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A b s t r a c t - - T w o  highly stable explicit three-point three-level finite difference methods for the one- 
dimenaionnl constant-coefflclent advection-ditfusion equation are described. These are developed 
using differencing on a (1,3,1) computational stencil. One is conditionally stable with second-order 
accuracy, the other is conditionally stable with third-order accuracy. Both are free of numerical 
~ o n .  The two methods are compared, theoretically and by mMn,~  of numerical experlnaents, 
with the leapfrog/Du Fort-F~rankpl (1,2,1) explicit method, the only three-level method currently 
employed to solve this equation. The former are generally found to be more accurate than the latter. 

INTRO DUC T ION 

The one-dimensional advection-diffusion equation, used to describe the transport of passive 
scalars in a moving fluid, may be scaled and written in the form 

.~+u-~-~z-a-~-~x2=O , 0 < z < l ,  0 < t < T ,  (I) 

where ~(z, t) may represent, for example, a pollutant concentration at position x and time t. 
In the following, u and a are considered to be positive constants quantifying the advection and 
diffusion processes, respectively. 

Equation (1) has been used to describe transport in studies of: thermal pollution in river 
systems [1]; dispersion of dissolved salts in groundwater [2]; flow in porous media [3]; adsorption 
of chemicals into beds [4]; and dispersion of contaminants in estuaries and coastal seas [5]. 

The solution domain of the problem is covered by a mesh of grid-lines t = n At, n = 0, 1, ..., N, 
and z - j Ax, j = 0, I,..., J, parallel to the space and time coordinate axes, respectively. 
Approximations r~ to ~(j Az, n At) are calculated at the point of intersection of these lines, 
namely, (j Ax,n At) which is referred to as the (j,n) grid-point. The constant spatial and 
temporal bqrid-spacings are Az = 1/J and At = T/N, respectively. The approximation to the 
derivative @'~0Az,nA:) @'r n o=P is denoted ~ j .  

A finite difference method (FDM) is termed a "p-level method" if the corresponding finite 
difference equation (FDE) involves grid-points at the p time-levels (n % 1), n, . . . ,  (n - p + 2). A 
FDM is termed a "(k,l,m) method" if the FDE for the method involves k, I and m grid-points at 
the (n + 1), n and (n - 1) time-levels, respectively. A FDM is also termed a "q-point method" 
if the FDE has a computational stencil which has a spatial "spread" of q grid-points. 

EQUIVALENT AND MODIFIED EQUIVALENT PDES 

Consider the FDE 

= o, (2) 

"I~pe, et by .4A, tS- ' I~ 
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which is consistent with the given partial differential equation (PDE) (1). The coefficients of the 
terms in the FDE (2) are functions of the Courant and diffusion numbers 

u ( a t )  ,~ ( a t )  
c = s = ~ (3) 

respectively. Expanding each term of the FDE (2) in Taylor series about the (j, n) grid-point 
yields the equivalent partial differential equation (EPDE) 

Or Or 02r 
O"-t" + u ~z  - a ~ + E = 0, (4) 

in which 
co p 0p r 

p=2 q=O 

The leading terms in E (called the truncation error of the FDE (2) relative to the PDE (1)) 
contain derivatives with respect to both space and time, and the magnitude of these terms in- 
dicate the order of accuracy of the resulting FDM. However, errors introduced through spatial 
discretization may cancel with errors introduced through temporal discretization. This is ac- 
counted for by considering the modified equivalent partial differential equation (MEPDE), found 
by converting all time derivatives in (5) into derivatives with respect to space [6]. An efficient 
computational procedure for achieving this is described in [7]. 

In this way it is found that all FDEs which are consistent with the PDE (1) have MEPDEs of 
the form (4), in which the truncation error E may be re-written 

co 
E = u E (Az)P-I 0Pr p! . p ( c , s ) 0 x . .  (6) 

p=2 

A FDE (2) approximating the PDE (1) is termed "rth-order accurate" if T}p(c, 8) ---- 0, for 
p = 2 , 3 , . . . , r  and l}r+l(c,s) ¢ 0 in the corresponding MEPDE (4), (6). If ~(c,8) ~ O, the 
diffusion coefficient associated with the FDE is not a (as required for the correct solution of the 
PDE (1)) and the method is first-order accurate. Such a FDM is said to introduce numerical 
diffusion into the solution of the PDE (1). 

