

Let us now introduce the following notation. We denote:

• P to be the sigma algebra of Ft -progressively measurable sets on Ω × [0, T ].
• C to be the set of R-valued P -measurable continuous processes (Yt )t�T .
• L2,d to be the set of R

d -valued and P -measurable processes (Zt )t�T such that

T∫
0

|Zs |2 ds < ∞, P -a.s.

• K to be the set of P -measurable continuous nondecreasing processes (Kt )t�T such that
K0 = 0 and KT < +∞, P -a.s.
The following assumptions will be needed throughout the paper:

• ξ is an FT -measurable one-dimensional random variable.
• f : [0, T ] × Ω × R

1+d → R is a function which to (t,ω, y, z) associates f (t,ω, y, z) which
is continuous with respect to (y, z) and P -measurable.

• g : [0, T ] × Ω × R → R is a function which to (t,ω, y) associates g(t,ω, y) which is con-
tinuous with respect to y and P -measurable.

• A is a process in K.
• L := {Lt , 0 � t � T } is a real valued barrier which is P -measurable and continuous process

such that ξ � LT .

3. Generalized BSDE with two reflecting barriers

In view of clarifying this issue, we recall some results concerning GRBSDEs with two barriers
which shall play a central role in our proofs. Let us start by recalling the following definition of
two singular measures.

Definition 3.1. Let μ1 and μ2 be two positive measures defined on a measurable space (Λ,Σ),
we say that μ1 and μ2 are singular if there exist two disjoint sets A and B in Σ whose union is
Λ such that μ1 is zero on all measurable subsets of B while μ2 is zero on all measurable subsets
of A. This is denoted by μ1 ⊥ μ2.

Let us now define the notion of solution of the GRBSDE with two obstacles L and U .
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Definition 3.2. We call (Y,Z,K+,K−) := (Yt ,Zt ,K
+
t ,K−

t )t�T a solution of the generalized
reflected BSDE, associated with coefficient f ds +g dAs ; terminal value ξ and barriers L and U ,
if the following hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs

+
T∫

t

dK+
s −

T∫
t

dK−
s −

T∫
t

Zs dBs, t � T ,

(ii) Y is between L and U, i.e. ∀t � T , Lt � Yt � Ut,

(iii) the Skorohod conditions hold:
T∫

0

(Yt − Lt) dK+
t =

T∫
0

(Ut − Yt ) dK−
t = 0, a.s.,

(iv) Y ∈ C, K+,K− ∈ K, Z ∈ L2,d ,

(v) dK+ ⊥ dK−.

(7)

We introduce also the following assumptions:

(A.0) Ut := U0 − Vt − ∫ t

0 ρs ds − ∫ t

0 θs dAs + ∫ t

0 χs dBs , with U0 ∈ R, V ∈ K, χ ∈ L2,d , ρ and

θ are nonnegative predictable processes satisfying
∫ T

0 ρs ds + ∫ T

0 θs dAs < +∞ P -a.s.,
such that Lt � Ut , ∀t ∈ [0, T ] and ξ � UT .

(A.1) There exist two processes η′ ∈ L0(Ω,L1([0, T ], ds,R+)) and C′ ∈ C such that

∀(s,ω),
∣∣f (s,ω, y, z)

∣∣ � η′
s(ω) + C′

s(ω)

2
|z|2, ∀y ∈ [

Ls(ω),Us(ω)
]
, ∀z ∈ R

d .

(A.2) There exists a process η′′ ∈ L0(Ω,L1([0, T ], dAs,R+)) such that

∀(s,ω),
∣∣g(s,ω, y)

∣∣ � η′′
s , ∀y ∈ [

Ls(ω),Us(ω)
]
.

The following result is obtained by Essaky and Hassani [14] and it is related to the existence
of maximal (resp. minimal) solution of (7), that is, there exists a quadruple (Yt ,Zt ,K

+
t ,K−

t )t�T

which satisfies (7) and if in addition (Y ′
t ,Z

′
t ,K

′+
t ,K ′−

t )t�T is another solution of (7), then P -a.s.
holds, for all t � T , Y ′

t � Yt (resp. Y ′
t � Yt ).

Theorem 3.1. Let assumptions (A.0)–(A.2) hold true. Then there exists a maximal (resp. mini-
mal) solution for GRBSDE with two barriers (7). Moreover for all solutions (Y,Z,K+,K−) of
Eq. (7) we have

dK−
s �

(
f (s,Us,χs) − ρs

)+
ds + (

g(s,Us) − θs

)+
dAs. (8)

Furthermore, if the following condition holds

Lt := L0 + V t +
t∫
ρs ds +

t∫
θs dAs +

t∫
χs dBs,
0 0 0
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with L0 ∈ R, V ∈ K, χ ∈ L2,d , ρ and θ are nonnegative predictable processes satisfying∫ T

0 ρs ds + ∫ T

0 θs dAs < +∞ P -a.s., then

dK+
s �

(−f (s,Ls,χs) − ρs

)+
ds + (−g(s,Ls) − θs

)+
dAs. (9)

Proof. The existence result follows from Essaky and Hassani [14]. By applying the Itô–Tanaka
formula to (Ut − Yt )

+ = Ut − Yt , we find

(χs − Zs)1{Us=Ys } ds = 0,

and

dK−
s � 1{Us=Ys }

(
dK+

s + (
f (s,Us,χs) − ρs

)
ds + (

g(s,Us) − θs

)
dAs

)
.

Using now the fact that dK+ ⊥ dK−, we obtain inequality (8).
Inequality (9) follows by the same way by applying Itô–Tanaka’s formula to (Yt − Lt)

+ =
Yt − Lt and using the fact that dK+ ⊥ dK−. �
Remark 3.1. We should point out here that Theorem 3.1 does not involve any P -integrability
conditions about the data.

4. General existence result for GRBSDE and GBSDE

The main objective of this section is to show existence results of solutions for GRBSDEs
and GBSDEs assuming general conditions on the data. As we will see later, we prove that the
existence of solutions for GRBSDE and BSDE is related to the existence of solutions for another
BSDE.

