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Abstract

Resource-bounded dimension is a complexity-theoretic extension of classical Hausdorff dimension
introduced by Lutz (in: Proceedings of the 15th Annual IEEE Conference on Computational Complexity,
2000, pp. 158–169) in order to investigate the fractal structure of sets that have resource-bounded measure

0. For example, while it has long been known that the Boolean circuit-size complexity class SIZEða2n

n
Þ has

measure 0 in ESPACE for all 0pap1; we now know that SIZEða2n

n
Þ has dimension a in ESPACE for all

0pap1: The present paper furthers this program by developing a natural hierarchy of ‘‘rescaled’’ resource-
bounded dimensions. For each integer i and each set X of decision problems, we define the ith-order

dimension of X in suitable complexity classes. The zeroth-order dimension is precisely the dimension of
Hausdorff (Math. Ann. 79 (1919) 157–179) and Lutz (2000). Higher and lower orders are useful for various

sets X : For example, we prove the following for 0pap1 and any polynomial qðnÞXn2:

1. The class SIZEð2anÞ and the time- and space-bounded Kolmogorov complexity classes KTqð2anÞ and
KSqð2anÞ have first-order dimension a in ESPACE.

2. The classes SIZEð2naÞ; KTqð2naÞ; and KSqð2naÞ have second-order dimension a in ESPACE.
3. The classes KTqð2nð1� 2�anÞÞ and KSqð2nð1� 2�anÞ have negative-first-order dimension a in ESPACE.
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1. Introduction

Many sets of interest in computational complexity have quantitative structures that are too fine
to be elucidated by resource-bounded measure. For example, it has long been known that the

Boolean circuit-size complexity class SIZEð2n

n
Þ has measure 0 in ESPACE [13], so resource-

bounded measure cannot make quantitative distinctions among subclasses of SIZEð2n

n
Þ:

In early 2000, Lutz [14] developed resource-bounded dimension in order to remedy this
situation. Just as resource-bounded measure is a complexity-theoretic generalization of classical
Lebesgue measure, resource-bounded dimension is a complexity-theoretic generalization of
classical Hausdorff dimension. Moreover, just as classical Hausdorff dimension enables us to
quantify the structures of many sets of Lebesgue measure 0, resource-bounded dimension enables
us to quantify the structures of some sets that have measure 0 in complexity classes. For example,

Lutz [14] showed that for every real number aA½0; 1�; the class SIZEða2n

n
Þ has dimension a in

ESPACE. He also showed that for every p-computable aA½0; 1�; the class of languages with
limiting frequency a has dimension HðaÞ in E, where H is the binary entropy function of
Shannon information theory. (This is a complexity-theoretic extension of a classical result of
Eggleston [4].) These preliminary results suggest new relationships between information and
complexity and open the way for investigating the fractal structure of complexity classes. More
recent work has already used resource-bounded dimension to illuminate a variety of topics in
computational complexity [1–3,6,8,9].
However, there is a conspicuous obstacle to further progress along these lines. Many classes

that occur naturally in computational complexity are parametrized in such a way as to remain out
of reach of the resource-bounded dimension of [14]. For example, when discussing cryptographic
security or derandomization, one is typically interested in circuit-size bounds of the form 2an or

2na ; rather than the a2
n

n
bound of the above-cited result. It is easy to see that for all

ao1; SIZEð2anÞ and SIZEð2naÞ have dimension 0 in ESPACE, so the resource-bounded
dimension of [14] cannot provide the sort of quantitative classification that is needed. Similarly,
in their investigations of the information content of complete problems, Juedes and Lutz [10]

established tight bounds on space-bounded Kolmogorov complexity of the forms 2ne and 2nþ1 �
2ne ; in the investigation of completeness in E one is typically interested in dense languages,

which have census at least 2ne ; etc. The difficulty here is that classes arising naturally in
computational complexity are often scaled in a nonlinear way that is not compatible with the
linear scaling implicit in classical Hausdorff dimension and the resource-bounded dimension of
Lutz [14].
This sort of difficulty has already been encountered in the classical theory of Hausdorff

dimension and dealt with by rescaling the dimension. The 1970 classic [17] by Rogers describes the
resulting theory of generalized dimension, in which Hausdorff dimension may be rescaled by any
element of a very large class of extended real-valued functions. (In fact, this idea was introduced in
Hausdorff’s 1919 paper [7].) Choosing the right such function for a particular set often yields
more precise information about that set’s dimension. For example, it is known that with
probability 1 a Brownian sample path in the plane has Hausdorff dimension 2 (the dimension of
the plane), but a more careful analysis using the generalized approach shows that ‘‘the dimension
is, in a sense, logarithmically smaller than 2’’ [5].
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In this paper we extend the resource-bounded dimension of [14] by introducing the notion of a
scale according to which dimension may be measured. Our scales are slightly less general than the
functions used for generalized dimension and take two arguments instead of one, but every scale g

defines for every set X of decision problems a g-scaled dimension dimðgÞðXÞA½0; 1�: Thus, although
the spirit of our approach is much like that of generalized dimension, scaled dimension typically
yields quantitative results that are as precise as, but crisper than, the result quoted at the end of
the preceding paragraph.
The choice of which scale to use for a particular application is very much like the choice of

whether to plot data on a standard Cartesian graph or a log–log graph. In fact, a very restricted
family of scales appears to be adequate for analyzing many problems in computational
complexity. Specifically, we define a particular, natural hierarchy of scales, one for each integer,
and use these to define the ith-order dimension of arbitrary sets X in suitable complexity classes.
The zeroth-order dimension is precisely the dimension used by Hausdorff [7] and Lutz [14]. We
propose that higher- and lower-order dimensions will be useful for many investigations in
computational complexity. In support of this proposal we prove the following for 0pap1 and
any polynomial qðnÞXn2:

1. The class SIZEð2anÞ and the time- and space-bounded Kolmogorov complexity classes
KTqð2anÞ and KSqð2anÞ have first-order dimension a in ESPACE:

2. The classes SIZEð2naÞ; KTqð2naÞ; and KSqð2naÞ have second-order dimension a in ESPACE:
3. The classes KTqð2nð1� 2�anÞÞ and KSqð2nð1� 2�anÞ have negative-first-order dimension a in
ESPACE:

We emphasize that, for all aAð0; 1Þ; all these classes have measure 0 in ESPACE; the classes in 1
and 2 have zeroth-order dimension 0 in ESPACE; and the class in 3 has zeroth-order dimension 1
in ESPACE: Only when the dimension is appropriately rescaled does it respond informatively to
variation of the parameter a:
We also prove more general results along these lines.

2. Preliminaries

A decision problem (a.k.a. language) is a set ADf0; 1g�: We identify each language with its
characteristic sequence 1s0AAU1s1AAU1s2AAU?; where s0; s1; s2;y is the standard enumera-

tion of f0; 1g� and
1fU ¼ if f then 1 else 0:

We write A½i::j� for the string consisting of the ith through the jth bits of (the characteristic
sequence of) A: The Cantor space C is the set of all decision problems.
If wAf0; 1g� and xAf0; 1g�,C; then wLx means that w is a prefix of x: The cylinder generated

by a string wAf0; 1g� is Cw ¼ fAACjwLAg:
A prefix set is a language A such that no element of A is a prefix of any other element of A:

If A is a language and nAN; then we write A¼n ¼ A-f0; 1gn; Apn ¼ A-f0; 1gpn:
All logarithms in this paper are base 2.
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For each iAN we define a class Gi of functions from N into N as follows.