C O N V E R G E N C E ,  CONSISTENCY,  STABILITY AND NON-NEGATIVITY 

A FDM which approximates a given PDE is said to be convergent if, at each point in the solution 
domain, the finite difference solution approaches the exact solution in the limit as Ax, At ~ 0. 
By the Lax equivalence theorem [8] a FDE which is consistent, in this limit, with a linear PDE 
involved in a well posed initial boundary value problem is convergent if and only if the FDE 
remains stable in the same limit. The yon Neumann method of analysis [9] determines stability 
of a FDE governing transport of a scalar in just such a limit, whereas the frequently used matrix 
stability analysis [10] is based on a fixed temporal grid-spacing with the number of time itera- 
tions, N, tending to infinity. In order to use the equivalence theorem to ensure convergence, the 
former stability analysis is chosen. 

Von Neumann stability analysis is based on the condition 

IG(c,8,g~)l < I + O{At}, # ~ _ > 2 ,  (~) 

where Nx is the number of grid-spacings, Az, in the wavelength, A, of a component wave of ~(z, 0). 
The function G, the so called yon Neumann amplification factor, is obtained by means of the 
substitution 

~? = (a)"  exp i \ Nx ) ' i = v ~ ,  (8) 
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into the FDE (2). The FDM is stable if all the roots of the resulting polynomial in G are such 
that IG(c,s,~)l _< 1 for all/~ E [0,2~r], where ~ = 2r/N;~. Criteria on the coefficients of the 
polynomial for this to be true are given in [11]. 

It is sometimes important that the numerical solution of a PDE and its associated initial 
and boundary conditions reflects a particular property of the exact solution of the system. For 
instance, when the PDE (1) is used to predict the spread of pollutants, it is essential for the 
predicted values to be either positive or zero--negative concentrations have no physical meaning. 
Clearly, an explicit FDE approximating a PDE with non-negative initial and boundary conditions 
will produce non-negative values if all the coefficients on the right-hand side of the explicit 
equation are themselves non-negative [12]. In the following, the region in the first quadrant of 
the c-s plane in which FDMs are non-negative, as well as von Neumann stable, will be determined. 

WAVE P R O P A G A T I O N  C H A R A C T E R I S T I C S  

As a means of estimating the accuracy of a FDM, an investigation of the changes to the ampli- 
tude and wave speed of an initial infinite travelling wave of unit amplitude which is propagating 
according to the PDE (1) is made. The amplitude response ~, which is the ratio of the numerical 
amplitude aN to the true amplitude aT, after the wave has travelled one wavelength, together 
with the relative wave speed p, which is the ratio of the numerical wave speed UN to the true 
wave speed u, are parameters which indicate the accuracy of the FDE (2). 

The coefficients of the truncation error terms of the MEPDE corresponding to a FDE are 
related to ~ and p as follows [13]. The amplitude response ~ = aN~aT, given in terms of G, is 

¢(c,s, NA) = [G(c,s,N )l exp [ 4 '2s 
L 

(9) 

while in terms of the T/p(c, s) functions in the MEPDE (4), (6), it is given by 

I oo (_1),.+i/2~.\2r-i } 
¢(c,s,  l=exp (2r)   2r(c,s) . 

~, r = l  

(10) 

The relative wave speed ~ = UN/U, given in terms of G, is 

NA arg {G(c, s, N~)}, (11) ~(c, s, N~) = - 2~--~ 

while in terms of the ~}p(c,s) functions in the MEPDE (4), (6), it is given by 

,7,,+1(c, s1, (12) 

in which arg is the argument of the complex variable. From Equations (I0) and (12), it is 
clear that the error in modelling wave amplitude is associated with even-order derivatives in the 
MEPDE, and that the error in modelling wave speed is associated with odd-order derivatives. 
Note that Equations (10) and (12) only hold for large NA--clearly ~ --+ i and ~ --* 1 as NA --+ oo. 
In particular, ( and p approach unity faster for high-order than for low-order methods. 

In obtaining the wave propagation graphs for each method considered, values of the amplitude 
response and relative wave speed for the FDM under discussion were obtained by application of 
Equations (9) and (11), respectively. Once these were obtained, the value of NI, the greatest 
number of grid-spacings per wavelength below which there was an error of more than 1% in the 
respective wave propagation parameter ~ or ~u, was obtained and graphs of NI against s for values 
of c within the appropriate stability region were then plotted. 
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A WEIGHTED (1,3,1) METHOD 

On a spatially centred (1,3,1) computational stencil a combination of backward time (BT), 
forward time (FT) and centred time (CT) approximations may be used for the temporal derivative 
in the PDE (1). There are also three possible and similarly denoted standard approximations 
for the first spatial derivative, namely BS, FS and CS. Only two of the three approximations in 
time or space need to be used to discretize a given derivative however, since the third is a linear 
combination of the other two. 