4.1. One barrier generalized reflected BSDE

Let us introduce the definition of our GRBSDE with lower obstacle L.

Definition 4.1. We call (Y,Z,K) := (Yt ,Zt ,Kt )t�T a solution of the generalized reflected
BSDE, associated with coefficient f ds + g dAs ; terminal value ξ and a lower barrier L, if the
following hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs +
T∫

t

dKs −
T∫

t

Zs dBs, t � T ,

(ii) ∀t � T , Lt � Yt ,

(iii)

T∫
0

(Yt − Lt) dKt = 0, a.s.,

(iv) Y ∈ C, K ∈ K, Z ∈ L2,d .

(10)

We are now given the following objects:
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• an FT -measurable random variable Λ : Ω → R+,
• two positive predictable processes α and β such that ηT < +∞ P -a.s., where ηt =∫ t

0 αs ds + ∫ t

0 βs dAs ,
• two continuous functions φ,ψ : R+ → R+,
• a nonnegative process C ∈ C,

• a nonnegative process R in L2,1.

We will make the following assumptions:

(H.1) ξ � Λ and Ls � Λ,∀s ∈ [0, T ].
(H.2) There exists (x, z, k) ∈ C × L2,d × K such that

(i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j) xt = Λ +
T∫

t

φ(xs) dηs +
T∫

t

Csψ(xs)

2
|zs |2 ds

+
T∫

t

Rs |zs |ds +
T∫

t

dks −
T∫

t

zs dBs,

(jj) xs � 0, ∀s � T .

From now on, the above equation will be denoted by E+(Λ,φ(x)dηs +
Csψ(x)

2 |z|2 ds + Rs |z|ds).
(ii) For all (s,ω) ∈ [0, T ] × Ω

f (s,ω,xs, zs) � αsφ(xs) + Csψ(xs)

2
|zs |2 + Rs |zs |,

g(s,ω, xs) � βsφ(xs).

(iii) There exist two positive predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls �
y � Ls ∨ xs∣∣f (s,ω, y, z)

∣∣ � αs + ψs

2
|z|2,∣∣g(s,ω, y)

∣∣ � βs.

Remark 4.1. 1. By using a localization procedure and Fatou’s lemma one can prove easily that:

xt � E(Λ|Ft ) � Lt , ∀t ∈ [0, T ].
2. It is worth noting that condition (H.2)(iii) holds true if the functions f and g satisfy the
following:

∀(s,ω),
∣∣f (s,ω, y, z)

∣∣ � σsΦ(s,ω, y) + γsΨ (s,ω, y)|z|2,
∀y ∈ [

Ls(ω), xs(ω)
]
, ∀z ∈ R

d,

and

∀(s,ω),
∣∣g(s,ω, y)

∣∣ � δsϕ(s,ω, y), ∀y ∈ [
Ls(ω), xs(ω)

]
, (11)
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where Φ , Ψ and ϕ are continuous functions on [0, T ] × R and progressively measurable,
σ ∈ L0(Ω,L1([0, T ], ds,R+)), γ ∈ C and δ ∈ L0(Ω,L1([0, T ], dAs,R+)). To do this, we just
take α, ψ and β as follows:

αt (ω) = σt (ω) sup
s�t

sup
α∈[0,1]

∣∣Φ(
s,ω,αLs + (1 − α)xs

)∣∣,
ψt (ω) = 2γt sup

s�t

sup
α∈[0,1]

∣∣Ψ (
s,ω,αLs + (1 − α)xs

)∣∣,
βt (ω) = δt (ω) sup

s�t

sup
α∈[0,1]

∣∣ϕ(
s,ω,αLs + (1 − α)xs

)∣∣.
The following theorem is a consequence of Theorem 3.1.

Theorem 4.1. Let assumptions (H.1)–(H.2) hold. Then the following GRBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs +
T∫

t

dKs −
T∫

t

Zs dBs, t � T ,

(ii) ∀t � T , Lt � Yt � xt ,

(iii)

T∫
0

(Yt − Lt) dKt = 0, a.s.,

(iv) Y ∈ C, K ∈ K, Z ∈ L2,d

(12)

has a maximal (resp. minimal) solution. Moreover, if the following condition holds

Lt := L0 + V t +
t∫

0

ρs ds +
t∫

0

θs dAs +
t∫

0

χs dBs,

with L0 ∈ R, V ∈ K, χ ∈ L2,d , ρ and θ are nonnegative predictable processes satisfying∫ T

0 ρs ds + ∫ T

0 θs dAs < +∞ P -a.s., then for all solutions (Y,Z,K) of Eq. (12) we have

dKs �
(−f (s,Ls,χs) − ρs

)+
ds + (−g(s,Ls) − θs

)+
dAs. (13)

Proof. Let (Y,Z,K+,K−) be the maximal (resp. minimal) solution of Eq. (7) with Ut = xt . By
using inequality (8) of Theorem 3.1 we conclude that

dK− �
(

f (s,ω, xs, zs) − αsφ(xs) − Csψ(xs)

2
|zs |2 − Rs |zs |

)+
ds

+ (
g(s,ω, xs) − βsφ(xs)

)+
dAs

= 0.

Therefore dK− = 0 and then Eq. (12) has a maximal (resp. minimal) solution.
Inequality (13) follows easily from inequality (9). �

Remark 4.2. It is worth pointing out that the minimal solution of GRBSDE (12) is also the
minimal solution of GRBSDE (10). This statement does not hold for maximal solution.
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Once established the existence of solutions for GRBSDEs, we are now interested in proving
the same result for GBSDEs.

4.2. Generalized BSDE without reflection

To begin with, let us introduce the definition of our GBSDE.

Definition 4.2. We call (Y,Z) := (Yt ,Zt )t�T a solution of the generalized reflected BSDE, as-
sociated with coefficient f ds + g dAs ; terminal value ξ , if the following hold:⎧⎪⎪⎨⎪⎪⎩

(i) Yt = ξ +
T∫

t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs −
T∫

t

Zs dBs, t � T ,

(ii) Y ∈ C, Z ∈ L2,d .