G0 ¼ f f jð(kÞð8NnÞf ðnÞpkng;

Giþ1 ¼ 2Giðlog nÞ ¼ f f jð(gAGiÞð8NnÞf ðnÞp2gðlog nÞg:

We also define the functions ĝiAGi by ĝ0ðnÞ ¼ 2n; ĝiþ1ðnÞ ¼ 2ĝiðlognÞ: We regard the functions in
these classes as growth rates. In particular, G0 contains the linearly bounded growth rates and G1
contains the polynomially bounded growth rates. It is easy to show that each Gi is closed under
composition, that each fAGi is oðĝiþ1Þ; and that each ĝi is oð2nÞ: Thus Gi contains
superpolynomial growth rates for all i41; but all growth rates in the Gi-hierarchy are
subexponential.
Within the class of all decidable languages, we are interested in the exponential complexity

classes Ei ¼ DTIMEð2Gi�1Þ and EiSPACE ¼ DSPACEð2Gi�1Þ for iX1: The much-studied

classes E ¼ E1 ¼ DTIMEð2linearÞ; E2 ¼ DTIMEð2polynomialÞ; and ESPACE ¼ E1SPACE ¼
DSPACEð2linearÞ are of particular interest.
We use the following classes of functions:

all ¼ f f j f : f0; 1g�-f0; 1g�g;
rec ¼ f fAallj f is computable},
pi ¼ f fAallj f is computable in Gi time} ðiX1Þ;
pispace ¼ f fAallj f is computable in Gi space} ðiX1Þ:

(The length of the output is included as part of the space used in computing f :) We write p for p1
and pspace for p1space: Throughout this paper, D and D0 denote one of the classes all, rec,
piðiX1Þ; pispaceðiX1Þ:
A constructor is a function d : f0; 1g�-f0; 1g� that satisfies xK

adðxÞ for all x: The result of a

constructor d (i.e., the language constructed by d) is the unique language RðdÞ such that
dnðlÞLRðdÞ for all nAN: Intuitively, d constructs RðdÞ by starting with l and then iteratively
generating successively longer prefixes of RðdÞ: We write RðDÞ for the set of languages RðdÞ such
that d is a constructor in D: The following facts are the reason for our interest in the above-defined
classes of functions.

RðallÞ ¼ C;
RðrecÞ ¼ REC;
For iX1; RðpiÞ ¼ Ei;
For iX1; RðpispaceÞ ¼ EiSPACE:

If D is a discrete domain, then a function f :D-½0;NÞ is D-computable if there is a function

f̂ :N� D-Q-½0;NÞ such that j f̂ðr;xÞ � f ðxÞjp2�r for all rAN and xAD and f̂AD (with r coded
in unary and the output coded in binary). We say that f is exactly D-computable if
f :D-Q-½0;NÞ and fAD:
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3. Scaled dimension

In this section we develop a theory of scaled dimensions in complexity classes. We then develop
a particular, natural hierarchy of scaled dimensions that are suitable for complexity-theoretic
applications such as those in Section 4.

Definition. A scale is a continuous function g :H � ½0;NÞ-R with the following properties:

1. H ¼ ða;NÞ for some aAR,f�Ng:
2. gðm; 1Þ ¼ m for all mAH:
3. gðm; 0Þ ¼ gðm0; 0ÞX0 for all m;m0AH:
4. For every sufficiently large mAH; the function s/gðm; sÞ is nonnegative and strictly
increasing.

5. For all s04sX0; limm-N ½gðm; s0Þ � gðm; sÞ� ¼ N:

Example 3.1. The function g0 :R� ½0;NÞ-R defined by g0ðm; sÞ ¼ sm is the canonical example
of a scale.

Example 3.2. The function g1 : ð0;NÞ � ½0;NÞ-R defined by g1ðm; sÞ ¼ ms is also a scale.

Definition. If g :H � ½0;NÞ-R is a scale, then the first rescaling of g is the function g# :H# �
½0;NÞ-R defined by

H# ¼ f2mjmAHg;

g#ðm; sÞ ¼ 2gðlog m;sÞ:

Note that g
#
0 ¼ g1; where g0 and g1 are the scales of Examples 3.1 and 3.2.

If g is a scale, then for all mAH# and sA½0;NÞ;
log g#ðm; sÞ ¼ gðlogm; sÞ;

which means that a log–log graph of the function m/g#ðm; sÞ is precisely the ordinary graph of
the function m/gðm; sÞ: This is the sense in which g# is a rescaling of g:

Lemma 3.3. If g is a scale, then g# is a scale.

Proof. Let g :H � ½0;NÞ-R be a scale, where H ¼ ða;NÞ:

1. It is clear that H# ¼ ð2a;NÞ:
2. For mAH# we have logmAH; so g#ðm; 1Þ ¼ 2gðlog m;1Þ ¼ 2log m ¼ m:

3. If m;m0AH#; then logm; logm0AH; so g#ðm; 0Þ ¼ 2gðlog m;0Þ ¼ 2gðlog m0;0Þ ¼ g#ðm0; 0Þ:
4. Since g is a scale, there exists m0AH such that for all mXm0; the function s/gðm; sÞ is
nonnegative and strictly increasing. For all mX2m0 ; then, we have logmXm0; so the function

s/g#ðm; sÞ ¼ 2gðlog m;sÞ is nonnegative and strictly increasing.
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5. Assume that s04sX0: Since g is a scale, there exists m0AH such that for all
mXm0; gðlogm; sÞX0 and DðmÞX2; where DðmÞ ¼ gðlogm; s0Þ � gðlogm; sÞ: Then for all
mXm0 we have

g#ðm; s0Þ � g#ðm; sÞ ¼ 2gðlog m;s0Þ � 2gðlog m;sÞ

¼ 2gðlog m;sÞ½2DðmÞ � 1�
X 2DðmÞ � 1
XDðmÞ
¼ gðlogm; s0Þ � gðlogm; sÞ:

Since limm-N ½gðm; s0Þ � gðm; sÞ� ¼ N; it follows immediately that limm-N ½g#ðm; s0Þ�
g#ðm; sÞ� ¼ N: &

Definition. If g :H � ½0;NÞ-R is a scale, then the reflection of g is the function gR :H �
½0;NÞ-R defined by

gRðm; sÞ ¼
m þ gðm; 0Þ � gðm; 1� sÞ if 0psp1;
gðm; sÞ if sX1:

�

Example 3.4. It is easy to verify that gR
0 ¼ g0 and that

gR
1 ðm; sÞ ¼ m þ 1� m1�s if 0psp1;

ms if sX1

(

for all m40 and sAR:

Lemma 3.5. If g is a scale, then gR is a scale.

Proof. Let g :H � ½0;NÞ-R be a scale. It is clear that gR is continuous and has the same domain

as g: Also, gRðm; 0Þ ¼ gðm; 0Þ and gRðm; 1Þ ¼ gðm; 1Þ; so it suffices to prove that gR satisfies
conditions 4 and 5 in the definition of a scale.
Let m be large enough that s/gðm; sÞ is nonnegative and strictly increasing, let 0psos0p1: It

suffices to show that 0pgRðm; sÞogRðm; s0Þ: For the first inequality, note that 1� sp1; so
gðm; 1� sÞpgðm; 1Þ ¼ m; so gRðm; sÞ ¼ m þ gðm; 0Þ � gðm; 1� sÞXgðm; 0ÞX0: For the second
inequality, note that 1� s41� s0; so gðm; 1� sÞ4gðm; 1� s0Þ; so gRðm; sÞogRðm; s0Þ: This
confirms condition 4.
Let s04sX0: We have three cases.

(i) If sX1; then

lim
m-N

½gRðm; s0Þ � gRðm; sÞ� ¼ lim
m-N

½gðm; s0Þ � gðm; sÞ�

¼N:
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(ii) If s0p1; then 1� s41� s0X0; so

lim
m-N

½gRðm; s0Þ � gRðm; sÞ� ¼ lim
m-N

½gðm; 1� sÞ � gðm; 1� s0Þ�

¼N:

(iii) If so1 and s041; choose m0AH such that s/gðm; sÞ is nonnegative and strictly increasing
for all mXm0: Then for all mXm0;

gRðm; s0Þ � gRðm; sÞ ¼ gRðm; s0Þ � gRðm; 1Þ þ gRðm; 1Þ � gRðm; sÞ
¼ gðm; s0Þ � gðm; 1Þ þ gRðm; 1Þ � gRðm; sÞ
4 gRðm; 1Þ � gRðm; sÞ;

so (ii) above (with s0 ¼ 1) tells us that limm-N ½gRðm; s0Þ � gRðm; sÞ� ¼ N: &

Notation. For each scale g :H � ½0;NÞ-R; we define the function Dg :H � ½0;NÞ-R by

Dgðm; sÞ ¼ gðm þ 1; sÞ � gðm; sÞ:
Note that g is the usual finite difference operator, with the proviso that it is applied only to the
first variable, m: For lAN; we also use the extended notation

Dlgðm; sÞ ¼ gðm þ l; sÞ � gðm; sÞ:

The following definition is central to scaled dimension.