Using weights # and ¢ in the following manner, 

Ot j ~ O x [BT] + (1 - 0) x [CT], Oz j ~ ~b x [BS] + (1 - ~b) x [CS], (13) 

for the first-order derivatives and the standard CS approximation for the second spatial derivative 
in the PDE (1), yields the FDE 

i [{2sq-c(1-l-¢)}r;_1-2{2sq-c¢+O}v~-b{28-e(1-¢)}r~+lq-{l+O}r'~-l], (14) 
 7+I - [1 - 0] 

which has a MEPDE of the general form (4), (6), with 

W2(c, s) = - ( ¢  + 0c), 0s(c,  s) = 1 - c 2 + 30 (2s + c (¢  + 0c)),  . . . .  (15) 

THE L E A P F R O G / D U  FORT-FRANKEL (1,2,1) METHOD 

The leapfrog/Du Fort-Frankel [14] spatially centred (1,2,1) explicit FDE 

1 [{c q- 28}Tf_ 1 - {c - 28}Tf% 1 -I- {1 - 28}Tf-1], (16) "rJn+l -- [1 + 2s] 

may be obtained by substituting 
0 = - 2 8 ,  ¢ = 0 ,  (17) 

into the FDE (14). Equation (16) is von Neumann stable in the region [15] 

0 < c < l ,  s > 0 ,  (18) 

shown horizontally shaded in Figure 1. 

1.0 

. 

0 0.5 1 .0 

Co~antNumb~ 

Figure I. Reg/ons of yon Neumann stability (horizontally shaded) and non-negafivRy 
(vertically shaded) in the c-s plane for the first-order leapfrog/Du Fort-Frankel (1,2,1) 
FDE (16). 
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Approximations to the PDE (1) with non-negative initial and boundary conditions produced 
by the FDE (16) are guaranteed to be non-negative in the region defined by Equation (18) and 

c 1 
~ < s  < 2' (19) 

shown vertically shaded in Figure 1. 
This FDM has a MEPDE of the general form (4), (6), with 

r}2(c,s) = 2cs, ~(c,s)= (l-c2)(1-12s2),..., (20) 

indicating that the diffusion coefficient associated with this FDM is a (1 - c2), and that the 
method is first-order accurate and introduces numerical anti-diffusion for all c and s given by 
Equation (18). 

Substituting Equation (20) into Equation (i0), it is seen that for fixed positive c and s, 

(:(c, s, Nx) --~ 1(+), as Nx --~ oo. (21) 

This implies that the component waves in the initial condition are propagated by the FDE (16) 
with an amplitude which is larger than when they are propagated by the PDE (1). 

By substitution of Equation (20) into Equation (12), it is also seen that 

/J(c, s, Nx) ~ 1(4-), for 0 < c < i and s ~ 1 / x / ~ ,  as Nx ---, oo, (22) 

and that  for e = 1 or s = 1/V/~,  the limit is approached more rapidly than for other values of c 
and s. In the limit, for values of c and s above the dashed line in Figure 1, the wave speed is 
overestimated by this method, while for values below this line it is underestimated. 

Figure 2 shows graphs of N1 against s for both amplitude response and relative wave speed 
with various values of c. Note that  the curves for c = 0.8 and 1.0 in the wave amplitude graph 
almost coincide. In the wave speed graph, the curves for c = 0.1 and 0.2 almost coincide and 
the curve for c = 1 coincides with the s axis. These graphs indicate that  small values of c 
and /or  s result in much better approximations to the amplitude response than do large values of 
either parameter,  and that  the relative wave speed is indeed close to ideal for e near unity and 8 
near 1 / V ~  ~, 0.29. 

