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Genetic Polymorphisms
of Hepatic Lipase and
Cholesteryl Ester Transfer
Protein, Intermediate
Phenotypes, and Coronary Risk
Do They Add Up Yet?*
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Hepatic lipase (HL) and cholesteryl ester transfer protein
(CETP) are key enzymes of plasma lipid/lipoprotein me-
tabolism (1,2).

BACKGROUND

Hepatic lipase. The HL gene (or LIPC), located on
chromosome 15 (15q21-23), spans over 60 kb, contains 9
exons and 8 introns (3), and has substantial homology with
lipoprotein lipase (LPL). Together with endothelial and
pancreatic lipases, they process �150 g of dietary triglycer-
ide daily (1,2). In contrast to LPL, the synthesis, location,
and function of HL are restricted to the liver. The LPL is
responsible for the first phase of lipolysis of very-low density
lipoproteins (VLDL) and chylomicrons. As particle size
decreases, HL plays an increasing role; HL also hydrolyzes
core triglycerides and phospholipids in HDL2 and HDL3
(high-density lipoprotein), being most efficient for Lp(AI,
AII)-containing particles. The HL activity negatively cor-
relates with HDL cholesterol (HDL-C) levels.
CETP. The CETP gene, located on chromosome 16
(16q21) (4), specifies a 66 to 74 kDa hydrophobic glyco-
protein, which is expressed in liver, spleen, adipose tissue,
kidney, and skeletal muscle (1,2). The CETP is localized
primarily on larger, Lp(AI)-containing HDL particles, and
its principal role is to catalyze the exchange of triglycerides
from apoB-containing particles (e.g., LDL, VLDL) for
cholesteryl esters from HDL (1).
Common reduced-function variants of HL and CETP.
Both loss of function mutations, which are rare, and the
more common reduced-function allelic variants of HL and
CETP structural or regulatory domains have been described
(3,4). As Andersen et al. (5) summarize in this issue of the
Journal, four linked single nucleotide polymorphisms

(SNPs) in the HL promoter have been discovered and are
associated with reduced HL activity. These variant alleles
are common, such that almost 40% of Caucasians are
heterozygous or homozygous carriers (5).

A common SNP for CETP has been extensively studied,
which creates a TaqI restriction site. Although this SNP is
located within intron 1, the TaqIB2 allele has been associ-
ated with reduced CETP activity. Strong linkage associa-
tion with the C�629A CETP promoter polymorphism,
which influences gene expression and CETP activity, may
provide an explanation (6). In this issue of the Journal,
Blankenberg et al. (7) examine further the C�629A poly-
morphism and a linked structural-domain variant, I405V.

See pages 1972 and 1983

Consistent intermediate (HDL) phenotype accompanies
loss-of-function variants. Plasma HDL-C shows an in-
verse relationship with atherosclerosis in the general popu-
lation, which may be explained (at least in part) by the role
of HDL in mediating reverse cholesterol transport (RCT).
Accordingly, HDL-C is widely used as a biomarker for
coronary risk. As noted, several common HL and CETP
variants have been associated with reduced enzymatic mass
and activity (6,8–15). The HL gene accounts for one-fourth
of genetic variation in HDL-C levels (16). Both HL
(5,8,10,11,17–20) and CETP (7,12–14,21–27) loss-of-
function variant carriers consistently have been associated
with higher HDL-C levels (and higher apolipoprotein AI
levels, when measured).
Inconsistent effect on clinical (disease) phenotype.
Despite the consistent impact of genetic variation in HL
and CETP on lipids and lipoproteins, their effect on clinical
phenotype is controversial (Table 1). Hypothetically, if
HDL-C is a surrogate for RCT, variant allele carriage
should be antiatherogenic. Conversely, higher HDL2 may
signal reduced RCT flux due to reduced enzymatic function;
in this case, allele carriage would be proatherogenic (5,28).
Into this controversy step the studies of Andersen et al. (5)
and Blankenberg et al. (7).

