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TO THE EDITOR
Basal cell carcinomas (BCCs) are locally
invasive epithelial tumors that are
caused by activating mutations in the
Hedgehog (HH) pathway, typically
through the loss of the receptor Patched1
or by activating the G-protein-coupled
receptor Smoothened (SMO). Genomic
analysis by our group and others have
revealed that BCCs are typically diploid
and carry a high frequency of non-silent
single-nucleotide variants (SNVs) com-
pared with other cutaneous and non-
cutaneous tumors (Alexandrov et al.,
2013; Atwood et al., 2014; Jayaraman
et al., 2014; Atwood et al., 2015). Given
their high mutational load, how these
variants confer selective tumor growth
without deleterious effects remains
poorly understood. We previously
identified and functionally validated
nine SMO mutations that drive the
majority of drug resistance in BCC thro-
ugh two distinct mechanisms that
maintain HH signaling in the presence
of drug: induction of constitutive activity
and disruption of ligand binding
(Atwood et al., 2015). However, SMO
mutations with unclear function are
frequently found across many HH
and non-HH-dependent cancers, with
drug-resistant BCCs bearing the highest

rate of recurrent mutations at 66%
(Figure 1a).
To determine how these additional

SMO mutations promote tumor growth,
we identified 28 mutations through our
genomic analysis of 44 drug-resistant
and 36 sporadic BCCs that were either
recurrent, found to overlap with the
COSMIC database, or were region-
specific (ligand-binding pocket or pivot
region) and interrogated their ability to
promote HH signaling (Figure 1b, c).
We expressed wild-type human SMO
(SMO-WT) or SMO mutants in Smo-null
mouse embryonic fibroblasts (MEFs) to
assess the ability of these variants to
activate the HH pathway with or with-
out ligand (Supplementary Materials
online). SMO-W535L is a known con-
stitutively active mutant that was pre-
sent in many of our tumor samples and
significantly increased basal HH activity
in the absence of HH ligand as deter-
mined by mRNA levels of the HH target
gene Gli1 (Figure 2a). No other SMO
variant induced constitutive activity,
including SMO-WT and the known
ligand-binding pocket mutant SMO-
D473G (Yauch et al., 2009), suggest-
ing that these variants could not confer
tumor growth by themselves. This was
surprising, as several of the residues
(A327P, T336I, V414A, and T534I) lie

in the pivot regions of transmembrane
helices 3, 5, and 7, which control SMO
activation (Figure 1c) and correspond to
residues 320–340, 410–415, and 530–
540 from the SMO crystal structure
(Wang et al., 2013; Atwood et al.,
2015). Addition of HH ligand revealed
a range of responses from the SMO
variants to activate the pathway. No
SMO mutation conferred a statistically
significant increase in SMO activity,
with the majority of variants acting as
passenger mutations (Figure 2b). How-
ever, 13 variants disrupted SMO activity
by 50% or more, with 7 of the variants
effectively abolishing activity. How the
tumor could withstand the loss of SMO
activity remains unclear, although only
one functional copy of SMO is neces-
sary to transduce the HH signal.
To assess the ability of the SMO

variants to confer drug resistance to
vismodegib, the current FDA-approved
SMO antagonist, we added both HH
ligand and 100 nM vismodegib to the
Smo-null MEFs and assayed for HH
activation. SMO-D473G and SMO-
W535L both resisted SMO inhibition
and displayed robust activation as
expected (Figure 2c). However, no
other SMO variant conferred vismode-
gib resistance, suggesting that these
mutations could not confer drug resis-
tance and that the resistance mechan-
ism in these tumors would be
independent of SMO. This is also
surprising as seven of these variants; ;Accepted article preview online 24 March 2015; published online 14 May 2015

Abbreviations: BCC, basal cell carcinoma; HH, Hedgehog; MEF, mouse embryonic fibroblast; SMO,
Smoothened; SNV, single-nucleotide variant; WT, wild type
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(L221P, V386A, C390R, V404M,
N476K, E481G, and P513L) lie in the
ligand binding pocket of SMO where
vismodegib sits to repress protein func-
tion (Figure 1c). Because the concentra-
tion of vismodegib in our screening
assay was roughly 12-fold above the
IC50 and data from our previous studies
demonstrated that even small changes
in IC50 appeared to provide a growth
advantage (Atwood et al., 2015), we
assessed vismodegib sensitivity of the
SMO mutants at low drug concen-
trations near the IC50 of 10 nM and
20 nM. Using this more sensitive
assay, SMO-D473G and SMO W535L
maintained Gli1 mRNA levels as

expected; however, the other SMO
mutants displayed a vismodegib res-
ponse similar to SMO-WT (Figure 2d).
Altogether, our results reveal a

surprising frequency of neutral and
inactivating SMO variants in our drug-
resistant BCC tumor population that
provides a broader view to our recently
described set of variants that confer
drug resistance (Atwood et al., 2015).
Our data support a model in which
tumors are permissive to genetic
mutations, generating many genetically
diverse clones that compete as a
way to grow. This ability to “roll the
genetic dice” allows many mutations
in key genes like SMO that would have

activating, neutral, or negative effects
on the cell. However, a small percen-
tage of clones fortunate enough to
contain activating mutations would
continue to divide and contribute to a
larger fraction of the tumor mass.
Interestingly, SMO loss-of-function
mutations would have no adverse effect
on tumor growth as only one normal
SMO gene is necessary to confer HH
pathway activation, essentially making
loss-of-function alleles similar to neutral
mutations. Our functional studies
included many variants that are recur-
rent in other genomic databases and
argue against recurrent alleles necessa-
rily imparting functional relevance.
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Rather, asymmetric distribution of var-
iations could reflect bias in genome-
wide chromatin accessibility or DNA
repair mechanisms. On a cellular level,
this suggests that individual tumor cells
can be genetically distinct from each
other and harbor many mutations, even
in drivers like SMO, and have no
negative effects on the growth of the
tumor. Although our results focus on the
SMO locus, similar strategies may be
operative at other genetic loci, and
tumors with high SNV frequencies may
generate drug resistance at a higher rate.
Moreover, as we expand our use of
high-throughput sequencing of tumors
for personalized medicine, our results
present a cautionary tale to functionally
validate any mutation before conclud-
ing their ability to exert oncogenic
effects.
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