C = 0.100 c = 0.100 
c = 0 .200 c = 0.200 

. . . . . . . . . .  c = 0.400 . . . . . . . . . .  c = 0.400 
N~(c,s) c = 0.800 Nr :,s) c = 0.800 

c = 1.000 c = 1.000 
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Figure 2. NI (c, s) for amplitude response and relative wave speed against a with 
various e, for the first-order leapfrog/Du Fort-b'¥ankel (1,2,1) FDE (16). 
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THE OPTIMAL (1,2,1) METHOD 

A FDM with no numerical diffusion, involving grid-points on the same spatially centred (1,2,1) 
computational stencil as the leapfrog/Du Fort-Frankel (1,2,1) method can be derived in the 
following manner. Setting 

O = - ( 2 s  + c¢)  (23) 

in the FDE (14) removes the (j, n) grid-point from the set of those being considered. Setting 

¢ -- - O c  (24) 

in Equation (15) ensures the method is second-order accurate and free of numerical diffusion. 
Substitution of Equations (23), (24) into the FDE (14) yields the (1,2,1) FDE 

1 
T?q'l = [1 - c ~ + 2s] [{c (I - c ~) + 2s} Tj"_ I - {c (1 - c ~) - 2s} rfl+ I + {I - c 2 - 2s} r~-1]. (25) 

The second-order FDE (25) is yon Neumann stable in the region 

0<c_< 1, s > 0 ,  (26) 

shown horizontally shaded in Figure 3. 

1 . 0  

0 . 5  

0 0 . 5  1 .0 

Courant Number 

Figure 3. Regions of yon Neumann stability (horizontally shaded) and non-negatlvity 
(vertically shaded) in the c-s plane for the second-order optimal (1,2,1) FDE (25). 

It should be noted that on setting s = 0 in either the FDE (16) or the FDE (25), one obtains 
the leapfrog FDE for approximating the pure advection equation, and on setting c = 0 in either 
FDE, one obtains the Du Fort-Frankel FDE for approximating the pure diffusion equation. 

The region in which the FDE (25) produces only non-negative values is given by Equation (26) 
and 

C(l_c 2)<s< I ( 1 _ c  2) (27) 
- , 

shown vertically shaded in Figure 3. 
This FDM has a MEPDE of the general form (4,6) with 

,12(c, s) = 0, 
~/s(c, s) = 1 - c 2 - 12s 2 (1 - c2) -1, (28) 

I}4(c,s) = 2sc  -1 (9c 2 -  1 + 12s 2 ( 1 -  5c ~ ) ( 1 -  c 2 ) - 2 ) , . . . .  

This is the optimal (highest order) FDM for the PDE (1) based on the spatially centred (1,2,1) 
computational stencil. 
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The dominant error in the use of the FDE (25) is third-order and involves the representation 
of wave speed. Using Equations (12), (26) and (28) it can be shown that  

1 ( 1  - c ~ ) ,  a s  N , x  . . - ,  o o .  ( 2 9 )  ~,(c, ~, N ; )  - ,  1 (~ ) ,  ~or s ~ 

Hence, for large N~ and values of c and 8 above the dashed curve in Figure 3, the wave speed is 
overestimated by this method, while for values below this curve it is underestimated. 

Figure 4 shows graphs of N1 against s with various c for the wave propagation characteristics 
of this method. Note that  the curve for c = 1 coincides with the s axis in the wave speed graph. 
Local minima in N1 for amplitude response occur when (c, s) ~, (0.1,0.28), (0.2, 0.25), (0.8, 0.15) 
and (1,0). Local minima inN1 for relative wave speed occur when (c, 8) ~ (0.1, 0.29), (0.2, 0.28), 
(0.4,0.24) and (0.8,0.10), while the wave speed is ideal for c = 1, s > 0. Since the dominant 
error for this FDM is associated with wave speed, values of s close to those listed here would be 
expected to yield minimum errors in any numerical tests made with these values of c. 

NI(c,s) 
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Figure 4. N1 (c, s) for amplitude response and relative wave speed against s, with 
various c, for the second-order optimal (1,2,1) FDE (25). 

T H E  O P T I M A L  (1,3,1) M E T H O D  

Choosing 0 and ¢ to force ~/2(c, s) = T/3(c, s) - 0 in Equation (15), yields 

0 = -(i - c 2) ¢ = c(1 - c 2) (30) 

6s ' 6s ' 

which, on substitution into the FDE (14), gives the (1,3,1) FDE 

1 [ 
~7+1 - [1 - c~ + 6s] { 2 ( 1  - c ~) + 6s (2s  + c ) )  ~"-1 + 2{ (1  - :2)2 _ 128~} ~? 

+ {c2(1 - c 2) + 6s (2s - c)}  r ;+  i - {1 - c 2 - 68} r j " - i ] .  

