
Clausal Tableaux for Hybrid PDL

Mark Kaminski Gert Smolka

Saarland University
Saarbrücken, Germany

Abstract

We present the first tableau-based decision procedure for PDL with nominals. The procedure is based
on a prefix-free clausal tableau system designed as a basis for gracefully degrading reasoners. The clausal
system factorizes reasoning into regular, propositional, and modal reasoning. This yields a modular decision
procedure and pays off in transparent correctness proofs.

Keywords: hybrid logic, dynamic logic, tableau systems, decision procedures

1 Introduction

PDL (propositional dynamic logic) [6,13,9] is an expressive modal logic invented

for reasoning about programs. It extends basic modal logic with expressions called

programs. Programs describe relations from states to states and are used to ex-

press modalities. Programs are composed with the operators familiar from regular

expressions. In addition, they may employ formulas so that conditionals and while

loops can be expressed. Fischer and Ladner [6] show the decidability of PDL using

a filtration argument. They also prove that the satisfiability problem for PDL is

EXPTIME-hard. Pratt [17] shows that PDL satisfiability is in EXPTIME using

a tableau method with an and-or graph representation. Goré and Widmann [7,8]

address the efficient implementation of Pratt-style decision procedures.

We consider PDL extended with nominals [14,15], a logic we call hybrid PDL

or HPDL. Nominals are atomic formulas that hold exactly for one state. Nominals

equip PDL with equality and are the characteristic feature of hybrid logic [2]. The

satisfiability problem of HPDL is in EXPTIME [15,18].

We are interested in a tableau system for HPDL that can serve as a basis for

gracefully degrading decision procedures. We found it impossible to extend one of

the existing tableau methods for PDL [17,5,1,7] to nominals. The difficulties are

in the correctness proofs. For Pratt-like methods [17,7], the problem stems from

the fact that the global and-or graph representation is not compatible with nominal

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 278 (2011) 99–113

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.10.009
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82600421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.10.009
http://dx.doi.org/10.1016/j.entcs.2011.10.009
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

propagation (see Remark 5.6 in [10] for a discussion and an example; the problem

is also noted in [19]).

The difficulties led us to the development of a new tableau method for modal

logic. The new method is based on a prefix-free clausal form. In a previous paper [10]

we used the method to give a tableau-based decision procedure for the sublogic of

HPDL that restricts programs to the forms a and a∗ where a is a primitive action.

In the present paper we extend the clausal method to full HPDL and obtain the

first tableau-based decision procedure for HPDL.

Our method factorizes reasoning into regular reasoning, propositional reasoning

and modal reasoning. At each level we realize reasoning with tableau methods.

Nominals are handled at the modal level. Given our approach, the integration

of nominals is straightforward. The modular structure of our decision procedure

pays off in transparent correctness proofs. Each level invites optimizations. The

regular level, in particular, asks for further investigation. It may profit from efficient

methods for translating regular expressions into deterministic automata.

In contrast to previous approaches, we do not rely on the Fischer-Ladner closure.

Instead, we use the notion of a finitary regular DNF that can be obtained at the

regular level.

Following Baader [3] and De Giacomo and Massacci [5], we disallow bad loops

and thus avoid the a posteriori eventuality checking of Pratt’s method [17].

The paper is organized as follows. First we define HPDL and outline the clausal

tableau method with examples. Then we address, one after the other, regular,

propositional, and modal reasoning. Finally, we prove the correctness of the decision

procedure.

2 Hybrid PDL

We define the syntax and semantics of HPDL. We assume that three kinds of names

are given:

• nominals (metavariables x, y, z; denote states)

• predicates (metavariables p, q, r; denote sets of states)

• actions (metavariables a, b, c; denote relations from states to states).

The interpretations of HPDL are the usual transition systems where states are

labelled with predicates and edges are labelled with actions. Formally, an interpre-

tation I is a tuple consisting of the following components:

• A nonempty set |I| of states.

• A state Ix ∈ |I| for every nominal x.