Defnition. Let g :H � ½0;NÞ-R be a scale, and let sA½0;NÞ:

1. A g-scaled s-supergale (briefly, an sðgÞ-supergale) is a function d : f0; 1g�-½0;NÞ such that for
all wAf0; 1g� with jwjAH;

dðwÞX2�Dgðjwj;sÞ½dðw0Þ þ dðw1Þ�: ð3:1Þ

2. A g-scaled s-gale (briefly, an sðgÞ-gale) is a sðgÞ-supergale that satisfies (3.1) with equality for all
wAf0; 1g� such that jwjAH:

3. An s-supergale is a sðg0Þ-supergale.

4. An s-gale is a sðg0Þ-gale.
5. A supermartingale is a 1-supergale.
6. A martingale is a 1-gale.

Remarks. (1) Martingales were introduced by Lévy [11] and named by Ville [22], who used them
in early investigations of random sequences. Martingales were later used extensively by Schnorr
[18–21] in his investigations of random sequences and by Lutz [13,16] in the development of
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resource-bounded measure. Gales were introduced by Lutz [14,15] in the development of
resource-bounded and constructive dimension. Scaled gales are introduced here in order to
formulate scaled dimension.
(2) Although the martingale condition is usually stated in the form

dðwÞ ¼ dðw0Þ þ dðw1Þ
2

;

this is a simplification of

dðwÞmðwÞ ¼ dðw0Þmðw0Þ þ dðw1Þmðw1Þ;

where mðxÞ ¼ 2�jxj is the measure (probability) of the cylinder Cx ¼ fAACjxLAg: Similarly, the
s-gale condition

dðwÞ ¼ 2�s½dðw0Þ þ dðw1Þ�

of [14,15] is a simplification of

dðwÞmðwÞs ¼ dðw0Þmðw0Þs þ dðw1Þmðw1Þs;

which is equivalent to

dðwÞ ¼ 2�Dg0ðjwj;sÞ½dðw0Þ þ dðw1Þ�: ð3:2Þ

In defining sðgÞ-gales we have replaced the scale g0 in (3.2) by an arbitrary scale g:
(3) Condition (3.1) is only required to hold for strings w that are long enough for gðjwj; sÞ to be

defined. In fact, several of the scales gðm; sÞ used in this paper are not defined for small m: For

such a scale g; an sðgÞ-supergale must satisfy condition (3.1) for all but finitely many strings w; and
this is sufficient for our development.

The following lemma is a generalization of Kraft’s inequality.

Lemma 3.6. Let g :H � ½0;NÞ-R be a scale, and let sA½0;NÞ: If d is a sðgÞ-supergale and

BDf0; 1g� is a prefix set, then for all wAf0; 1g� with jwjAH;

X
uAB

2�Djujgðjwj;sÞdðwuÞpdðwÞ:

Proof. Assume the hypothesis. We first use induction on n to prove that for all nAN; the lemma

holds for all prefix sets BDf0; 1gpn: For n ¼ 0; this is trivial. Assume that it holds for n; and let

ADf0; 1gpnþ1 be a prefix set. Let

A0 ¼ fuAf0; 1gnju0AA or u1AAg;

and let

B ¼ Apn,A0:
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Note that B is a prefix set and Apn-A0 ¼ | (because A is a prefix set). Also, for all wAf0; 1g� with
jwjAH;X

uAA¼nþ1

2�Djujgðjwj;sÞdðwuÞ ¼ 2�Dnþ1gðjwj;sÞ
X

uAA¼nþ1

dðwuÞ

p 2�Dnþ1gðjwj;sÞ
X
uAA0

½dðwu0Þ þ dðwu1Þ�

p 2�Dnþ1gðjwj;sÞ
X
uAA0
2Dgðjwuj;sÞdðwuÞ

¼ 2Dgðjwjþn;sÞ�Dnþ1gðjwj;sÞ
X
uAA0

dðwuÞ

¼ 2�Dngðjwj;sÞ
X
uAA0

dðwuÞ

¼
X
uAA0
2�Djujgðjwj;sÞdðwuÞ:

Since BDf0; 1gpn; it follows by the induction hypothesis that for all wAf0; 1g� with jwjAH; if we
write

aðuÞ ¼ 2�Djujgðjwj;sÞdðwuÞ;

then X
uAA

aðuÞ ¼
X

uAApn

aðuÞ þ
X

uAA¼nþ1

aðuÞ

p
X

uAApn

aðuÞ þ
X
uAA0

aðuÞ

¼
X
uAB

aðuÞ

p dðwÞ:

This completes the proof that for all nAN; the lemma holds for all prefix sets BDf0; 1gpn:
To complete the proof of the lemma, let B be an arbitrary prefix set. Then for all wAf0; 1g� with

jwjAH;X
uAB

aðuÞ ¼ sup
nAN

X
uABpn

aðuÞpdðwÞ: &

Corollary 3.7. Let g :H � ½0;NÞ-R be a scale, sA½0;NÞ; 0oaAR; and wAf0; 1g� with jwjAH:

If d is a sðgÞ-supergale such that dðwÞ40 and BDf0; 1g� is a prefix set such that

dðwuÞXa2D
jujgðjwj;sÞ�jujdðwÞ for all uAB; then

X
uAB

2�jujp
1

a
:
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Proof. Assume the hypothesis. Then by Lemma 3.6,

dðwÞX
X
uAB

2�Djujgðjwj;sÞdðwuÞXadðwÞ
X
uAB

2�juj;

whence the corollary follows. &

Corollary 3.8. Let g :H � ½0;NÞ-R be a scale, let sA½0;NÞ; and let d be an sðgÞ-supergale. Then

for all lAN; 0oaAR; and wAf0; 1g� with jwjAH; there are fewer than 2
l

a strings uAf0; 1gl
for which

max
vLu
2jvj�Djvjgðjwj;sÞdðwvÞ4adðwÞ:

In particular, there is at least one string uAf0; 1gl
such that dðwvÞp2Djvjgðjwj;sÞ�jvjdðwÞ for all vLu:

Proof. Let g; s; d; l; a; and w be as given, and let

A ¼ uAf0; 1gl max
vLu
2jvj�Djvjgðjwj;sÞdðwvÞ4adðwÞ

����
��
:

Let B be the set of all vAf0; 1gpl such that 2jvj�Djvjgðjwj;sÞdðwvÞ4adðwÞ but

2jv
0j�Djv0 jgðjwj;sÞdðwv0ÞpadðwÞ for all v0 K

a
v: Then B is a prefix set, and

A ¼ fuAf0; 1gljð(vLuÞvABg;

so jAj ¼
P

vAB2
l�jvj ¼ 2l

P
vAB2

�jvj: Let a0 ¼ minvAB2
jvj�Djvjgðjwj;sÞdðwvÞ

dðwÞ ; and note that aoa0oN:

Then B is a prefix set such that dðwvÞXa02D
jvjgðjwj;sÞ�jvjdðwÞ for all vAB; so Corollary 3.7 tells us

that

jAj ¼ 2l
X
vAB

2�jvjp
2l

a0
o
2l

a
:

This proves the main assertion of the corollary. The last sentence of the corollary follows by
taking a ¼ 1: &

Corollary 3.9. Let g :H � ½0;NÞ-R be a scale, let sA½0;NÞ; and let d be an sðgÞ-supergale. Then

for all w; uAf0; 1g� with jwjAH;

dðwuÞp2Djujgðjwj;sÞ dðwÞ:

Proof. Let g; s; d; w; and u be as given, and let l ¼ juj: Then Corollary 3.8 with a ¼ 2l tells us

that there are fewer than 1, hence no strings vAf0; 1gl for which dðwvÞ42Dlgðjwj;sÞdðwÞ: Thus
dðwuÞp2Djujgðjwj;sÞdðwÞ: &

The following useful observations are now clear, as are the analogous observations for sðgÞ-
supergales.
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Observation 3.10. Let g :H � ½0;NÞ-R be a scale, let m ¼ minðH-NÞ; and let sA½0;NÞ: For

each kAN; let dk be a sðgÞ-gale, and let akA½0;NÞ:

1. For each nAZþ;
Pn�1

k¼0akdk is a sðgÞ-gale.