CURRENT STUDIES

Andersen et al. (5) investigated an association between three
SNPs in the HL promoter, levels of HDL-C, and risk of
ischemic heart disease (IHD). A large (N � 9,121) repre-
sentative sample of Copenhagen residents was genotyped, of
which 957 had IHD. To expand the disease population, 921
additional IHD patients were added. The three variant HL
alleles were common (frequencies, 0.21 to 0.22) and tightly
linked. Levels of HDL-C and apolipoprotein AI increased
in a stepwise fashion from wild-type to triple heterozygous
to triple homozygous status. Clinical IHD, defined as
previous myocardial infarction (MI) and/or cardiologist-
diagnosed angina pectoris, was more prevalent, with an odds
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ratio (OR) of 1.5 ([confidence interval] CI 1.0 to 2.2) for
homozygotes (�5% of subjects) compared with wild-type
subjects. Increased IHD prevalence persisted after adjust-
ment for age, gender, and HDL-C (OR � 1.4, CI 1.1 to
1.9). The impact of HL variant homozygosity on disease
was amplified in the presence of the relatively atherogenic
�43 apolipoprotein E genotype, the adjusted OR increasing
to 2.0 (CI 1.2 to 3.2).

This “paradoxic” association with IHD despite higher
HDL-C finds support in a recent German trial (28).
Among 200 men undergoing elective coronary angiography,
Dugi et al. (28) found the presence of the �514T HL
promoter variant to be strongly associated with lower HL
activity (p � 0.001) and greater angiographic coronary
artery disease (CAD) extent (p � 0.05). The association was
accounted for mainly by patients with normal HDL-C
levels (�37 mg/dl). This HDL-C “paradox” was attributed
to loss of RCT functions dependent on HL, such as
formation of nascent, pre-� HDL particles and HL-
enhanced uptake of cholesteryl ester from HDL by the
hepatic SR-B1 receptor. Low-variant HL activity was
proposed to be atherogenic primarily in the setting of
normal HDL-C, whereas high-variant HL activity might
be insufficient to compensate for reduced HDL with asso-
ciated loss of the anti-inflammatory and antithrombotic
properties.

Andersen et al. (5) also ascribe to this explanation: higher
HDL-C associated with HL variants might mark reduced
flux through the RCT system, whereas in most other
contexts it reflects increased capacity. In further support,
they draw an analogy to previous studies from Copenhagen
(23) (and elsewhere [22]) where CETP loss-of-function
variants resulted in increased HDL-C but were associated
with increased IHD risk.

In contrast to the antiatherogenic view of HL is an
angiographic study of lipid-lowering in 49 men with mixed
dyslipidemia (11). Treated subjects with the wild-type
genotype had the greatest decrease in HL activity, improve-
ment in HDL2-C and LDL buoyancy, and angiographic
regression. Given differing patient populations, study size
and design, therapeutic interventions, and end points, the
implications of this smaller study in the present context
remain unclear (11). However, these divergent results high-
light the complexity of lipid/lipoprotein metabolism associ-
ated with HL and the dependence of clinical outcomes on
both multiple interacting environmental (14) and genetic
factors.

Blankenberg et al. (7) investigated associations among
CETP C�629A and I405V polymorphisms, CETP activ-
ity, HDL-C, and the risk of fatal cardiovascular events. The
study population included 1,211 German CAD patients in
the AtheroGene study who were genotyped and prospec-
tively followed for a median of four years, during which time
82 fatal cardiovascular events occurred. The two polymor-
phisms studied were found to be linked, with C�629A
better explaining the outcomes. The variant �629A alleleTa
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(38% prevalence) was associated with lower CETP activity
(with an allele dosage effect) and higher HDL-C. Mortality,
but not other cardiovascular outcomes, was substantially
lower for carriers of one or two A alleles (4.6%, 4.0%) than
for wild-type homozygotes (10.4%, p � 0.0001). Statin
therapy was of benefit only in the high-risk CC (wild-type)
patients, in whom it neutralized the genotype-associated
hazard.

Given the tight linkage between the �629A and the
TaqIB2 variant alleles (6,15), the Blankenberg et al. study
(7) supports earlier observations from REGRESS, which
found an effect of pravastatin on atherosclerosis progression
only in B1B1 (homozygous wild-type) subjects (21). The
intermediate (1HDL-C, 2CETP) phenotype-by-
genotype result also is consistent with several earlier studies.
Mechanistically, it might be hypothesized that statins act by
decreasing CETP activity and cholesteryl ester transport
from protective HDL to atherogenic VLDL. However,
differences in survival by genotype were shown to be
independent of HDL-C, CETP activity, and clinical co-
variables (7). Statin therapy was not randomized, and
change in lipids by genotype with therapy was not assessed.
Hence, the mechanism of survival advantage is unclear.