• A set Ip ⊆ |I| for every predicate p.

• A relation
a
→I ⊆ |I| × |I| for every action a.

Formulas (metavariables s, t, u) and programs (α, β, γ) are defined as follows:

s ::= x | p | ¬s | s ∧ s | 〈α〉s

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113100

α ::= a | s | 1 | α+ α | αα | α∗

The grammar is to be read inclusive, that is, every nominal and every predicate is a

formula, and every action and every formula is a program. Given an interpretation,

formulas denote sets of states and programs denote relations from states to states.

We use the letters X, Y , Z to denote states. The semantic relations I,X |= s

and X
α

−→I Y are defined by mutual induction on the structure of formulas and

programs:

I,X |= x ⇐⇒ X = Ix

I,X |= p ⇐⇒ X ∈ Ip

I,X |= ¬s ⇐⇒ not I,X |= s

I,X |= s ∧ t ⇐⇒ I,X |= s and I,X |= t

I,X |= 〈α〉s ⇐⇒ ∃Y : X
α

−→I Y and I, Y |= s

X
a

−→I Y ⇐⇒ X
a
→I Y

X
s

−→I Y ⇐⇒ X = Y and I,X |= s

X
1

−→I Y ⇐⇒ X = Y

X
α+β
−→I Y ⇐⇒ X

α
−→I Y or X

β
−→I Y

X
αβ
−→I Y ⇐⇒ ∃Z : X

α
−→I Z and Z

β
−→I Y

X
α∗

−→I Y ⇐⇒ X
α

−→∗
I Y

α
−→∗

I denotes the reflexive transitive closure of
α

−→I

Given a set A of formulas, we write I,X |= A if I,X |= s for all formulas s ∈ A.

An interpretation I satisfies (or is a model of) a formula s or a set A of formulas if

there is a state X ∈ |I| such that I,X |= s or, respectively, I,X |= A. A formula s

(a set A) is satisfiable if s (A) has a model.

The complement ∼s of a formula s is t if s = ¬t and ¬s otherwise. Note that

∼∼s = s if s is not a double negation. We use the notations s∨ t := ¬(∼s∧∼t) and

[α]s := ¬〈α〉∼s. Note that ∼〈α〉p = [α]¬p and ∼〈α〉¬p = [α]p. The size |s| and |α|
of formulas and programs is defined as the size of the abstract syntax tree. For

instance, |ap| = |〈p〉q| = 3. Note that |s ∨ t| > |s|, |t| and |[α]s| ≥ |〈α〉s| > |α|, |s|.

3 Outline of the Method

Our tableau method is based on a clausal form, which provides for the separation

of regular, propositional, and modal reasoning. We start with a few definitions and

three examples.

A basic formula is a formula of the form p, x, or 〈aα〉s. A literal is a basic

formula or the complement of a basic formula. A clause (written C, D, E) is a

finite set of literals that contains no complementary pair (i.e., a pair of the form p,

¬p). We interpret clauses conjunctively. Satisfaction of clauses (i.e., I,X |= C) is

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 101

a special case of satisfaction of sets of formulas (i.e., I,X |= A), which was defined

in §2. For instance, the clause {〈a〉p, [a](¬p ∧ q)} is unsatisfiable.

A claim is a pair Cs consisting of a clause C and a diamond formula s. While

we do not require s ∈ C, for every claim Cs that we consider in the following it will

be the case that C supports s. The notion of support is defined formally later such

that C supporting s (or A) and I,X |= C implies I,X |= s (I,X |= A). The request

of a clause C for an action a is RaC := { [α]s | [aα]s ∈ C }. As an example, consider

the clause C = {〈ab∗〉p, 〈bb∗〉p, [a(a+ b)∗]¬p}. We have RaC = {[(a+ b)∗]¬p} and

RbC = ∅.