2. If
P

N

k¼0akdkðwÞoN for each wAf0; 1gm; then
P

N

k¼0akdk is a sðgÞ-gale.

Observation 3.11. Let g :H � ½0;NÞ-R be a scale, let s; s0A½0;NÞ; and let

d; d 0 : f0; 1g�-½0;NÞ: If

dðwÞ2�gðjwj;sÞ ¼ d 0ðwÞ2�gðjwj;s0Þ

for all wAf0; 1g� such that jwjAH; then d is a sðgÞ-gale if and only if d 0 is a s0ðgÞ-gale.

Definition. Let g be a scale, let sA½0;NÞ; and let d be a sðgÞ-supergale.

1. We say that d succeeds on a language AAC if lim supn-N
dðA½0yn � 1�Þ ¼ N:

2. The success set of d is SN½d� ¼ fAACjd succeeds on Ag:

We now use scaled gales to define scaled dimension.

Notation. Let g be a scale, and let XDC:

1. GðgÞðXÞ is the set of all sA½0;NÞ such that there is a sðgÞ-gale d for which XDSN½d�:
2. #GðgÞðXÞ is the set of all sA½0;NÞ such that there is a sðgÞ-supergale d for which XDSN½d�:

Lemma 3.12. If g is a scale, then for all XDC; GðgÞðXÞ ¼ #GðgÞðXÞ:

Proof. Let sA½0;NÞ: Let d be a sðgÞ-supergale. We show that there is a sðgÞ-gale d̃ such that

SN½d�DSN½d̃�:
Define

d̃ : f0; 1g�-½0;NÞ

d̃ðwÞ ¼ dðwÞ for jwjeH;

d̃ðw0Þ ¼ 1
2
½2�Dgðjwj;sÞd̃ðwÞ þ dðw0Þ � dðw1Þ� for jwjAH;

d̃ðw1Þ ¼ 1
2
½2�Dgðjwj;sÞd̃ðwÞ � dðw0Þ þ dðw1Þ� for jwjAH:

Then d̃ is clearly a sðgÞ-gale, and an easy induction shows that d̃ðwÞXdðwÞ for all wAf0; 1g�;
whence SN½d�DSN½d̃�: &

Recall the scale g0 of Example 3.1. It was proven by Lutz [14] that the following definition is
equivalent to the classical definition of Hausdorff dimension in C:
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Definition. The Hausdorff dimension of a set XDC is dimHðXÞ ¼ infGðg0ÞðXÞ:

This suggests the following rescaling of Hausdorff dimension in Cantor space.

Definition. If g is a scale, then the g-scaled dimension of a set XDC is dimðgÞðXÞ ¼ infGðgÞðXÞ:

By Lemma 3.12, this definition would not be altered if we used #GðgÞðXÞ in place of GðgÞðXÞ:
We now use resource-bounded scaled gales to develop scaled dimension in complexity classes.

In the following, the resource bound D may be any one of the classes all, rec, p, p2; pspace,
p2space; etc., defined in Section 2.

Notation. If g is a scale and XDC; let G
ðgÞ
D ðXÞ be the set of all sA½0;NÞ such that there is a D-

computable sðgÞ-gale d for which XDSN½d�:

Definition. Let g be a scale and XDC:

1. The g-scaled D-dimension of X is dim
ðgÞ
D ðXÞ ¼ infGðgÞ

D ðXÞ:
2. The g-scaled dimension of X in RðDÞ is dimðgÞðX jRðDÞÞ ¼ dimðgÞ

D ðX-RðDÞÞ:

Note that dim
ðgÞ
D ðXÞ and dimðgÞðX jRðDÞÞ are defined for every scale g and every set XDC:

Recalling the scale g0ðm; sÞ ¼ sm; we write

dimDðXÞ ¼ dimðg0Þ
D ðXÞ;

dimðX jRðDÞÞ ¼ dimðg0ÞðX jRðDÞÞ
and note that these are exactly the resource-bounded dimensions defined by Lutz [14].

Observation 3.13. Let g be a scale.

1. For all XDYDC;

dim
ðgÞ
D ðXÞpdimðgÞ

D ðYÞ
and

dimðgÞðX jRðDÞÞpdimðgÞðY jRðDÞÞ:

2. If D and D0 are resource bounds such that DDD0; then for all XDC;

dim
ðgÞ
D0 ðXÞpdimðgÞ

D ðXÞ:

3. For all XDC; 0pdimðgÞðX jRðDÞÞpdimðgÞ
D ðXÞ:

4. For all XDC; dimðgÞðX jCÞ ¼ dimðgÞ
all ðXÞ ¼ dimðgÞðXÞ:

ARTICLE IN PRESS

J.M. Hitchcock et al. / Journal of Computer and System Sciences 69 (2004) 97–122108



The following lemma relates resource-bounded scaled dimension to resource-bounded measure.

Lemma 3.14. If g is a D-computable scale, then for all XDC;

dim
ðgÞ
D ðXÞo1) mDðXÞ ¼ 0

and

dimðgÞðX jRðDÞÞo1) mðX jRðDÞÞ ¼ 0:

Proof. It suffices to prove the first implication, since the second implication then follows
immediately.

Assume that dim
ðgÞ
D ðXÞo1; where g is a D-computable scale. Then there exists sAð0; 1Þ-Q and

a D-computable sðgÞ-gale d such that XDSN½d�: Then the function d 0 : f0; 1g�-½0;NÞ defined by
d 0ðwÞ ¼ 2jwj�gðjwj;sÞdðwÞ

is D-computable, and Observation 3.11 tells us that d 0 is a 1ðgÞ-gale, i.e., a martingale. Since g is a
scale and so1; we have limm-N ½m � gðm; sÞ� ¼ limm-N ½gðm; 1Þ � gðm; sÞ� ¼ N; so
XDSN½d�DSN½d 0�: Thus mDðXÞ ¼ 0: &

An important property of Hausdorff dimension is its stability [5], which is the fact that
dimHðX,YÞ is always the maximum of dimHðXÞ and dimHðYÞ: We now show that resource-
bounded scaled dimensions also have this property.

Lemma 3.15. For every D-computable scale g and all sets X ;YDC;

dim
ðgÞ
D ðX,YÞ ¼ maxfdimðgÞ

D ðXÞ; dimðgÞ
D ðYÞg

and

dimðgÞðX,Y jRðDÞÞ ¼ maxfdimðgÞðX jRðDÞÞ; dimðgÞðY jRðDÞÞg:

Proof. The second identity follows from the first, so by Observation 3.13 it suffices to show that

dim
ðgÞ
D ðX,YÞpmaxfdimðgÞ

D ðXÞ; dimðgÞ
D ðYÞg:

Choose an arbitrary s4maxfdimðgÞ
D ðXÞ; dimðgÞ

D ðYÞg such that s is D-computable. There exist s1ps

and D-computable s
ðgÞ
1 -gale d1 such that XDSN½d1�; and s2ps and D-computable s

ðgÞ
2 -gale d2

such that YDSN½d2�: Since s is D-computable, d1 and d2 are D-computable sðgÞ-supergales,

and by the proof of Lemma 3.12 sAG
ðgÞ
D ðXÞ-G

ðgÞ
D ðYÞ: So there exist D-computable

sðgÞ-gales dX and dY such that XDSN½dX � and YDSN½dY �: Let d ¼ dX þ dY : Then d is clearly

D-computable , and d is a sðgÞ-gale by Observation 3.10. It is clear that X,YDSN½d�; whence
sAG

ðgÞ
D ðX,YÞ: It follows that dimðgÞ

D ðX,YÞps: Since s is arbitrary here, we have shown that

dim
ðgÞ
D ðX,YÞpmaxfdimðgÞ

D ðXÞ;dimðgÞ
D ðYÞg: &
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Hausdorff dimension is also countably stable [5], which means that the dimension of a countable
union of sets is the supremum of the dimensions of the sets. The following definition and lemma
show that resource-bounded scaled dimensions are ‘‘D-stable’’ in the sense that they are stable
relative to countable unions that are ‘‘D-effective.’’