(14)

For i = 1,2, we are given the following objects:

• an FT -measurable random variable Λi :Ω → R+,
• two nonnegative predictable processes αi and βi such that ηi

T < +∞ P -a.s., where ηi
t =∫ t

0 αi
s ds + ∫ t

0 βi
s dAs ,

• two continuous functions φi,ψi : R+ → R+,
• a nonnegative process Ci ∈ C,

• a nonnegative process Ri in L2,1.

We will need the following assumptions:

(C.1) −Λ1 � ξ � Λ2.
(C.2) There exists (xi, zi , ki) ∈ C × L2,d × K such that

(i)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j) xi
t = Λi +

T∫
t

φi(xi
s) dηi

s +
T∫

t

Ci
sψ

i(xi
s)

2

∣∣zi
s

∣∣2
ds +

T∫
t

Ri
s

∣∣zi
s

∣∣ds

+
T∫

t

dki
s −

T∫
t

zi
s dBs, s � T ,

(jj) xi
s � 0, ∀s � T .

(ii) For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω, x2

s , z2
s

)
� α2

s φ
2(x2

s

) + C2
s ψ2(x2

s )

2

∣∣z2
s

∣∣2 + R2
s

∣∣z2
s

∣∣,
f

(
s,ω,−x1

s ,−z1
s

)
� −α1

s φ
1(x1

s

) − C1
s ψ1(x1

s )

2

∣∣z1
s

∣∣2 − R1
s

∣∣z1
s

∣∣.
(iii) For all (s,ω) ∈ [0, T ] × Ω

g
(
s,ω, x2

s

)
� β2

s φ2(x2
s

)
,

g
(
s,ω,−x1

s

)
� −β1

s φ1(x1
s

)
.
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(iv) There exist two nonnegative predictable processes α and β such that
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying −x1
s �

y � x2
s∣∣f (s,ω, y, z)

∣∣ � αs + ψs

2
|z|2,∣∣g(s,ω, y)

∣∣ � βs.

The proof of the following theorem follows easily from Theorem 4.1.

Theorem 4.2. Let assumptions (C.1)–(C.2) hold. Then the following GRBSDE⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(i) Yt = ξ +

T∫
t

f (s, Ys,Zs) ds +
T∫

t

g(s, Ys) dAs −
T∫

t

Zs dBs, t � T ,

(ii) −x1
s � Ys � x2

s , ∀s � T ,

(iii) Y ∈ C, Z ∈ L2,d

(15)

has a maximal (resp. minimal) solution.

The next section is devoted to give immediate consequences of Theorems 4.1 and 4.2 in the
case where the terminal condition ξ and/or the barrier L are bounded.

5. First consequences of Theorems 4.1 and 4.2: the bounded case

5.1. One barrier GBSDE

In this subsection, we consider the same notations as in Section 4.1 and we study only the
existence of solutions for GRBSDE (10) in the case of bounded terminal value ξ and barrier L.
The unbounded case is treated in the next sections. The following result is a consequence of
Theorem 4.1.

Corollary 5.1. Suppose that there exist two nonnegative real numbers D and a such that

1. ξ � D and Lt � D, ∀t ∈ [0, T ].
2. φ(y) > 0 for y � D.

3. ηT = ∫ T

0 αs ds + ∫ T

0 βs dAs � a <
∫ +∞
D

dr
φ(r)

.

4. For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω,H−1(a − ηs),0

)
� αsφ

(
H−1(a − ηs)

)
,

g
(
s,ω,H−1(a − ηs)

)
� βsφ

(
H−1(a − ηs)

)
,

where H−1 denotes the inverse of the function H defined by:

H : [D,+∞[ →
[

0,

+∞∫
D

dr

φ(r)

[
, H(x) =

x∫
D

dr

φ(r)
.
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5. There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y �
H−1(a − ηs)∣∣f (s,ω, y, z)

∣∣ � αs + ψs

2
|z|2 and

∣∣g(s,ω, y)
∣∣ � βs.

Then the GRBSDE (10) has a solution such that Lt � Yt � H−1(a − ηt ).

Proof. Set xt = H−1(a − ηt ), for every t ∈ [0, T ]. By Itô’s formula we have

xt = H−1(a − ηT ) +
T∫

t

φ(xs) dηs.

Set Λ := H−1(a − ηT ). Since H(D) = 0 � a − ηT and H is increasing, it follows then from as-
sumption 1 that ξ � Λ and Lt � Λ, ∀t ∈ [0, T ]. Hence assumption (H.1) is satisfied. Assumption
(H.2)(i) is satisfied also with (x,0,0). The result follows then form Theorem 4.1. �

The following corollaries, with φ(x) = x ln(x) and φ(x) = ex , assure the existence of a solu-
tion for the GRBSDE (10). Their proofs follow easily from Corollary 5.1.

Corollary 5.2. Suppose that there exist two real numbers D > 1 and a � 0 such that

1. ξ � D and Lt � D, ∀t ∈ [0, T ].
2. ess supw(

∫ T

0 αs ds + ∫ T

0 βs dAs) � a.
3. For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω, eln(D)ea−ηs

,0
)
� αs ln(D)eln(D)ea−ηs

ea−ηs ,

g
(
s,ω, eln(D)ea−ηs ) � βs ln(D)eln(D)ea−ηs

ea−ηs .

4. There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y �
eln(D)ea−ηs

∣∣f (s,ω, y, z)
∣∣ � αs + ψs

2
|z|2 and

∣∣g(s,ω, y)
∣∣ � βs.

Then the GRBSDE (10) has a solution such that Lt � Yt � eln(D)ea−ηt .

Corollary 5.3. Suppose that there exist two real nonnegative numbers D and a such that

1. ξ � D and Lt � D, ∀t ∈ [0, T ].
2. ess supw(

∫ T

0 αs ds + ∫ T

0 βs dAs) � a < e−D .