Our tableau method works on clauses and links (to be formally defined later)

rather than single formulas. Intuitively, a link is a pair of claims CsDt denoting

that in order for a model to satisfy the diamond literal s in C, it suffices to satisfy

D ∪ {t}. Given a single clause, the method tries to extend it to a tableau branch

in which every diamond literal s in every clause C is realized with a link CsDt

where D is one of the clauses of the branch. Provided the relation induced by the

links is terminating, every such branch is a model of all of its clauses. If every

branch constructed by the method fails to realize some diamond literal with a link

or contains a loop formed by links, we conclude that the input is unsatisfiable. Thus

we obtain a decision procedure for the satisfiability of clauses. At the same time,

the procedure decides the satisfiability of formulas since in HPDL a formula s is

satisfiable if and only if so is the clause {〈a〉s} (the choice of a does not matter).

The method is implemented with three reasoners. The regular reasoner decom-

poses a program α into simpler (according to some measure) programs β1, . . . , βn
such that α ≡ β1 + · · ·+ βn. For instance, a

∗ is decomposed into aa∗ and 1.

The propositional reasoner determines for every set A of formulas a set of clauses

supporting A such that I,X |= A if and only if I,X |= C for one of the clauses.

Given the formula 〈a∗〉p∧ [b∗]¬p, for instance, the propositional reasoner determines

the single clause {〈aa∗〉p, ¬p, [bb∗]¬p}.

The modal reasoner is the top-level reasoner of our tableau method. For every

satisfiable clause it constructs a finite model whose states are clauses and where

every state C satisfies the clause C. To do so, the modal reasoner starts with

the initial clause and derives further clauses until every diamond literal s in every

clause C is realized with a link. The modal reasoner calls the regular reasoner to

determine the successor formula t and the propositional reasoner to determine the

successor clause D. The tableau method terminates since the derived clauses must

take their literals from a finite set that can be determined from the initial formulas.

Let us now give three examples illustrating our method in action. At this point,

they are there to provide some additional intuition about the method and do not

have to be understood in all details. To fully understand the examples one should

review them after all of the formal prerequisites have been introduced in § 8.

Example 3.1 Consider the following literals and clauses:

s := 〈a(a+ b)∗〉p C := {t,¬p, u}

t := 〈b(a+ b)∗〉p D := {s, t,¬p, u}

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113102

u := [bb∗](¬p ∧ t) E := {p}

We start the modal reasoner with the satisfiable clause C. There is one claim Ct to

be realized. We need a clause that supports the formulas 〈(a+b)∗〉p and [b∗](¬p∧t).

The regular reasoner and the propositional reasoner determine Ct andDs as possible

successor clauses and successor literals. The modal reasoner rejects Ct since it would

introduce the loop CtCt. The pair Ds is fine and adds the clause D and the link

CtDs. The claim Ct is now realized. However, the new clause D has two unrealized

claims Ds and Dt. To realize Ds, we need a clause that supports the formula

〈(a + b)∗〉p. The regular and the propositional reasoner yield the pairs E〈1〉p, {s}s,
and {t}t. We choose E〈1〉p and add the clause E and the link DtE〈1〉p. It remains

to realize Dt. To do so, we need a clause that supports the formulas 〈(a+ b)∗〉p and

[b∗](¬p∧ t). As before, the regular and the propositional reasoner yield Ct and Ds.

Both are fine. We choose Ct and add the link DtCt. This gives us a model for the

initial clause C. A graphical representation of the model looks as follows:

C t, ¬p, u

D s, t, ¬p, u

E p

b b

a

Example 3.2 Consider the following literals:

s := 〈a(a+ b)∗〉¬p u := [a(b+ a)∗]p

t := 〈b(a+ b)∗〉¬p v := [b(b+ a)∗]p

Here is a closed tableau for the unsatisfiable clause {s, u}:

C1 = {s, u}

C2 = {s, p, u, v} C3 = {t, p, u, v}

Cs
1C

s
2 Cs

1C
t
3

C4 = {t, p, u, v} C5 = {s, p, u, v}

Cs
2C

t
4 Ct

3C
s
5

The tableau is closed since all possible links for the claims Ct
4 and Cs

5 introduce

loops. For instance, for Ct
4 the regular and the propositional reasoner yield the

links Ct
4C

s
2 and Ct

4C
t
4. Note that the clause names Ci do not act as prefixes. They

are only used for explanatory purposes.