Definition. Let g be a scale and let X ;X0;X1;X2;yDC:

1. X is a D-union of the DðgÞ-dimensioned sets X0;X1;X2;y if X ¼
S

N

k¼0Xk and for each rational

s4supkAN dim
ðgÞ
D ðXkÞ there is a function d :N� f0; 1g�-½0;NÞ with the following properties.

(i) d is D-computable.
(ii) For each kAN; if we write dkðwÞ ¼ dðk;wÞ; then the function dk is a sðgÞ-gale.
(iii) For each kAN; XkDSN½dk�:

2. X is a D-union of the sets X0;X1;X2;y
ðgÞ-dimensioned in RðDÞ if X ¼

S
N

k¼0Xk and X-RðDÞ is
a D-union of the DðgÞ-dimensioned sets X0-RðDÞ;X1-RðDÞ;X2-RðDÞ;y :

Lemma 3.16. Let g be a D-computable scale, and let X ;X0;X1;X2;yDC:

1. If X is a D-union of the DðgÞ-dimensioned sets X0;X1;X2;y; then

dim
ðgÞ
D ðXÞ ¼ sup

kAN

dim
ðgÞ
D ðXkÞ:

2. If X is a D-union of the sets X0;X1;X2;y
ðgÞ-dimensioned in RðDÞ; then

dimðgÞðX jRðDÞÞ ¼ sup
kAN

dimðgÞðXkjRðDÞÞ:

Proof. We assume that g is exactly D-computable; the general proof is similar. It suffices
to prove 1, since 2 follows immediately from 1. Assume the hypothesis of 1, and let

s4supkAN dim
ðgÞ
D ðXkÞ be arbitrary with s rational. By Observation 3.13, it suffices to show that

dim
ðgÞ
D ðXÞps:

Since X is a union of the DðgÞ-dimensioned sets X0;X1;X2;y; there is a D-computable function
d :N� f0; 1g�-½0;NÞ such that each dk is a sðgÞ-gale with XkDSN½dk�:Without loss of generality
(modifying d if necessary), we can assume that each dkðwÞp1 for each w with jwj ¼ b; b ¼
minðH-NÞ:
Let d̃ ¼

P
N

k¼02
�kdk: By Observation 3.10, d̃ is a sðgÞ-gale. Since d is D-computable, there

is a function d̂ :N�N� f0; 1g�-Q-½0;NÞ such that d̂AD and for all r; kAN and

wAf0; 1g�; jd̂ðr; k;wÞ � dðk;wÞjp2�r: Define

#*d :N� f0; 1g�-Q-½0;NÞ:
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For w; s such that gðjwj; sÞ � gðb; sÞX0;

#*dðr;wÞ ¼
Xrþgðjwj;sÞ�gðb;sÞþ1

k¼0
2�kd̂ðr þ 2; k;wÞ:

otherwise ðgðjwj; sÞ � gðb; sÞo0Þ;

#*dðr;wÞ ¼
Xrþ1
k¼0
2�kd̂ðr þ 2; k;wÞ:

Then
#*dAD: We look at wAf0; 1g� with gðjwj; sÞ � gðb; sÞX0; the other case is simpler. For all

rAN;

j #*dðr;wÞ � d̃ðwÞjpjd̃ðwÞ � cj þ jc � #*dðwÞj;

where c ¼
Prþgðjwj;sÞ�gðb;sÞþ1

k¼0 2�kdkðwÞ: By Corollary 3.9,

jd̃ðwÞ � cj ¼
XN

k¼rþgðjwj;sÞ�gðb;sÞþ2
2�kdkðwÞ

p
XN

k¼rþgðjwj;sÞ�gðb;sÞþ2
2�k2D

jwj�cgðb;sÞ

¼
XN

k¼rþgðjwj;sÞ�gðb;sÞþ2
2gðjwj;sÞ�k�gðb;sÞ

¼ 2�ðrþ1Þ:

Also,

jc � #*dðr;wÞjp
Xrþgðjwj;sÞ�gðb;sÞþ1

k¼0
2�kjd̂ðr þ 2; k;wÞ � dðk;wÞj

p
XN
k¼0
2�ðkþrþ2Þ

¼ 2�ðrþ1Þ:

It follows that for all rAN and wAf0; 1g�;

j #*dðr;wÞ � d̃ðwÞjp2�r;

whence
#*d testifies that d̃ is D-computable. It is clear that X ¼

S
N

k¼0XkD
S

N

k¼0 SN½dk�DSN½d̃�; so it
follows that dim

ðgÞ
D ðXÞps: &
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Definition. Let d be an sðgÞ-gale. The unitary success set of d is

S1½d� ¼ fSACjð(nÞdðS½0::n � 1�ÞX1g:

A series
P

N

n¼0an of nonnegative real numbers an is D-convergent if there is a function m :N-N

such that mAD and

XN
n¼mðiÞ

anp2�i

for all iAN: Such a function m is called a modulus of the convergence. Adding a layer of
uniformity, a sequence

XN
k¼0

aj;k ð j ¼ 0; 1; 2;yÞ

of series of nonnegative real numbers is uniformly D-convergent if there is a function

m :N2-N such that mAD and, for all jAN; mj is a modulus of the convergence of the seriesP
N

k¼0aj;k:
We now further generalize the Borel–Cantelli lemma as was done for resource-bounded

measure [13].

Lemma 3.17. Let g :H � ½0;NÞ-R be a D-computable scale, let b ¼ minðH-NÞ; and let

sA½0;NÞ: If d :N2 � f0; 1g�-½0;NÞ is a D-computable function such that for each j; kANdj;k is a

sðgÞ-gale, and such that for each w with jwj ¼ b the series

XN
k¼0

dj;kðwÞ ð j ¼ 0; 1; 2;yÞ ð3:3Þ

are uniformly D-convergent, then

dim
ðgÞ
D

[N
j¼0

\N
t¼0

[N
k¼t

S1½dj;k�
 !

ps:

Proof. Assume the hypothesis. Fix a function m :N2-N testifying that the series (3.3) are
uniformly D-convergent for all w with jwj ¼ b: (The same m can be valid for all w because there

are only finitely many w with jwj ¼ b:) Let d̂ be a D-computation of d:
Without loss of generality, assume that mj is nondecreasing and mjðnÞX2 for all j; nAN: Define

Sj;t ¼
[N
k¼t

S1½dj;k�;

Sj ¼
\N
t¼0

Sj;t;

ARTICLE IN PRESS

J.M. Hitchcock et al. / Journal of Computer and System Sciences 69 (2004) 97–122112



and

S ¼
[N
j¼0

Sj:

Our task is to prove that dim
ðgÞ
D ðSÞps:

Let e40: Define d 0 :N� f0; 1g�-½0;NÞ by

d 0
j ðwÞ ¼

XN
k¼0

dj;kðwÞ � 2gðjwj;sþeÞ�gðjwj;sÞ

for all jAN and wAf0; 1g� with jwjAH: For each jAN; d 0
j is a ðs þ eÞðgÞ-gale by Observations 3.10

and 3.11. We will use Lemma 3.16 to show that d 0 testifies that dim
ðgÞ
D ðSÞps þ e:

To see that each SjDSN½d 0
j �; let AASj: For each tAN; AASj;t; so there exists a ktXmjðtÞ and

ltAN such that dj;kt
ðA½0::lt � 1�ÞX1: Then

d 0
j ðA½0::lt � 1�ÞX 2gðlt;sþeÞ�gðlt;sÞdj;kt

ðA½0::lt � 1�Þ
X 2gðlt;sþeÞ�gðlt;sÞ:

By Corollary 3.9, dj;kt
ðA½0::lt � 1�Þp2�t2gðlt;sÞ�gðb;sÞ; so gðlt; sÞXt þ gðb; sÞ and lt is unbounded. By

the definition of scale, 2gðlt;sþeÞ�gðlt;sÞ is unbounded as t goes to infinity, so AASN½d 0
j �:

To complete the proof, we need to show that d 0 is D-computable. For each j; rAN

we define

d̂j;r
0 ðwÞ ¼

Xmjðrþ1�gðjwj;sþeÞ�gðb;sÞÞ

k¼0
d̂j;k;rþkþ2þgðjwj;sþeÞ�gðb;sÞðwÞ � 2gðjwj;sþeÞ�gðjwj;sÞ:

Then d̂ 0AD and for each j; rAN

jd 0
j ðwÞ � d̂j;r

0 ðwÞj ¼ 2gðjwj;sþeÞ�gðjwj;sÞ
XN

k¼mjðrþ1�gðjwj;sþeÞ�gðb;sÞÞþ1
dj;kðwÞ

0
@

þ
Xmj ðrþ1�gðjwj;sþeÞ�gðb;sÞÞ

k¼0
dj;kðwÞ � d̂j;k;rþkþ2þgðjwj;sþeÞ�gðjwj;sÞðwÞ

�����
�����
!

p 2�ðrþ1Þ þ
Xmjðrþ1�gðjwj;sþeÞ�gðb;sÞÞ

k¼0
2�ðrþkþ2Þ

p 2�ðrþ1Þ þ 2�ðrþ1Þ ¼ 2�r: &

We now show that singleton subsets of RðDÞ have scaled dimension 0 in RðDÞ:

Lemma 3.18. If g is a D-computable scale, then for all AARðDÞ;

dimðgÞðfAgjRðDÞÞ ¼ dimðgÞ
D ðfAgÞ ¼ 0:
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Proof. Assume the hypothesis, with g :H � ½0;NÞ-R; and let s40 be rational. Let m ¼
minðH-NÞ; and define

d:f0; 1g�-½0;NÞ

dðwÞ ¼
2gðm;sÞ if wLA and jwjom;

2gðjwj;sÞ if wLA and jwjXm;

0 if wL/ A:

8><
>:

The hypothesis implies that d is D-computable, and it is easily checked that d is a sðgÞ-gale. It is

clear that AASN½d�; whence d testifies that dim
ðgÞ
D ðfAgÞps: Since s is arbitrary here, it follows that

dim
ðgÞ
D ðfAgÞ ¼ 0: &

Lemmas 3.15 and 3.18 immediately give the following.

Corollary 3.19. If g is a D-computable scale, then for all finite sets XDRðDÞ;

dimðgÞðX jRðDÞÞ ¼ dimðgÞ
D ðXÞ ¼ 0:

In fact, Lemma 3.18 can be combined with D-stability (Lemma 3.16) to show that all ‘‘D-
countable’’ subsets of RðDÞ have scaled dimension 0 in RðDÞ: This implies, for example, that for all
pspace-computable scales g and all constants cAN;

dimðgÞðDSPACEð2cnÞjESPACEÞ ¼ 0:

In contrast, even if RðDÞ is countable, RðDÞ does not have scaled dimension 0 in RðDÞ: In fact we
have the following.

Theorem 3.20. If g is a D-computable scale, then

dimðgÞðRðDÞjRðDÞÞ ¼ dimðgÞ
D ðRðDÞÞ ¼ dimðgÞ

D ðCÞ ¼ 1:

Proof. Let g :H � ½0;NÞ-R be D-computable. It is clear that

dimðgÞðRðDÞjRðDÞÞ ¼ dimðgÞ
D ðRðDÞÞpdimðgÞ

D ðCÞ;

so it suffices to prove that dimðgÞðRðDÞjRðDÞÞX1 and dimðgÞ
D ðCÞp1:

By the Measure Conservation Theorem [13], mðRðDÞjRðDÞÞ ¼ 1; so by Lemma 3.14,
dimðgÞðRðDÞjRðDÞÞX1:
Let s41 be rational, and define

d : f0; 1g�-½0;NÞ

dðwÞ ¼ 2gðm0;sÞ�m0 if jwjom0;

2gðjwj;sÞ�jwj if jwjXm0;

(
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where m0 ¼ minðH-NÞ: Then d is a D-computable sðgÞ-gale and limm-N½gðm; sÞ � m� ¼
limm-N½gðm; sÞ � gðm; 1Þ� ¼ N (because g is a scale), so CDSN½d�: Thus dimðgÞ

D ðCÞps: Since

s41 is arbitrary, this implies that dimðgÞ
D ðCÞp1: &

We now define a particular family of scales that will be useful for studying the fractal structures
of classes that arise naturally in computational complexity.

Definition. 1. For each iAN; define ai by the recurrence a0 ¼ �N; aiþ1 ¼ 2ai :
2. For each iAZ; define the ith-order scale gi : ðajij;NÞ � ½0;NÞ-R by the following recursion.

(a) g0ðm; sÞ ¼ sm:
(b) For iX0; giþ1 ¼ g

#
i :

(c) For io0; gi ¼ gR
�i:

Note that each gi is a scale by Lemmas 3.3 and 3.5. It is easy to see that each gi is D-computable.

Definition. Let iAZ and XDC:

1. The ith-order dimension of X is dimðiÞðXÞ ¼ dimðgiÞðXÞ:
2. The ith-order D-dimension of X is dim

ðiÞ
D ðXÞ ¼ dimðgiÞ

D ðXÞ:
3. The ith-order dimension of X in RðDÞ is dimðiÞðX jRðDÞÞ ¼ dimðgiÞðX jRðDÞÞ:

In the spirit of the above definition, sðgiÞ-gales are now called sðiÞ-gales, etc.

Intuitively, if ioj; then it is harder to succeed with a sð jÞ-gale than with a sðiÞ-gale, so

dimðiÞðXÞpdimð jÞðXÞ: We conclude this section by showing that even more is true.

Theorem 3.21. Let iAZ and XDC: If dim
ðiþ1Þ
D ðXÞo1; then dim

ðiÞ
D ðXÞ ¼ 0:

Proof. It can be proven by induction that for every iAZ; for arbitrary s; s̃o1; Dgiþ1ðm; sÞ ¼
oðDgiðm; s̃ÞÞ:
Assume the hypothesis. There exist an so1 and a D-computable sðiþ1Þ-gale d such that

XDSN½d�: Take an arbitrary s̃40: Since Dgiþ1ðm; sÞ ¼ oðDgiðm; s̃ÞÞ; by changing only finitely
many values we can transform d into an s̃ðiÞ-supergale d̃ with SN½d� ¼ SN½d̃�: It follows that
dim

ðiÞ
D ðXÞps̃: Since s̃ was arbitrary, dim

ðiÞ
D ðXÞ ¼ 0: &

This theorem tells us that for every set XDC; the sequence of dimensions dim
ðiÞ
D ðXÞ for iAZ

satisfies exactly one of the following three conditions:

(i) dim
ðiÞ
D ðXÞ ¼ 0 for all iAZ:

(ii) dim
ðiÞ
D ðXÞ ¼ 1 for all iAZ:

(iii) There exist i�AZ such that dim
ðiÞ
D ðXÞ ¼ 0 for all ioi� and dim

ðiÞ
D ðXÞ ¼ 1 for all i4i�:
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Intuitively, if condition (iii) holds and 0odimði�Þ
D ðXÞo1; then i� is the ‘‘best’’ order at which to

measure the D-dimension of X because dim
ði�Þ
D ðXÞ provides more quantitative information about

X than is provided by dim
ðiÞ
D ðXÞ for iai�: The following section provides some concrete examples

of this phenomenon.

4. Nonuniform complexity

In this section we examine the scaled dimension of several nonuniform complexity classes in the
complexity class ESPACE.