3. For all (s,ω) ∈ [0, T ] × Ω
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f
(
s,ω,− ln

(
e−D − a + ηs

)
,0

)
� αs

e−D − a + ηs

,

g
(
s,ω,− ln

(
e−D − a + ηs

))
� βs

e−D − a + ηs

.

4. There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds+∫ T

0 βs dAs <

+∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � − ln(e−D − a + ηs)∣∣f (s,ω, y, z)
∣∣ � αs + ψs

2
|z|2 and

∣∣g(s,ω, y)
∣∣ � βs.

Then the GRBSDE (10) has a solution such that Lt � Yt � − ln(e−D − a + ηt ).

5.2. GBSDE without reflection

In this subsection, we consider the same notations as in Section 4.2 and we treat only the
existence of solution in the case of bounded terminal value ξ . The unbounded case is treated in
the next sections. The following result is a consequence of Theorem 4.2.

Corollary 5.4. Suppose that there exist four real numbers D1 � 0,D2 � 0, a1 and a2 such that

(i) −D1 � ξ � D2.
(ii) For i = 1,2, φi(y) > 0 for y � Di .

(iii) For i = 1,2, ess supw

∫ T

0 αi
s ds + ∫ T

0 βi
s dAs � ai <

∫ +∞
Di

dr
φi (r)

.
(iv) For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω,

(
H 2)−1(

a2 − η2
s

)
,0

)
� α2

s φ
2((H 2)−1(

a2 − η2
s

))
,

f
(
s,ω,−(

H 1)−1(
a1 − η1

s

)
,0

)
� −α1

s φ
1((H 1)−1(

a1 − η1
s

))
,

g
(
s,ω,

(
H 2)−1(

a2 − η2
s

))
� β2

s φ
((

H 2)−1(
a2 − η2

s

))
,

g
(
s,ω,−(

H 1)−1(
a1 − η1

s

))
� −β1

s φ
((

H 1)−1(
a1 − η1

s

))
,

where, for i = 1,2, Hi(x) = ∫ x

Di
dr

φi (r)
, x � Di and ηi

t = ∫ t

0 αi
s ds + ∫ t

0 βi
s dAs .

(v) There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds+∫ T

0 βs dAs <

+∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying−(H 1)−1(a1 − η1
s ) � y �

(H 2)−1(a2 − η2
s )

∣∣f (s,ω, y, z)
∣∣ � αs + ψs

2
|z|2,∣∣g(s,ω, y)

∣∣ � βs.

Then the GBSDE (14) has a solution such that −(H 1)−1(a1 − η1
s ) � Ys � (H 2)−1(a2 − η2

s ).

The following corollaries, with φ1(x) = φ2(x) = x ln(x) and φ1(x) = φ2(x) = ex , assure the
existence of a solution for the GRBSDE (10). Their proofs follow from Corollary 5.4.
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Corollary 5.5. Suppose that there exist two real numbers D > 1 and a such that

(i) |ξ | � D.
(ii) ess supw

(∫ T

0 αs ds + ∫ T

0 βs dAs

)
� a < +∞.

(iii) For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω, eln(D)ea−ηs

,0
)
� αs ln(D)eln(D)ea−ηs

ea−ηs ,

f
(
s,ω,−eln(D)ea−ηs

,0
)
� −αs ln(D)eln(D)ea−ηs

ea−ηs ,

g
(
s,ω, eln(D)ea−ηs ) � βs ln(D)eln(D)ea−ηs

ea−ηs ,

g
(
s,ω,−eln(D)ea−ηs ) � −βs ln(D)eln(D)ea−ηs

ea−ηs ,

where ηt = ∫ t

0 αs ds + ∫ t

0 βs dAs .

(iv) There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying |y| �
eln(D)ea−ηs

∣∣f (s,ω, y, z)
∣∣ � αs + ψs

2
|z|2,∣∣g(s,ω, y)

∣∣ � βs.

Then the GBSDE (14) has a solution such that |Yt | � eln(D)ea−ηt .

Corollary 5.6. Suppose that there exist two real numbers D � 0 and a such that

(i) ess supw |ξ | � D.

(ii) ess supw

(∫ T

0 αs ds + ∫ T

0 βs dAs

)
� a < e−D .

(iii) For all (s,ω) ∈ [0, T ] × Ω

f
(
s,ω,− ln

(
e−D − a + ηs

)
,0

)
� αs

e−D − a + ηs

,

f
(
s,ω, ln

(
e−D − a + ηs

)
,0

)
� −αs

e−D − a + ηs

,

g
(
s,ω,− ln

(
e−D − a + ηs

))
� βs

e−D − a + ηs

,

g
(
s,ω, ln

(
e−D − a + ηs

))
� −βs

e−D − a + ηs

,

where ηt = ∫ t

0 αs ds + ∫ t

0 βs dAs .
(iv) ∀(s,ω) and ∀(y, z) satisfying |y| � − ln(e−D − a + ηs)∣∣f (s,ω, y, z)

∣∣ � αs + ψs

2
|z|2,∣∣g(s,ω, y)

∣∣ � βs.

Then the GBSDE (14) has a solution such that |Yt | � − ln(e−D − a + ηt ).
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Corollary 5.7. Suppose that there exists a nonnegative real number D such that

(i) |ξ | � D.
(ii) φ(x) = ex for x � D.

(iii) ess supw

(∫ T

0 αs ds + ∫ T

0 βs dAs

) := a < e−D .
(iv) ∀(s,ω) and ∀(y, z) satisfying |y| � − ln(e−D − a) we have∣∣f (s,ω, y, z)

∣∣ � αsφ
(|y|) + Cs

2
|z|2 + Rs |z|,∣∣g(s,ω, y)

∣∣ � βsφ
(|y|).

Then the GBSDE (14) has a solution such that |Yt | � − ln(e−D − a).