Example 3.3 Due to the clausal form, the extension of our tableau method to

nominals is straightforward. When we add a new clause to a branch, we add to the

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 103

new clause all literals that occur in clauses of the branch that have a nominal in

common with the new clause. This takes care of nominal propagation. Clauses and

links that are already on the branch remain unchanged.

Consider the clause C = {〈aa∗〉p, [a](x∧¬p), [b]x, 〈b〉[a]¬p}. The initial tableau
just consisting of C can be developed into a maximal branch as shown below (graph-

ical representation). The numbers indicate the order in which the clauses are intro-

duced. When clause 4 is introduced, nominal propagation from clause 2 takes place.

Note that we obtain a model of all clauses on the branch by taking the clauses 1,

3, 4, and 5 as states and the triples 1a4, 1b4, 4a5, and 5a3 as transitions.

〈aa∗〉p, [a](x ∧ ¬p), [b]x, 〈b〉[a]¬p
1

x, 〈aa∗〉p, ¬p
2

x, 〈aa∗〉p, ¬p, [a]¬p
4

p 3 〈aa∗〉p, ¬p
5

4 Language-Theoretic Semantics

We define a language-theoretic semantics for programs that treats formulas as

atomic objects. This semantics is the base for the regular reasoner and decouples

it from the propositional reasoner. It is also essential for the correctness proofs of

the modal reasoner. The semantics is an adaption of the language-theoretic model

of Kleene algebras with tests [12].

The letters A, B range over finite sets of formulas. A guarded string is a finite

sequence Aa1A1 . . . anAn where n ≥ 0. The letters σ and τ range over guarded

strings. Every program corresponds to a set of guarded strings, which can be seen

as runs of the program. For instance, the program (pa)∗b¬p corresponds to the set

of all guarded strings A1aA2 . . . aAnaAn+1bAn+2 such that n ≥ 1, p ∈ A1∩· · ·∩An,

and ¬p ∈ An+2 (there are no restrictions on An+1).

The length |σ| of a guarded string σ = Aa1A1 . . . anAn is n. We use For to denote

the set of all formulas. A language is a set of guarded strings. For languages L and

L′ and sets of formulas A we define the following:

LA := {B | A ⊆ B ⊆fin For } L0 := L∅

L · L′ := {ωAω′ | ωA ∈ L, Aω′ ∈ L′ } Ln+1 := L · Ln

L∗ :=
⋃

n∈N

Ln

where ω, ω′ range over partial, possibly empty guarded strings. Note that L∗ =

L∅ ∪ (L− L∅) · L∗. We assign to every program α a language Lα:

La := {AaB | A,B ⊆fin For } L(α+ β) := Lα ∪ Lβ

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113104

Ls := L{s} L(αβ) := Lα · Lβ

L1 := L∅ Lα∗ := (Lα)∗

Note that L(s∗) = L1 = L((s+ t)∗).

Given an interpretation I, we define the relations
σ

−→I⊆ |I| × |I| by induction

on the structure of σ:

X
A

−→I Y ⇐⇒ X = Y and I,X |= A

X
Aaσ
−→I Y ⇐⇒ I,X |= A and ∃Z : X

a
−→I Z and Z

σ
−→I Y

Proposition 4.1

(i) X
α

−→I Y ⇐⇒ ∃ σ ∈ Lα : X
σ

−→I Y

(ii) I,X |= 〈α〉s ⇐⇒ ∃ σ ∈ Lα ∃Y : X
σ

−→I Y and I, Y |= s

(iii) I,X |= [α]s ⇐⇒ ∀σ ∈ Lα ∀Y : X
σ

−→I Y implies I, Y |= s

5 Regular DNF

We now describe the regular reasoner. The regular reasoner relies on the language-

theoretic semantics and ignores the propositional and modal aspects of the language.