( 3 1 )  

This is the optimal FDM for the PDE (1) based on the spatially centred (1,3,1) computational 
stencil. 

The horizontally shaded area of Figure 5 shows the von Neumann stability region for this 
method, namely 

1 
0 < c _ 1 ,  0 < s <  ~ ( 1 - c 2 ) .  (32) 
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Courant Number 
Figure 5. Regions of yon Neumann stability (horizontally shaded) and non-negativity 
(vertically shaded) in the c-s plane for the thlrd-order optimal (1~3,1) FDE (31). 

The region in which the FDE (31) produces only non-negative values is given by Equation (32) 
and 

1 
0 <  s < ~ ( 1 - c 2 ) ,  for 0 < c _ <  1, 

1 _ (33)  s >_ 3 ( 1 -  c2), for 0 < c < 1, 

s_>~-~ 3 - ~ / 3 ( 4 c  2 - 1  , for ~ < , < 1 .  

The region thus defined is shown vertically shaded in Figure 5. 
This FDM has a MEPDE of the general form (4), (6) with 

n2(c, ,) = n3(*, s) = 0, 
c (1 - c2) 2 

rh(c,s ) = lOcs  
(6s) ' (34) 

~}5(c, s)  = (1 + 6c 2) (1 - c 2) - 60s  2 - 5c2(1 - c2)s 
(36s~) ' . . . .  

The dominant error in the use of the FDE (31) is fourth-order and involves the representation 
of wave amplitude. Using Equations (10) and (34), it can be shown that, for s > 0, 

1 ( 1 - c 2 ) ,  a s N A ~ c o .  (35)  ((c, s, NA) --* 1(40, for 0 < c _< 1 and • X 

Hence, for large NA and values of c and s above the dashed curve in Figure 5, the amplitude is 
underestimated by this method, while for values below this curve it is overestimated. 

Figure 6 shows graphs of NI against s with various c for the wave propagation charac- 
teristics of this method. Local minima in N1 for amplitude response occur when (c, s) 
(0.1,0.13), (0.2,0.12), (0.4,0.11) and (0.8,0.05). Since the dominant error for this FDM is 
associated with wave amplitude, values of s close to those listed here would be expected to 
yield minimum errors in any numerical tests made with these values of c. Local minima in N1 
occur for relative wave speed when (c,s) ~, (0.1,0.04), (0.2,0.08), (0.8,0.05) and (1,0), and 
when (e, 8) ~ (0.1, 0.13) and (0.2, 0.12). 

A NUMERICAL TEST 

Equation (I) has an exact solution 

÷ ( x , 0 =  v rv exp 2( 2+2 0 J'  (36) 
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Figure 6. N1 (c, s) for amplitude response and relative wave speed against s, with 
various e, for the third-order optimal (1,3,1) FDE (31). 
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for boundary  conditions described by Equation (36) with x - 0 and 1, for t _> 0, and an initial 
condition described by Equation (36) with t = 0, for 0 < x < 1. The initial condition is a Gauss 
distribution centred at x = x0 with unit pulse height and s tandard deviation of a.  

The  FDEs (16), (25) and (31) for the leapfrog/Du Fort-Frankel (DF) (1,2,1), opt imal  (OPT)  
(1,2,1) and opt imal  (OPT)  (1,3,1) methods, respectively, were used to approximate  the PDE (1) 
with exact solution (36), using various values for e and s. 

The  parameters  used for all tests were u = 1.0, T = 1.0, z0 = -0 .5 ,  a - 0.025, A~ = 0.01 
( J  = 100). Tests were carried out for five values of the cell Reynolds number  RA = c/s ,  
namely Rzx -- 1 (a  -- 0.01), 2 (0.005), 4 (0.0025), 8 (0.00125) and 16 (0.000625). For each value 
of Rzx, four values of c were used, namely c = 0.1, 0.2, 0.4, and 0.8. For the four tests for each 
value of Rtx, s was chosen to force At = 0.001 ( g  -- 1000), 0.002 (500), 0.004 (250), 0.008 (125) 
as the value of c was increased. Equation (36) was used to produce values for the first time-level. 

The  theoretical accuracy (Order), average absolute error (Av{IErrl}) and minimum value 
of r (Min{r}) over all grid-points at the final time-level, and the central processor unit (CPU) 
t ime used, are listed in Table 1 for the parameter  values resulting in stable tests of each method.  
Entries for Min{r} which are in bold correspond to tests for which the FDE had non-negative 
coefficients. Values of magnitude < 10 -9 were considered insignificant. All computat ions were 
carried out in double precision on a Pyramid 9820 computer.  