6. Existence of solutions for E+(Λ,φ(x)dηs + Csψ(x)
2 |z|2 ds + Rs|z|ds)

As we have seen, by using an approach based upon the recent result obtained in the preprint
of Essaky and Hassani [14], Theorems 4.1 and 4.2 follow easily from Theorem 3.1 but there is
still an interesting and important question: under which conditions on (Λ,φ,ψ,C,η), equation
E+(Λ,φ(x)dηs + Csψ(x)

2 |z|2 ds + Rs |z|ds)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j) xt = Λ +
T∫

t

φ(xs) dηs +
T∫

t

Csψ(xs)

2
|zs |2 ds +

T∫
t

Rs |zs |ds

+
T∫

t

dks −
T∫

t

zs dBs,

(jj) xs � 0, ∀s � T ,

has a solution (x, z, k) ∈ C × L2,d × K? For that sake, we list all the notations that will be used
throughout this section. We denote:

• D to be a nonnegative constant.
• Λ :Ω → [D,+∞[ to be an FT -measurable random variable.
• φ,ψ : [D,+∞[ → R+ to be two continuous functions such that φ is of class C1.
• η ∈ K to be a process such that ηT <

∫ +∞
Λ

dr
φ(r)

.
• C to be a process in R+ + K.
• R to be a nonnegative process in L2,1.

Further we define also the following functions:

• H : [D,+∞[ → [0,
∫ +∞
D

dr
φ(r)

[, H(x) = ∫ x

D
dr

φ(r)
,

• F : [D,+∞[ × [0,+∞[ → R+, F(x, c) = ∫ x

D
ec

∫ t
D ψ(r) dr dt ,

• H−1 : [0,
∫ +∞
D

dr
φ(r)

[ → [D,+∞[ is such that H−1(y) = x if and only if H(x) = y,

• F−1 : R+ × [0,+∞[ → [D,+∞[ is such that F−1(y, c) = x if and only if F(x, c) = y,
• G : G → [D,+∞[, G(x, c, η) = H−1(H(F−1(x, c)) − η), where G is the set defined by:

G = {
(x, c, η) ∈ (R+)3: H

(
F−1(x, c)

)
� η

}
. (16)



E.H. Essaky, M. Hassani / Bull. Sci. math. 135 (2011) 442–466 457
We use also the following notations:

• Λ = F(H−1(H(Λ) + ηT ),CT ),
• Π̃ := {π ∈ L2,d : |πs | � 1, a.e.},
• Π := {π ∈ Π̃ : |πs | ∈ {0,1} a.e. and ess supω

∫ T

0 R2
s |πs |2 ds < +∞},

• Γ π
t,s := e

∫ s
t Ruπu dBu− 1

2

∫ s
t R2

u|πu|2 du, for π ∈ Π̃ and s, t ∈ [0, T ].

We are now ready to give necessary and sufficient conditions for the existence of a solution for a
particular case of E+(Λ,φ(x)dηs + Csψ(x)

2 |z|2 ds + Rs |z|ds).

Proposition 6.1. supπ∈Π EΓ π
0,T Λ < +∞ if and only if there exists (x1, z1) ∈ C × L2,d solution

of the following BSDE⎧⎪⎪⎨⎪⎪⎩
x1
t = Λ +

T∫
t

Rs

∣∣z1
s

∣∣ds −
T∫

t

z1
s dBs, t � T ,

x1
t � 0, ∀t � T .

(17)

In this case, there exist z ∈ L2,d and xt := ess supπ∈ΠE(Γ π
t,T Λ|Ft ) = ess supπ∈Π̃E(Γ π

t,T Λ|Ft )

such that (x, z) is the minimal solution of Eq. (17), that is for all solutions (x1, z1) of Eq. (17)
we have xt � x1

t .

Proof. Let (τn)n�2 be the sequence of stopping times defined by τn := inf{t � 0:
∫ t

0 R2
s ds �

n} ∧ T . According to Theorem 4.2, there exists (xn, zn) ∈ C × L2,d such that⎧⎪⎪⎨⎪⎪⎩
xn
t = Λ1{Λ�n} +

T∫
t

Rs1{s�τn}
∣∣zn

s

∣∣ds −
T∫

t

zn
s dBs, t � T ,

0 � xn
t � n, ∀t ∈ [0, T ].

(18)

By using a localization procedure and Lebesgue’s convergence theorem we have that, for all
stopping times ν and n � 2,

xn
0 = E

(
xn
ν +

ν∫
0

Rs1{s�τn}
∣∣zn

s

∣∣ds

)
. (19)

On the other hand, it follows from Itô’s formula that, for all stopping times ν � σ � T ,⎧⎪⎪⎨⎪⎪⎩
xn
ν = Γ πn

ν,σ xn
σ −

σ∫
ν

Γ πn

ν,s

(
zn
s + Rsx

n
s πn

s

)
dBs, t � T ,

0 � xn
ν � n,

where

πn
s :=

{
zn
s|zn
s |1{s�τn} if zn

s �= 0,

0 elsewhere.
Using standard localization procedure and Lebesgue’s convergence theorem we obtain that, for
all stopping times ν � σ � T and for all n � 2,
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xn
ν = E

(
Γ πn

ν,σ xn
σ

∣∣Fν

) = E
(
Γ πn

ν,T xn
σ

∣∣Fν

) = E
(
Γ πn

ν,T Λ1{Λ�n}
∣∣Fν

)
� ess sup

π∈Π

E
(
Γ π

ν,T Λ
∣∣Fν

)
, (20)

where we have used the fact that Γ πn

ν,. is a martingale on [ν,T ].
It follows from comparison theorem that xn � xn+1. Set then xt := limn→+∞ ↑ xn

t . There-
fore, in view of (19) and (20) we get for all stopping times 0 � ν � T ,

Exν � x0 � sup
π∈Π

E
(
Γ π

0,T Λ
)

and xν � ess sup
π∈Π

E
(
Γ π

ν,T Λ
∣∣Fν

)
. (21)

Let us now define the sequences of stopping times (δn
i )i�2 by δn

i := inf{s � 0: xn
s � i} ∧ T and

δi := infn δn
i = limn δn

i . Note that 0 � xt = limn xn
t � i, for all t � δi .