A program is basic if it has the form aα, and normal if it is 1 or basic. Intu-

itively, a regular DNF of a program α is a decomposition of α into normal programs

β1, . . . , βn such that α ≡ β1+ · · ·+βn (or, more formally, Lα = Lβ1∪· · ·∪βn). This

simple intuition does not account for tests. The program p, for instance, cannot be

represented by any set of normal programs. Hence formally we proceed as follows.

We use Fα to denote the set of all formulas that occur in α as subprograms.

For instance, F(a¬p+ b〈ap〉q) = {¬p, 〈ap〉q}. Formulas that occur as programs are

called tests. Note that Fα does not include tests that occur in tests occurring in α.

Proposition 5.1 If s ∈ Fα, then, for every t, |s| < |¬s| < |〈α〉t| ≤ |[α]t|.

A guarded program is a pair Aα where A is a set of formulas and α is a program.

A guarded program Aα is normal if α is normal. The language of a guarded program

is L(Aα) := LA · Lα. A regular DNF is a function D that maps every program α

to a finite set Dα of normal guarded programs such that:

(i) Lα =
⋃

Bβ∈Dα

L(Bβ)

(ii) If Bβ ∈ Dα, then B ∪ Fβ ⊆ Fα.

The regular reasoner computes a regular DNF. Kleene’s theorem (regular ex-

pressions translate into finite automata) [16] suggests that regular DNFs exist. We

give a naive algorithm that computes a regular DNF. For space reasons we omit the

correctness proof. The algorithm employs the following inference rules for guarded

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 105

programs.

Aa

Aa1

As

(A ; s)1

Asβ

(A ; s)β

A1β

Aβ

A(α1 + α2)

Aα1 , Aα2

A(α1 + α2)β

Aα1β , Aα2β

A(α1α2)β

Aα1α2β

Aα∗

A1 , Aαα∗

Aα∗β

Aβ , Aαα∗β

The notation A ; s stands for the set A ∪ {s}. Also, we write programs of the form

α(βγ) without parentheses as αβγ. Given a set G of guarded programs, we denote

the closure of G under the rules with RG. One can show that RG describes the

same language as G, and that RG is finite if G is finite. If G is a set of guarded

programs, we call a guarded program Aα ∈ G minimal in G if there is no Bα ∈ G

such that B � A. We obtain a regular DNF D by taking for Dα all normal guarded

programs in R{∅α} that are minimal in R{∅α}.

Example 5.2 Consider the program (a+ b)∗. We have:

R{∅(a+ b)∗} = {∅(a+ b)∗, ∅1, ∅(a+ b)(a+ b)∗, ∅a(a+ b)∗, ∅b(a+ b)∗}

D{(a+ b)∗} = {∅1, ∅a(a+ b)∗, ∅b(a+ b)∗}

Example 5.3 Consider the program (p + q)∗ where p, q are predicates. We have

D{(p+q)∗} = {∅1}. We profit from the optimization that only the minimal guarded

programs are taken for the DNF. Otherwise D{(p+q)∗} would contain three further

elements: {p}1, {q}1, and {p, q}1.

While the above naive algorithm yields a regular DNF for every program α,

its efficiency in practice remains to be seen. For programs without tests (i.e., for

regular expressions), efficient regular DNFs can be obtained via translation into

deterministic finite automata [4]. We expect that similarly efficient regular DNFs

also exist for programs with tests.

We fix some computable regular DNF D for the rest of the paper.

Proposition 5.4

(i) I,X |= 〈α〉s ⇐⇒ ∃ Bβ ∈ Dα : I,X |= B ;〈β〉s

(ii) I,X |= [α]s ⇐⇒ ∀ Bβ ∈ Dα : (∃ t ∈ B : I,X |= ¬t) or I,X |= [β]s

Proof. Follows with Proposition 4.1. �

6 Propositional DNF

The propositional reasoner relies on a support relation from clauses to formulas that

abstracts from most modal aspects of the language. We define the support relation

C � s by recursion on s.