The circuit-size complexity of a language ADf0; 1g� is the function CSA :N-N; where CSAðnÞ
is the number of gates in the smallest n-input Boolean circuit that decides A-f0; 1gn: For each
function f :N-N; we define the circuit-size complexity classes

SIZEð f Þ ¼ fAACjð8NnÞCSAðnÞpf ðnÞg
and

SIZEi:o:ð f Þ ¼ fAACjð(NnÞCSAðnÞpf ðnÞg:

Given a machineM; a resource bound t :N-N; a language LDf0; 1g�; and a natural number n;
the t-space-bounded Kolmogorov complexity of L¼n relative to M is

KSt
MðL¼nÞ ¼ minfjpj j Mðp; nÞ ¼ wL¼n

in ptð2nÞ spaceg;
i.e., the length of the shortest program p such that M; on input ðp; nÞ; outputs the characteristic
string of L¼n and halts without using more than tð2nÞ workspace. Similarly the t-time-bounded
Kolmogorov complexity of L¼n relative to M is

KTt
MðL¼nÞ ¼ minfjpj j Mðp; nÞ ¼ wL¼n

in ptð2nÞ timeg;
Well-known simulation techniques show that there exists a machine U which is optimal in the
sense that for each machine M there is a constant c such that for all t; L and n we have

KSctþc
U ðL¼nÞpKSt

MðL¼nÞ þ c

and

KT
ct log tþc
U ðL¼nÞpKTt

MðL¼nÞ þ c:

As usual, we fix such a universal machine and omit it from the notation.
For each resource bound t :N-N and function f :N-N we define the following complexity

classes.

KStð f Þ ¼ fLACjð8NnÞKStðL¼nÞof ðnÞg

KTtð f Þ ¼ fLACjð8NnÞKTtðL¼nÞof ðnÞg

KSt
i:o:ð f Þ ¼ fLACjð(NnÞKStðL¼nÞof ðnÞg

KTt
i:o:ð f Þ ¼ fLACjð(NnÞKTtðL¼nÞof ðnÞg
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Our first lemma provides inclusion relationships between some SIZE and KS classes defined using
the scales.

Lemma 4.1. There exists a constant c0AN such that for all i40; aA½0; 1�; and e40;

SIZEðgið2n; aÞÞDKSc0nþc0ðgið2n; aþ eÞÞ:

Proof. It was shown in [13] that there exists a polynomial q0 and a constant d such that for all

ADf0; 1g� and nAN;

KSq0ðA¼nÞofAðnÞðd þ log fAðnÞÞ;
where fAðnÞ ¼ maxfCSAðnÞ; ng: From that proof it is easy to see that q0 may be taken as c0n þ c0
for some c0AN: Also, for i40;

gið2n; aÞðd þ log gið2n; aÞÞ ¼ oðgið2n; aþ eÞÞ:
The lemma follows using these facts. &

The next two lemmas present positive-order dimension lower bounds for some SIZE classes.

Lemma 4.2. For all iX1 and aAð0; 1�; for all sufficiently large n there are at least 2gið2n;aÞ different

sets BDf0; 1gn
that are decided by Boolean circuits of fewer than gið2n; aÞ gates.

Proof. Let mðnÞ ¼ Jlog gið2n; aÞn: For n large enough, mðnÞon: Then there are 22
mðnÞ

X2gið2n;aÞ

different sets CDf0; 1gmðnÞ: Fix E40: For all sufficiently large n; Lupanov [12] has shown that

each of these sets is decided by a circuit of at most 2
mðnÞ

mðnÞð1þ EÞ gates. Now for sufficiently large n;

2mðnÞ

mðnÞð1þ EÞp 2gið2n; aÞ
logðgið2n; aÞÞ ð1þ EÞogið2n; aÞ:

Thus, for each CDf0; 1gmðnÞ; if we let BC ¼ fwxjwAC; jxj ¼ n � mðnÞg; then BC is decided by a
Boolean circuit of fewer than gið2n; aÞ gates. &

Lemma 4.3. For every iX1; for every real aA½0; 1�;
dimðiÞðSIZEðgið2n; aÞÞjESPACEÞXa:

Proof. This is clear if a ¼ 0; so assume that aAð0; 1�: Let s; a0AQ be such that 0osoa0oa; and let
d be a pspace-computable sðiÞ-gale. It suffices to show that SIZEðgið2n; aÞÞ-ESPACED/ SN½d�:
By Lemma 4.2, there is a N1 such that for all nXN1; there are at least 2

gið2n;a0Þ different sets
BDf0; 1gn that are decided by Boolean circuits of fewer than gið2n; a0Þ gates. By Corollary 3.8, for
all w such that jwj ¼ 2n � 1; there are fewer than 2gið2n;a0Þ sets BDf0; 1gn such that

dðwuÞ42�gið2n;a0Þ2D
2n giðjwj;sÞdðwÞ; where u is the characteristic string of B: Let N2 be such that

D2
n

gið2n � 1; sÞ � gið2n; a0Þo0 for all nXN2:
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We now define a language A inductively by lengths. Let N ¼ maxðN1;N2Þ: We start with
AoN ¼ |: Let nXN and assume that Aon has been defined by characteristic string w: Let u be the
lexicographically first string of length 2n such that dðwuÞodðwÞ and the set with characteristic
string u can be decided by a circuit of less than gið2n; a0Þ gates. By the previous paragraph, A is
well-defined and AeSN½d�: Since d is pspace-computable, AAESPACE; and by definition,
AASIZEðgið2n; a0ÞÞDSIZEðgið2n; aÞÞ: &

We now give positive-order scaled dimension upper bounds for some KS classes defined using the
scales.

Lemma 4.4. For all iX0; for any polynomial q; and any aA½0; 1�;
dimðiÞ

pspaceðKSqðgið2n; aÞÞÞpa:

Proof. Let q be a polynomial, let aAð0; 1Þ; and let s; a0 be rational with 14s4a04a: Define
d :N� f0; 1g�-½0;NÞ inductively as follows. For kAN with 2k

Xai þ 2; (recall that
gi : ðai;NÞ � ½0;NÞ-R)

(i) For wAf0; 1g� with jwjpai þ 1; let dkðwÞ ¼ 1:
(ii) For wAf0; 1g� with ai þ 1pjwjo2k � 1; bAf0; 1g; let dkðwbÞ ¼ 2Dgiðjwj;sÞ�1dkðwÞ:
(iii) Assume that dkðwÞ has been defined, where jwj ¼ 2n � 1 for some nAN; nXk: For each u with

0ojujp2n; define dkðwuÞ ¼ 2Djujgiðjwj;sÞrðuÞdkðwÞ; where

rðuÞ ¼ jfpjjpjogið2n; a0Þ4uLUðp; nÞ in pqð2nÞ spacegj
2gið2n;a0Þ � 1 :

It is easy to check that d is pspace-computable and that for each k; dk is a sðiÞ-gale. The definition
of dk implies that if jwj ¼ 2n � 1 and u is the characteristic string of a set BDf0; 1gn with
KSqðB¼nÞogið2n; aÞogið2n; a0Þ; then for sufficiently large n;

dkðwuÞX 2D2
n
giðjwj;sÞ 1

2gið2n;a0Þ � 1dkðwÞ

4 2D
2n giðjwj;sÞ�gið2n;a0Þ dkðwÞ

¼ 2gið2nþ1�1;sÞ�gið2n�1;sÞ�gið2n;a0ÞdkðwÞ:
Since s4a0;

giðm; a0Þ ¼ oðgið2m � 1; sÞ � giðm � 1; sÞÞ;
then for n large enough, dkðwuÞX2dkðwÞ: This implies that if

Yk ¼ fLACjð8nXkÞKSqðL¼nÞogið2n; aÞg;

YkDSN½dk�: Therefore d witnesses that KSqðgið2n; aÞÞ is a pspace-union of the pspaceðiÞ-
dimensioned sets Y0;Y1;y: Lemma 3.16 then yields

dimðiÞ
pspaceðKSqðgið2n; aÞÞÞpa: &
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Now we are able to present exact scaled-dimension results for circuit-size complexity classes
defined in terms of the positive scales. Note that in each case, we have obtained the ‘‘best’’ order at
which to measure the dimension of the class.