The  results obtained show that  the first-order DF(1,2,1) method is never more accurate than 
the second-order OPT(I ,2 ,1)  method for the values of c and s used. For small values of both  
these parameters ,  the methods produced errors of similar magnitude; for example, with (e, s) = 
(0.1, 0.025), the average error is 1.79 x 10 -8 for both  methods. However, when c is large the second- 
order method produced much more accurate results than the first-order method;  for example, 
with (c, s) = (0.8, 0.1), the average error for the first-order method is 8.67 x 10 - s  while it is about  
one thirt ieth of this for the second-order method (2.61 x 10-4). 

Inspection of the table shows that  the size of the average error obtained is closely related to 
the size of the dominant error term in the MEPDE of the method used. For the second-order 
OPT(I ,2 ,1)  method,  this error is minimized by values of (c,s) on the dashed line in Figure 3. 
This corresponds to values of (c, s) at which N1 for relative wave speed is a minimum in Figure 4. 
These theoretical results are illustrated by the errors listed in Table 1. For example, when c = 0.4, 
the minimum error predicted theoretically occurs when s = 0.24 for this method; of the errors 
tabulated for this c, the smallest (1.86 x 10 -4)  occurs when s = 0.2. When c = 0.8, the smallest 
error of those listed (2.61 x 10 -4)  occurs when s = 0.1, which is as predicted theoretically. 

For all methods,  tests w i t h / ~  = 1, 2, and 4, produced no significant negative values. For the 
first- and second-order methods with Rtx = 1 and 2 (c ¢ 0.8) this is expected, as the coefficients 
on the right-hand side of the FDEs are non-negative. For all methods tested with RA = 4, for 
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the OPT(I,2,1) method with (RA,c) = (2,0.8), and for the DF(1,2,1) and OPT(I,2,1) methods 
with (RA, c) = (1, 0.8), the results contained no negatives even though some of the coefficients 
were negative; that  is the positive coefficients (multiplied by the appropriate value of rj") were 
sufficiently large to prevent any result being negative. For RA = 8 no negative values were 
produced by the OPT(I,3,1) method, while negative values of the order of .~, 10 - s  were produced 
by the other two methods; for Ra  -- 16 only the third-order method was non-negative, while 
negative values of the order of ~. 10 -2 appeared for c = 0.1, 0.2 and 0.4 for the first- and 
second-order methods, and approximately 10 -6 and 10 -7, respectively, for c = 0.8. 

T a b l e  1. N u m e r i c a l  t e s t  r e su l t s .  

"~Zk C S 

1 0.1 0.1 

0.2 0.2 

0.4 0.4 

0.8 0.8 

2 0.1 0.05 

0.2 0.1 

0.4 0.2 

0.8 0.4 

4 0.1 0 .025 

0.2 0.05 

0 . 4  0 .1  

0 . 8  0 .2  

8 0 . I  0 . 0 1 2 5  

0.2 0 .025 

0.4 0.05 

0.8 0.1 

16  0.1 0 .00625 

0.2 0.0125 

O.4 O.O25 

0.8 0.05 

M e t h o d  
DF(1 ,2 ,1 )  

O P T ( I , 2 , 1 )  
OPT(I,3,1) 

DF(1,2,1) 
OPT(I,2,1) 
OPT(I~3,1) 

DF(I,2,1 

OPT(I,2,1 
DF(1 ,2 ,1 )  

O P T ( I , 2 , 1 )  
OPT(I~3~I) 

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  
O P T ( l l 3 ~ I  ) 

D F ( 1 , 2 , 1 )  
O P T ( I , 2 , 1 )  
OPT(Ir3~I ) 

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 /  

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  
OPT(1,3,1) 

DF(1 ,2 ,1 )  
O P T ( 1 , 2 , 1 )  
0 P T ( 1 , 3 , 1 1  

DF(1 ,2 ,1 )  
OPT(I,2,1) 
OPT(1,3,1) 

DF(1 ,2 ,1 )  
O P T ( l l 2 , 1 )  

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  
OPT(I~311 ) 

D E ( I , 2 , 1 )  
0 P T ( 1 , 2 , 1 )  
0PT(11311  } 

DF(1 ,2 ,1  ) 
O P T ( I , 2 , 1  ) 
OPT(IT311 I 

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 1  

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  
OPT( I , 3 ,1 )  