C � s ⇐⇒ s ∈ C if s is a literal

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113106

C � ¬¬s ⇐⇒ C � s

C � s ∧ t ⇐⇒ C � s and C � t

C � s ∨ t ⇐⇒ C � s or C � t

C � 〈1〉s ⇐⇒ C � s

C � [1]s ⇐⇒ C � s

C � 〈α〉s ⇐⇒ ∃Bβ ∈ Dα : (∀t ∈ B : C � t) and C � 〈β〉s if α not normal

C � [α]s ⇐⇒ ∀Bβ ∈ Dα : (∃t ∈ B : C � ¬t) or C � [β]s if α not normal

The last two equivalences of the definition employ the regular DNF D fixed above.

The recursion terminates since either the size of the formula is reduced (verify with

Proposition 5.1) or the recursion is on a formula 〈β〉s or [β]s where β is normal and

s is unchanged. We say C supports s if C �s. We write C �A and say C supports A

if C � s for every s ∈ A. Note that C �D ⇐⇒ D ⊆ C (recall that C and D denote

clauses).

Proposition 6.1 If C � A and C ⊆ D and B ⊆ A, then D � B.

Proposition 6.2 If I,X |= C and C � A, then I,X |= A.

Proof. Follows with Proposition 5.4. �

We define propositional DNFs as functions that, applied to a formula set A,

yield a DNF (in the traditional sense) of the conjunction of the formulas in A,

represented as a set of clauses. In other words, we require that a propositional DNF

D applied to a set A satisfies the equivalence
∧

s∈A s ≡
∨

C∈DA

∧
t∈C t.

Formally, a propositional DNF is a function D that maps every finite set A of

formulas to a finite set of clauses such that:

(i) I,X |= A ⇐⇒ ∃D ∈ DA : I,X |= D.

(ii) C � A ⇐⇒ ∃D ∈ DA : D ⊆ C.

Property (ii) for propositional DNFs immediately implies the following proposition.

Proposition 6.3 If C ∈ DA, then C � A.

In the following, we will often use Proposition 6.3 implicitly.

For the termination of the modal reasoner the propositional DNF must have

some additional finiteness property. We need a few preparatory definitions. The

variants of a program α are the basic programs β such that Bβ ∈ Dα for some B.

A base is a set U of basic formulas such that 〈β〉s ∈ U whenever 〈aα〉s ∈ U and β

is a variant of α. A base U supports a formula s if the following conditions are

satisfied:

(i) U contains every basic formula that occurs in s.

(ii) If 〈α〉t occurs in s, α is not basic, and β is a variant of α, then 〈β〉t ∈ U .

A base supports a set of formulas A if it supports every formula s ∈ A.

Proposition 6.4 Every finite set of formulas is supported by a finite base.

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 107

Proof. Follows from property (ii) for the underlying regular DNF. �

A propositional DNF D is finitary if for every finite set of formulas A and every

base U supporting A and every clause C ∈ DA it holds that U supports C.

Proposition 6.5 There is a computable finitary propositional DNF.

Proof. The definition of the support relation can be seen as a tableau-style de-

composition procedure for formulas. Using this procedure, one develops A into

a complete tableau. The literals of each open branch yield a clause. All clauses

obtained this way constitute a DNF of A.

The direction “⇐” of property (i) for propositional DNFs follows with Propo-

sition 6.2. That the DNF is finitary follows from the fact that the decomposition

does not introduce new formulas except for diamond formulas obtained with the

finitary regular DNF. �

Example 6.6 Take the regular DNF given in §5 and the propositional DNF given

in the proof of Proposition 6.5. We have:

D{〈b∗〉p} = {{p}, {〈bb∗〉p}}

D{〈b∗〉p, [b∗](q ∧ ¬p)} = {{〈bb∗〉p, q, ¬p, [bb∗](q ∧ ¬p)}}

D{〈a∗〉p, [a∗]¬p} = ∅

D{〈(a+ b)∗〉p} = {{p}, {〈a(a + b)∗〉p}, {〈b(a+ b)∗〉p}}

For the third example note that [a∗]¬p is the complement of 〈a∗〉p.