Define also λi := δi ∧ τi and let⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi

t = xλi
+

λi∫
t

Rs

∣∣zi
s

∣∣ds −
λi∫

t

zi
s dBs,

0 � xi
t � i, ∀t ∈ [0, λi].

(22)

Applying Itô’s formula to (xi
t − xn

t )2e
∫ t

0 R2
s ds and using a localization procedure, we conclude

that

E
(
xi

t∧λi
− xn

t∧λi

)2 � ei
E

(
xλi

− xn
λi

)2
, ∀n � i.

By letting n go to infinity we get xi
t∧λi

= xt∧λi
and then zi = zi+1 on [0, λi]. Set zs :=

limi z
i
s1{s�λi } = z

j
s on [0, λj ]. Hence, for all i � 2⎧⎪⎪⎨⎪⎪⎩xt = xλi
+

λi∫
t

Rs |zs |ds −
λi∫

t

zs dBs,

0 � xt � i, ∀t ∈ [0, λi].
Suppose now that supπ∈Π E(Γ π

0,T Λ) < +∞. Since lim infn xn
δn
i
1{δi<T } = i1{δi<T } we have

iP (δi < T ) � E(lim infn xn
δn
i
) � lim infn E(xn

δn
i
) � supπ∈Π E(Γ π

0,T Λ) < +∞. Therefore

P(
⋃

i�2(δi = T )) = 1, and then P(
⋃

i�2 (λi = T )) = 1. Moreover, it is easy seen that z ∈ L2,d .
Now passing to the limit as i goes to infinity in Eq. (22) we obtain⎧⎪⎪⎨⎪⎪⎩xt = Λ +

T∫
t

Rs |zs |ds −
T∫

t

zs dBs, t � T ,

0 � xt , ∀t ∈ [0, T ].
Henceforth (x, z) is a solution of Eq. (17) which satisfies xν � ess supπ∈Π E(Γ π

ν,T Λ|Fν), for all
stopping times 0 � ν � T .

On the other hand, let (x1, z1) ∈ C × L2,d be a solution of Eq. (17) and consider for all π ∈ Π̃ ,
(xπ , zπ ) ∈ C × L2,d a solution of the following BSDE⎧⎪⎪⎨⎪⎪⎩

xπ
t = Λ +

T∫
t

Rs

〈
πs, z

π
s

〉
ds −

T∫
t

zπ
s dBs, t � T ,

π 1
0 � xt � xt , ∀t ∈ [0, T ],
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which exists according to Theorem 4.2. It follows then from Itô’s formula that, for all stopping
times ν � σ � T ,⎧⎪⎪⎨⎪⎪⎩

xπ
ν = Γ π

ν,σ xπ
σ −

σ∫
ν

Γ π
ν,s

(
zπ
s + Rsx

π
s πs

)
dBs, t � T ,

0 � xπ
ν � x1

ν .

Consequently, for all stopping times ν � T , we have by Fatou’s lemma and standard localization
procedure

xπ
ν � E

(
Γ π

ν,T Λ
∣∣Fν

)
.

Hence, for all stopping times ν � T ,

x1
ν � ess sup

π∈Π̃

E
(
Γ π

ν,T Λ
∣∣Fν

)
. (23)

Hence supπ∈Π E(Γ π
0,T Λ) � x1

0 < +∞.
By using inequalities (22) and (23) we get for all stopping times ν � T ,

xν = ess sup
π∈Π

E
(
Γ π

ν,T Λ
∣∣Fν

) = ess sup
π∈Π̃

E
(
Γ π

ν,T Λ
∣∣Fν

)
.

This completes the proof. �
The following remark plays a crucial role in our results.

Remark 6.1. Let (x1, z1) ∈ C × L2,d be a solution of Eq. (17).

1. By using Fatou’s lemma, one can see that x1 satisfies the following inequality

x1
t � E(Λ|Ft ) = E

(
F

(
H−1(H(Λ) + ηT

)
,CT

)∣∣Ft

)
� F

(
H−1(ηt ),Ct

)
� 0,

∀t ∈ [0, T ].
This means that (x1

t ,Ct , ηt ) ∈ G , for all (t,ω) ∈ [0, T ] × Ω , where G is defined by (16).
2. For all t ∈ [0, T ], let us set

xt := G
(
x1
t ,Ct , ηt

)
. (24)

It is easy to see that

(a)
∂G

∂x
(x, c, η) = φ(G(x, c, η))e−c

∫ F−1(x,c)
D ψ(r) dr

φ(F−1(x, c))
,

(b)
∂2G

∂x2
(x, c, η) = ( ∂G

∂x
(x, c, η))2

φ(G(x, c, η))

[
φ′(G(x, c, η)

) − φ′(F−1(x, c)
)

− cφ
(
F−1(x, c)

)
ψ

(
F−1(x, c)

)]
,

(c)
∂G

∂c
(x, c, η) = −∂G

∂x
(x, c, η)

F−1(x,c)∫
D

ec
∫ t
D ψ(r) dr

t∫
D

ψ(r) dr dt,

(d)
∂G

(x, c, η) = −φ
(
G(x, c, η)

)
.

∂η
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Therefore, by using Itô’s formula, one can see that x satisfies the following BSDE

xt = Λ +
T∫

t

φ(xs) dηs +
T∫

t

Csψ(xs)

2
|zs |2 ds +

T∫
t

Rs |zs |ds

+
T∫

t

dks −
T∫

t

zs dBs, (25)

where (z, k) is given by:

zs = φ(xs)e
−Cs

∫ F−1(x1
s ,Cs )

0 ψ(r) dr

φ(F−1(x1
s ,Cs))

z1
s , (26)

dks = −∂G

∂c

(
x1
s ,Cs, ηs

)
dCs + 1

2

φ(G(x1
s ,Cs, ηs))e

−2Cs

∫ F−1(x1
s ,Cs )

0 ψ(r) dr

(φ(F−1(x1
s ,Cs)))2

∣∣z1
s

∣∣2
Ms ds

(27)

with

Ms = ϕ
(
F−1(x1

s ,Cs

)
,Cs

) − ϕ
(
G

(
x1
s ,Cs, ηs

)
,Cs

)
and

ϕ(x, c) = φ′(x) + cφ(x)ψ(x). (28)

We can now formulate our main results of this section.