Theorem 4.5. Let iX1 and aA½0; 1�: Then

dimðiÞðSIZEðgið2n; aÞÞjESPACEÞ ¼ a:

In particular,

dimð1ÞðSIZEð2anÞjESPACEÞ ¼ a

and

dimð2ÞðSIZEð2naÞjESPACEÞ ¼ a:

Proof. By Lemma 4.1 we have SIZEðgið2n; aÞÞDKSc0nþc0ð2n; aþ eÞ for all e40: The theorem then
follows from Lemmas 4.3 and 4.4. &

At this point, we could use Lemmas 4.1 and 4.3 to give scaled dimension lower bounds for some
KS classes defined using the positive scales. Also, proving an analogue of Lemma 4.1 for KT
complexity will yield scaled dimension lower bounds for similar KT classes. However, taking a
direct approach to these lower bounds yields slightly stronger results for KT complexity. In the
next lemma we do this, and we also obtain scaled dimension lower bounds for all orders (not just
the positive ones) at the same time.

Lemma 4.6. There exist constants c1; c2AN such that for all iAZ and aA½0; 1�;
dimðiÞðKTc1nlog nþc1ðgið2n; aÞÞjESPACEÞXa

and

dimðiÞðKSc2nþc2ðgið2n; aÞÞjESPACEÞXa:

Proof. Let soa be rational. Define mðnÞ ¼ Jgið2n; sÞn for each nAN: For each xAf0; 1gmðnÞ; let

BxDf0; 1gn be the set with characteristic string x02
n�mðnÞ: LetM be a machine that on input ðx; nÞ

outputs x02
n�jxj: Then there are constants c and d such that for all xAf0; 1gmðnÞ;

KT
cðdnÞlogðdnÞþc
U ðBxÞpKTdn

MðBxÞ þ c

pmðnÞ þ c

¼Jgið2n; sÞnþ c:

We let c1 be such that cdnlogðdnÞ þ cpc1n log n þ c1 for all n: For all sufficiently large n;
gið2n; sÞ þ c1 is bounded by gið2n; aÞ since soa: Similarly, we obtain

KSc2nþc2
U ðBxÞpgið2n; aÞ

for all xAf0; 1gmðnÞ and for some c2:
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Let d be a pspace-computable sðiÞ-gale. By Corollary 3.8, for all w with jwj ¼ 2n � 1; there are
fewer than 2gið2n;sÞ strings uAf0; 1g2

n

such that dðwuÞ42�gið2n;sÞ2D
2n giðjwj;sÞdðwÞ: For all sufficiently

large n; we have constructed at least 2gið2n;sÞ sets BDf0; 1gn with KTc1nlog nþc1ðBÞpgið2n; aÞ: As in
the proof of Lemma 4.3, we can define a language

AA½KTc1n log nþc1ðgið2n; aÞÞ-ESPACE� � SN½d�:
Analogously, we also obtain

KSc2nþc2ðgið2n; aÞÞ-ESPACED/ SN½d�: &

Now we can state exact scaled dimension results for some KS and KT classes in the zeroth- and
positive-order scales.

Theorem 4.7. Let iX0; aA½0; 1�; and t :N-N be a polynomially-bounded function. Let c1 and c2 be
as in Lemma 4.6. If tðnÞXc1n log n þ c1 almost everywhere, then

dimðiÞðKTtðgið2n; aÞÞjESPACEÞ ¼ a;

and if tðnÞXc2n þ c2 almost everywhere, then

dimðiÞðKStðgið2n; aÞÞjESPACEÞ ¼ a:

In particular, for any polynomial qðnÞXn2;

dimð1ÞðKTqð2anÞjESPACEÞ ¼ dimð1ÞðKSqð2anÞjESPACEÞ ¼ a;

and

dimð2ÞðKTqð2naÞjESPACEÞ ¼ dimð2ÞðKSqð2naÞjESPACEÞ ¼ a:

Proof. This follows immediately from Lemmas 4.4 and 4.6. &

Now we give an upper bound on the scaled dimension of some KS classes for the negative
scales. In the negative orders, we are able to work with classes of the infinitely-often type.

Lemma 4.8. Let ip� 1; q be a polynomial, and aA½0; 1�: Then

dimðiÞ
pspaceðKS

q
i:o:ðgið2n; aÞÞÞpa:

Proof. Let q be a polynomial, let aAð0; 1Þ; and let s; a0 be rational such that 14s4a04a: Define
for each nAN a function dn : f0; 1g�-½0;NÞ inductively as follows. For nAN with 2n

Xajij þ 2;

(i) For wAf0; 1g� with jwjpajij þ 1; let dnðwÞ ¼ 2�gjijð2n;1�sÞ:

(ii) For wAf0; 1g� with ajij þ 1pjwjo2n � 1; bAf0; 1g; let dnðwbÞ ¼ 2Dgiðjwj;sÞ�1dnðwÞ:
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(iii) Assume that dnðwÞ has been defined, where jwj ¼ 2n � 1: For each u with 0ojujp2n; define

dnðwuÞ ¼ 2Djujgiðjwj;sÞrðuÞdnðwÞ; where

rðuÞ ¼ jfpjjpjogið2n; a0Þ4uLUðp; nÞ in pqð2nÞ spacegj
2gið2n;a0Þ � 1 :

(iv) For wAf0; 1g� with jwjX2nþ1 � 1; bAf0; 1g; let dnðwbÞ ¼ 2Dgiðjwj;sÞ�1dnðwÞ

It is easy to check that for each n; dn is a pspace-computable sðiÞ-gale. The definition of dn implies

that if jwj ¼ 2n � 1 and u is the characteristic string of a set BDf0; 1gn with
KSqðB¼nÞogið2n; aÞogið2n; a0Þ; then for sufficiently large n;

dnðwuÞX 2D2
n
giðjwj;sÞ 1

2gið2n;a0Þ � 1 dnðwÞ

4 2D
2n giðjwj;sÞ�gið2n;a0ÞdnðwÞ

¼ 2D
2n giðjwj;sÞ�gið2n;a0Þ2D

jwj�ajij�1giðajijþ1;sÞ�jwjþajijþ1�gjijð2n;1�sÞ

¼ 2gið2nþ1�1;sÞ�giðajijþ1;sÞ�gið2n;a0Þ�jwjþajijþ1�gjijð2n;1�sÞ

¼ 2gjijð2n;1�a0Þ�gjijð2nþ1�1;1�sÞ�gjijð2n;1�sÞþgjijðajijþ1;1�sÞ�gjijð2n;0Þ:

Since s4a0;

gjijð2m � 1; 1� sÞ þ gjijðm; 1� sÞ ¼ oðgjijðm; 1� a0Þ:
Then for n large enough, dnðwuÞX1: This implies that if

Yn ¼ fLACjKSqðL¼nÞogið2n; aÞg;

then YnDS1½dn�: Since for each w with jwj ¼ ajij þ 1;
P

N

n¼0dnðwÞ is pspace-convergent, by Lemma
3.17 it holds that dimðiÞ

pspaceðKS
q
i:oð2gið2n;aÞÞÞpa: &

Our final theorem is an exact scaled dimension result analogous to Theorem 4.7 for the negative
scales. Here the dimension is invariant if we change the type of the class from almost-everywhere
to infinitely-often.

Theorem 4.9. Let ip� 1; aA½0; 1�; and t :N-N be a polynomially-bounded function. Let c1 and c2
be as in Lemma 4.6. If tðnÞXc1n log n þ c1 almost everywhere, then

dimðiÞðKTtðgið2n; aÞÞjESPACEÞ ¼ dimðiÞðKTt
i:o:ðgið2n; aÞÞjESPACEÞ ¼ a;

and if tðnÞXc2n þ c2 almost everywhere,

dimðiÞðKStðgið2n; aÞÞjESPACEÞ ¼ dimðiÞðKSt
i:o:ðgið2n; aÞÞjESPACEÞ ¼ a:

In particular, for any polynomial qðnÞXn2;

dimð�1ÞðKTqð2nð1� 2�anÞÞÞjESPACEÞ ¼ dimð�1ÞðKSqð2nð1� 2�anÞÞÞjESPACEÞ ¼ a:

Proof. This follows from Lemmas 4.6 and 4.8. &
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