DF(1 ,2 ,1 )  
O P T ( I , 2 , 1 )  
O P T ( l r 3 t l  ) 

D E ( I , 2 , 1 )  
O P T ( I , 2 , 1 )  
O P T ( I , 3 , 1 )  

O~ae~ A,, i iE~r~ Mint ~" ~ C P U  
1 2.32 X 10 - 4  0 . 0  2.80 see  
2 2.14 X 10 - 4  0 . 0  2.68 see  
3 5.04 x 10 - 7  0.0 2.83 see  
1 5.44 x 10 - 4  0 . 0  1.37 sec  
2 1.13 x 10 - 4  0 .0  1.48 see  
3 1.96 x 10 - 6  0 . 0  1.32 sec  
1 2.32 X 10 - 3  0 .0  0 .68  see  
2 3 .57  x 10 - 4  0 .0  0 .70  see  
1 1.10 x 10 - z  0.0 0 .33  see  
2 5.06 x 10 - 3  0.0 0.28 see  
1 6.64 x 10 - 4  0 .0  2.92 see  
2 6 .63  x 10 - 4  0 .0  2.67 see  
3 8.64 x 10 - 6  0.0 2.75 see  
1 7.36 x 10 - 4  0 .0  1.43 see  
2 5.76 X 10 - 4  0 .0  1.27 see  
3 3.35 X 10 - 6  0.0 1.32 see  
1 2.25 X 10 - 3  0 .0  0 .67  see  
2 1 .86  X 10 - 4  0 .0  0 .67  sec  
3 1.77 x 10 - 5  0 .0  0 .67  see  
1 1.06 × 10 - 2  0 .0  0 .30  see  
2 3.39 x 10 - 3  0.0 0 .33  see  
1 1.79 X 10 - 3  0.0 2.68 see  
2 1.79 x 10 - 3  0.0 2 .87  see  
3 7.01 x 10 - 5  0.0 2.73 see  
1 1.74 X 10 - ~  0.0 1.35 see  
2 1.69 x 10 - 3  0.0 1.40 see  
3 5.75 X 10 - 5  0.0 1.33 sec  
1 2.40 x 10 - 3  0.0 0.72 see  
2 1.27 x 10 - 3  0.0 0.75 see  
3 7.96 x 10 - 6  0.0 0.65 see  
1 9.83 X 10 - 3  0.0 0.35 see  
2 1.77 X 10 - 3  0.0 0 .33  see  
1 4.36 X 10 - 3  - 6 . 4  X I 0  - s  2 .58 see  
2 4.35 x 10 - 3  - 5 . 7  x 10 - 8  2.77 see  
3 4 .37  X 10 - 4  0.0 2.63 see  
1 4.25 X 10 - 3  --5.5 X 10 - s  1.30 see 
2 4.19 x 10 - 3  - -3 .0  x I 0  - 3  1.30 see  
3 4.00 X 10 - 4  0.0 1.35 see  
1 4.02 X 10 - 3  - -6 .6  X 10 - ~  0 .68  s e e  
2 3.55 x 10 - 3  0.0 0 .68  see  
3 2.56 X 10 - 4  0.0 0.62 see  
1 8 .67  X 10 - 3  0.0 0.32 see  
2 2.61 x 10 - 4  0.0 0 .40  see  
3 2.33 X 10 - 4  0.0 0.32 sec  
1 9 .37  X 10 - 3  - -1 .4  x 10 - 2  2 .57  see  
2 9.36 X 10 -3  - -1 .3  X 10 - 2  2.78 sec  
3 1 ,80  X 10 - 3  0.0 2.75 sec  
1 9 . 1 0  X 10 - 3  - - 1 . 3  x 10  - ~  1 .30  s e c  
2 9 , 0 6  x 10  - 3  - 1 . 2  x 10  - 2  1.37 sec  
3 1.71 x 10 - 3  0.0 1.32 see  
1 8 .27  X 10 - 3  - -9 .7  X I 0  - ~  0.72 see  
2 7 .86  X 10 - 3  - -6 .9  X 10 - 3  0.70 sec 
3 1.34 X 10 -3  0.0 0.67 see  
1 7 .67  × 10  - 3  - 9 . 8  × 10  - ~  0.33 sec 
2 2.69 X 10 - 3  --3.8 x 10-;" 0.35 see 
3 5.91 x 10 -5  0.0 0.33 see 