6.1. Main results

The following results give sufficient conditions for the solvability of E+(Λ,φ(x)dηs +
Csψ(x)

2 |z|2 ds + Rs |z|ds). Their proofs follow easily by using Remark 6.1.

Theorem 6.1. Suppose that the following conditions hold:

1. supπ∈Π EΓ π
0,T Λ < +∞.

2. There exists a solution (x1, z1) to Eq. (17) such that, dk defined by (27), is a positive mea-
sure.

Then equation E+(Λ,φ(x)dηs + Csψ(x)
2 |z|2 ds +Rs |z|ds) has a solution (x, z, k) given by (24),

(26) and (27).

In particular, since − ∂G
∂c

(x1
s ,Cs, ηs) dCs is a positive measure, we have the following corol-

lary.

Corollary 6.1. Assume that

1. supπ∈Π EΓ π
0,T Λ < +∞.

2. There exists a solution (x1, z1) to Eq. (17) such that the process M , defined by (28), is
positive.
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Then equation E+(Λ,φ(x)dηs + Csψ(x)
2 |z|2 ds +Rs |z|ds) has a solution (x, z, k) given by (24),

(26) and (27).

An interesting corollary of Theorem 6.1 is the following.

Corollary 6.2. Suppose that the following assumptions hold:

1. supπ∈Π EΓ π
0,T Λ < +∞.

2. The function x �→ ϕ(x,Cs(ω)), given by (28), is nondecreasing on [D,+∞[ds dP a.e. for
(s,ω).

Then equation E+(Λ,φ(x)dηs + Csψ(x)
2 |z|2 ds +Rs |z|ds) has a solution (x, z, k) given by (24),

(26) and (27).

Remark 6.2. It follows from Hölder’s inequality that, for all stopping times ν � T ,

ess sup
π∈Π

E
(
Γ π

ν,T Λ
∣∣Fν

)
� �ν,

where

�ν := ess sup
n

ess inf
q>1

(
E

(
e

q
2(q−1)

∫ T
ν R2

s ds
(Λ)q1{Λ+∫ T

0 R2
s ds�n}

∣∣Fν

)) 1
q .

Indeed, for all π ∈ Π , n ∈ N and q > 1, we have

E
(
Γ π

ν,T Λ1{Λ+∫ T
0 R2

s ds�n}
∣∣Fν

)
�

(
E

(
e

∫ T
ν

q
q−1 Ruπu dBu− 1

2

∫ T
ν

q2

(q−1)2
R2

u|πu|2 du∣∣Fν

)) q−1
q

× (
E

(
e

q
2(q−1)

∫ T
ν R2

s ds
(Λ)q1{Λ+∫ T

0 R2
s ds�n}

∣∣Fν

)) 1
q

�
(
E

(
e

q
2(q−1)

∫ T
ν R2

s ds
(Λ)q1{Λ+∫ T

0 R2
s ds�n}

∣∣Fν

)) 1
q .

Hence �0 < +∞ is a sufficient condition to have supπ∈Π EΓ π
0,T Λ < +∞.

Remark 6.3. By taking into account the results of Corollary 6.2 and Remark 6.2, assumptions 1
and 2 of Theorem 6.1 can be replaced by the following strong assumptions:

1. �0 < +∞.
2. The function x �→ ϕ(x,Cs(ω)), given by (28), is nondecreasing on [D,+∞[ds dP a.e. for

(s,ω).

In order to justify the assumptions we introduce to prove the existence of solutions for both
one barrier GBSDE and GBSDE we give the following consequences.

6.2. Second consequences of Theorems 4.1 and 4.2: the unbounded case

In this subsection, we apply the results from the above sections to study the problem of ex-
istence of solutions to the GRBSDE (10) and GBSDE (14). We give various existence results
dealing with the case of unbounded terminal condition ξ and unbounded barrier L.
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6.2.1. One barrier GBSDE
The following corollary follows from Theorems 4.1 and 6.1.

Corollary 6.3. Suppose that the following assumptions hold:

1. supπ∈Π EΓ π
0,T Λ < +∞.

2. There exists a solution (x1, z1) to Eq. (17) such that dk, defined by (27), is a positive mea-
sure.

3. ξ ∨ supt�T Lt � Λ.
4. For all (s,ω) ∈ [0, T ] × Ω

f (s,ω,xs, zs) � αsφ(xs) + Csψ(xs)

2
|zs |2 + Rs |zs |,

g(s,ω, xs) � βsφ(xs).

5. There exist two nonnegative predictable processes α and β such that
∫ T

0 αs ds+∫ T

0 βs dAs <

+∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � xs∣∣f (s,ω, y, z)
∣∣ � αs + ψs

2
|z|2 and

∣∣g(s,ω, y)
∣∣ � βs,

where xt and zt are given respectively by relations (24) and (26).

Then the GRBSDE (10) has a solution such that Lt � Yt � xt .

The following corollaries are direct and interesting applications of Corollaries 6.2–6.3 and
Remark 6.3, since all the required assumptions are obviously satisfied.

Corollary 6.4. Suppose that there exists nonnegative real number D such that:

(i) R = 0, φ(x) = x on [D,+∞[, ψ(x) = 1 on [D,+∞[ and C ∈ R+ + K.

(ii) EΛ < +∞, where Λ = eCT (ΛeηT −D)−1
CT

1{CT >0} + (ΛeηT − D)1{CT =0} and Λ = ξ ∨
supt�T Lt ∨ D.