The AtheroGene clinical result is in contrast to several
other studies, that found either no relationship of genotype
to IHD risk or an opposite association (higher risk, greater
treatment benefit for variant allele carriers) (Table 1)
(14,22,23,27,29). Indeed, directionally different results for
CETP I405V risk were reported from the neighboring
Danish group (relative risk 1.4; CI 1.0 to 1.9 for women
carriers of the 405V variant) (23). Of course, the studies
differ in design, including baseline disease, gender, HDL-C,
and therapy. But the example is illustrative of the lack of a
consistent correlation of CETP genotype with clinical
outcome.

Brown et al. (2) proposed that apparently conflicting
findings could be reconciled if CETP activity were either
protective or harmful depending on the atherogenicity of
the apoB particles receiving cholesteryl ester from HDL.
Genetically increased CETP would be protective and re-
duced CETP atherogenic in populations at low cardiovas-
cular risk (low LDL-C, high HDL-C) and with low CAD
prevalence (22,24), whereas the reverse would occur in
high-risk (high LDL-C, low HDL-C), high-CAD-
prevalence groups. This hypothesis deserves further inves-
tigation, but it does not appear to reconcile all reported
studies (7,27,29).

DISCUSSION

The discovery of common genetic diversity within the
human genome, including over four million SNPs (�1%
functionally active), has raised the hope that there will be
increased understanding of disease pathogenesis, improved
individual risk prediction, and customized preventive and
therapeutic measures (pharmacogenomics). This promise

has not yet been realized. The relation of high versus low
levels of HL and CETP activity to HDL-C levels and
overall risk is complex and likely situation-dependent.
Accurate, readily measured markers of RCT flux are not
available (HDL-C alone appears inadequate) but are certainly
needed. Despite relatively consistent biomarker associations,
inconsistent disease associations are a major impediment to the
clinical application of genetic polymorphism determinations.

What might explain these discrepancies? Despite their
promise, genetic association studies have been fraught with
inconsistencies and failures of replication (30). Proposed
explanations include chance associations (or missed associ-
ations) in populations of small size, publication bias (toward
positive studies), population stratification artifacts (and
other design issues in the selection of cases and controls)
(28), imprecision in phenotyping and outcome assessment,
and the use of SNPs themselves as genetic markers (31).
Moreover, it appears unlikely that common genetic variants,
allowed by natural selection to become highly prevalent, will
have strong independent risk associations.

Rather, multiple interacting genetic and environmental
factors (diet, exercise, drugs) likely will need to be accounted
for to predict risk reliably. We recently proposed the
concept of “genetic burden” (32). Individual dysfunctional
polymorphisms not associated individually with discernible
excess risk might progressively increase aggregate risk if
considered together. Redundancy within metabolic path-
ways might allow for compensation for deficiency in one
enzyme, but a combination of deficiencies in a series of
proteins in a critical pathway (e.g., among genes for RCT)
could progressively overwhelm compensatory mechanisms.

Finally, it recently has been proposed that “haplotype
blocks” rather than individual SNPs may be the preferred
unit of genetic risk. The SNPs do not occur in random
combinations but in a relatively few fixed patterns within
variably sized domains of deoxyribonucleic acid (“haplotype
blocks”) delimited by hot spots of meiotic recombination
(33). Determining the net effect on disease risk of all
co-inherited genetic polymorphisms within a haplotype
block is an appealing avenue for clinical investigation.

In summary, the studies of Andersen et al. (5) and
Blankenberg et al. (7) highlight the potential of HL and
CETP polymorphisms to influence coronary heart disease
(CHD) risk in carefully defined populations. However,
taken together (Table 1) (34,35) association studies con-
tinue to defy simple characterization, and before clinical
application can be considered, many questions still must be
answered. Certainly, a need for replication exists, including
prospective studies in very large and well-defined popula-
tions (with �500 to 1,000 events). Interventions (e.g., with
statin therapy) should be randomized by genotype. Genetic
and environmental modifiers should be carefully controlled.
Combinations of polymorphisms in multiple genes in crit-
ical pathways (“genetic burden”) should be assessed, and
haplotypes (not just SNPs) should be evaluated. With
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substantial effort and patience, the vision of gene-based
medicine may yet be realized (36).

Reprint requests and correspondence: Dr. Jeffrey L. Anderson,
University of Utah School of Medicine, Cardiovascular Depart-
ment, 8th Avenue and C Street, Salt Lake City, Utah 84143.
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