When the results obtained for the third-order OPT(I,3,1) method are compared with those of 
the second-order OPT(I,2,1) method, the average error of the former is generally found to be 
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Figure 7. Average {IErrorl} graphed against CPU. 

at least one order of magnitude smaller than the latter, for R~ <_ 8. Results for the third-order 
method are most accurate when RA and c are both small; for instance, for (RA,c) = (1,0.1), the 
method produces an average error ~ 1/400 of those of the first- and second-order methods, and 
for (R~,c )  = (1,0.2), (2,0.1) and (2,0.2), it produces an average error ~ 1/75 of those of the 
other two methods. 

For the OPT(I ,3 ,1)  method, the magnitude of errors illustrates the theoretical findings observed 
in Figures 5 and 6, with smallest errors generally occurring for values of (c, s) minimizing the 
dominant error term in the MEPDE (34). For instance, when c = 0.4 the theoretical opt imum 
value of the diffusion number is s = 0.11, while of the values tested the smallest error (7.96 x 10 - e )  
occurred for s -- 0.1. 

No significant negative values appeared in the results of all numerical tests applied to the 
OPT(I ,3 ,1)  method even though the parameters used did not always lie in the region of the 
c-s plane in which the coefficients of the FDE (31) were all non-negative. 

In order to determine the efficiency of these methods based on assessment of accuracy relative to 
central processor unit (CPU) time required, graphs of average absolute error (Average{IErrorl}) 
against CPU time used are plotted for each method in Figure 7. The graphs show certain 
common features. For example, the CPU time required for a run with a given value of c is almost 
independent of the value of RA used, and this time increases with increasing c. In fact there 
was little difference in the CPU time required by each of the methods when the parameters used 
were the same. For instance, with (RA, c) - (2, 0.4), all three methods required 0.67 sec. This 
property is due to the fact that  the number of time levels, N, and space steps, J ,  involved are 
the same for a given pair of RA and c. 

For the first-order DF(1,2,1) method (see Figure 7(a)), average errors ranged from 2.32 x 10 -4 
to 1.06 x 10 -2 while CPU time ranged from 0.30 to 2.92 sec. For c - 0.8 the errors and CPU time 
are practically independent of RA (or s), and as c decreases more accurate results are obtained 
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using the same CPU time with smaller values of  RA. There  appears  to be no obviously opt imal  
value of (RA, c) for which bo th  error and CPU time are small. 

For the second-order OPT(I ,2 ,1 )  me thod  (see Figure 7(b)) the errors and the C P U  times 
ranged over approximately  the same values as those for the first-order method .  However, when 
the results for c -- 0.8, which required the least CPU time, are examined it is clear t ha t  R a  -- 8 
is opt imal ,  producing an average error of  2.61 x 10 -4  in only 0.40 sec. This may  be compared  
with, for example,  the similar error of  2.14 x 10 -4  produced in 2.68 sec when (RA, c) = (1, 0.1). 

Results for the third-order  OPT(I ,3 ,1 )  me thod  are shown in Figure 7(c). For the same C P U  
times as those for the first- and second-order methods,  the errors produced are clearly much 
smaller. Al though there is no obviously opt imal  value of  ( R a ,  c) for m a x i m u m  efficiency, this 
me thod  is clearly superior to the other  two. For instance, the choice of  (RA,c )  = (16,0.8) 
produces  an average error of  5.91 x 10 -5  in only 0.33 sec compared  with the most  efficient case 
for the second-order OPT( I ,2 ,1 )  method,  namely an average error of  2.61 x 10 -4  in 0.40 sec with 
the  choice (RA, c) = (8, 0.8). 

C O N C L U S I O N  

In general, the second-order (1,2,1) me thod  was not significantly more accurate  than  the first- 
order l eapf rog /Du Fort-Frankel method,  while the new third-order (1,3,1) me thod  was at least 
an order  of  magni tude  more accurate than  either of  these. This  arises as a consequence of  the  
absence of  low-order errors in wave speed for the lat ter  me thod  and the presence of  these errors 
for the former methods.  The  second-order method  is to be preferred over the first-order me thod  
for modera te  cell Reynolds numbers  of  the order of  10. The  third-order  method,  while more  
restrictive with respect to stability, clearly results in smaller errors for comparable  C P U  times 
when compared  with the two lower order methods.  
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