(iii) There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � xs

−αs − ψs

2
|z|2 � f (s, y, z) � αsφ

(|y|) + Csψ(|y|)
2

|z|2,
−βs � g(s,ω, y) � βsφ

(|y|),
where

xs = G
(
E(Λ|Fs),Cs, ηs

)
= e−ηs

[
D + ln(1 + CsE(Λ|Fs))

Cs

1{Cs>0} + E(Λ|Fs)1{Cs=0}
]
.

Then the GRBSDE (10) has a solution such that Lt � Yt � xt .
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Corollary 6.5. Suppose that there exist two real numbers D > 1 and m > 0 such that:

(i) R = 0, φ(x) = x ln(x) on [D,+∞[, ψ(x) = 1 on [D,+∞[ and Cs = m, ∀s ∈ [0, T ].
(ii) Eemeln(Λ)eηT

< +∞, where Λ = ξ ∨ supt�T Lt ∨ D and ηt := ∫ t

0 αs ds + ∫ t

0 βs dAs .

(iii) There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � xs

−αs − ψs

2
|z|2 � f (s, y, z) � αsφ

(|y|) + mψ(|y|)
2

|z|2,
−βs � g(s,ω, y) � αsφ

(|y|),
where xs = G(E(em ln(Λ)eηT − 1

m
|Fs),Cs = m,ηs) = ee−ηs ln[D+ 1

m
ln(E(emeln(Λ)eηT |Fs ))].

Then the GRBSDE (10) has a solution such that Lt � Yt � xt .

Corollary 6.6. Suppose that there exist two positive real numbers D and m such that:

(i) R = 0, φ(x) = x on [D,+∞[, ψ(x) = x on [D,+∞[ and Cs = m, ∀s ∈ [0, T ].
(ii) E(

∫ ΛeηT

0 e
m
2 t2

dt) < +∞, where Λ = ξ ∨ supt�T Lt ∨ D.

(iii) There exist two nonnegative predictable processes α and β satisfying
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � xs ,

−αs − ψs

2
|z|2 � f (s, y, z) � αsφ

(|y|) + mψ(|y|)
2

|z|2,
−βs � g(s,ω, y) � βsφ

(|y|),
where xs = e−ηs F−1

0 (E(F0(ΛeηT )|Ft )) where the function F0 is defined by: F0(x) =∫ x

D
e

m
2 (t2−D2) dt and F−1

0 its inverse.

Then the GRBSDE (10) has a solution such that Lt � Yt � xt .

Corollary 6.7. Suppose that there exist two positive real numbers D and m such that:

(i) φ(x) = x on [D,+∞[, ψ(x) = 0 on [D,+∞[, R ∈ L2,1 and C ∈ R+ + K.

(ii) There exists q > 1 such that E(e
q

2(q−1)

∫ T
0 R2

s ds
(ΛeηT − D)q) < +∞ where Λ = ξ ∨

supt�T Lt ∨ D.

(iii) There exist two nonnegative predictable processes α and β such that
∫ T

0 αs ds +∫ T

0 βs dAs < +∞ P -a.s., and ψ ∈ C such that ∀(s,ω) and ∀(y, z) satisfying Ls � y � xs

−αs − ψs

2
|z|2 � f (s,ω, y, z) � αsφ

(|y|) + Csψ(|y|)
2

|z|2 + Rs |z|,
−βs � g(s,ω, y) � βsφ

(|y|),
where xs = ess supπ∈Π(e−ηs (E(Γ π

s,T ΛeηT |Fs))).

Then the GRBSDE (10) has a solution such that Lt � Yt � xt .
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6.2.2. GBSDE without reflection
By combining Theorems 4.2 and 6.1 we obtain the following.

Corollary 6.8. Assume that the following hold:

1. supπ∈Π EΓ π
0,T Λ < +∞.

2. There exists a solution (x1, z1) to Eq. (17) such that dk, defined by (27), is a positive mea-
sure.

3. |ξ | � Λ.
4. ∀(s,ω) and ∀(y, z) satisfying |y| � xs∣∣f (s,ω, y, z)

∣∣ � αsφ
(|y|) + ψ(|y|)

2
|z|2 + Rs |z|,∣∣g(s,ω, y)

∣∣ � βsφ
(|y|),

where xs is given by (24).

Then the GRBSDE (14) has a solution such that |Yt | � xt .

Corollary 6.9. Suppose that there exists nonnegative real number D such that:

(i) R = 0, φ(x) = x on [D,+∞[, ψ(x) = 1 on [D,+∞[ and C ∈ R+ + K.

(ii) EΛ < +∞, where Λ = eCT (ΛeηT −D)−1
CT

1{CT >0} + (ΛeηT − D)1{CT =0} and Λ = |ξ | ∨ D.
(iii) ∀(s,ω) and ∀(y, z) satisfying |y| � xs∣∣f (s, y, z)

∣∣ � αsφ
(|y|) + Csψ(|y|)

2
|z|2,∣∣g(s,ω, y)

∣∣ � βsφ
(|y|),

where

xs = G
(
E(Λ|Fs),Cs, ηs

)
= e−ηs

[
D + ln(1 + CsE(Λ|Fs))

Cs

1{Cs>0} + E(Λ|Fs)1{Cs=0}
]
.

Then the GRBSDE (14) has a solution such that |Yt | � xt .

The following remark gives a sufficient condition for the existence of solution for the BSDE
(14) when f (s, y, z) = γs

2 |z|2 and g(s, y) = 0.

Remark 6.4. Let γ be a nonnegative process which is Ft -adapted and Ct = sup0�s�t γs, ∀t ∈
[0, T ]. We consider the following BSDE

Yt = ξ +
T∫

t

γs

2
|Zs |2 ds −

T∫
t

Zs dBs. (29)

It follows from Corollary 6.9 that if

E

[
eCT |ξ | − 1

1{CT >0} + |ξ |1{CT =0}
]

< +∞,

CT
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then the BSDE (29) has a solution satisfying

|Yt | � ln(1 + CtE(Λ|Ft ))

Ct

1{Ct>0} + E(Λ|Ft )1{Ct=0},

where Λ = eCT |ξ |−1
CT

1{CT >0} + |ξ |1{CT =0}.
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