We fix some computable and finitary propositional DNF D for the rest of the

paper.

7 Diamond Expansion and Nominal Propagation

We now return to the modal reasoner, which was first explained in §3. The modal

reasoner builds a tableau where each branch contains clauses and links. The goal

consists in constructing a branch where every claim is realized with a link and

some further conditions are satisfied. We first make precise how the modal reasoner

derives new clauses.

An expansion of a claim C〈aα〉s is a claim D〈β〉s such that Bβ ∈ Dα and

D ∈ D(B ;〈β〉s ∪RaC) for some B. The following proposition formulates an im-

portant property of expansions (the proposition will not be needed later).

Proposition 7.1 Let Cs be a claim such that s ∈ C and let I satisfy C. Then

there exists an expansion Dt of Cs such that I satisfies D.

A link is a pair CsDt of two claims such that s ∈ C and there is an expansion

Et of Cs such that E ⊆ D. A quasi-branch is a finite set Γ of clauses and links

such that {C, D} ⊆ Γ whenever CsDt ∈ Γ. A quasi-branch Γ realizes a claim Cs

if Γ contains some link CsDt. A base supports a quasi-branch Γ if it supports every

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113108

clause of Γ. An interpretation I satisfies a quasi-branch Γ (or is a model of Γ) if I
satisfies every clause in Γ.

We call a clause nominal if it contains a nominal. Let Γ be a quasi-branch and A

be a set of formulas. We realize nominal propagation with the notation

AΓ := A ∪ { s | ∃x ∈ A ∃C ∈ Γ: x ∈ C ∧ s ∈ C }

Note that AΓ is the least set of formulas that contains A and all clauses C ∈ Γ that

have a nominal in common with A. Thus (AΓ)Γ = AΓ. Moreover, AΓ = A if A

contains no nominal.

Proposition 7.2 If an interpretation satisfies Γ and C, it satisfies CΓ.

Proposition 7.3 Let U be a base that supports a quasi-branch Γ, Cs be a claim

such that s ∈ C ∈ Γ, and Dt be an expansion of Cs. Then U supports DΓ.

8 Branches and Expansion Rule

A quasi-branch that realizes all its claims does not necessarily have a model. To

guarantee the existence of a model, we impose certain conditions on quasi-branches

that act as invariants of the modal reasoner. One of the conditions is loop freeness.

Example 8.1 Consider the clause C = {〈aa∗〉¬p, p, q, [aa∗](p ∧ q)}. Note that C

is unsatisfiable, and that {C, C〈aa∗〉¬pC〈aa∗〉¬p} is a quasi-branch that realizes every

claim. The link of this quasi-branch describes a loop.

A path in a quasi-branch Γ is a sequence C1
s1 . . . Cn

sn of claims such that:

(i) ∀i ∈ [1, n] : CΓ
i = Ci.

(ii) ∀i ∈ [1, n − 1] ∃D : Ci
siDsi+1 ∈ Γ and DΓ = Ci+1.

A loop in a quasi-branch Γ is a path C1
s1 . . . Cn

sn in Γ such that n ≥ 2 and

Cn
sn = C1

s1 . A branch is a quasi-branch Γ that satisfies the following conditions:

• Functionality: If CsDt ∈ Γ and CsEu ∈ Γ, then Dt = Eu.

• Loop-freeness: There is no loop in Γ.

• Nominal coherence: If C ∈ Γ, then CΓ ∈ Γ.

The core of a branch Γ is CΓ := {C ∈ Γ | CΓ = C }. A branch Γ is evident if Γ

realizes C〈α〉s for all 〈α〉s ∈ C ∈ CΓ. We will show that every evident branch has a

model. The modal reasoner works on branches and applies the following expansion

rule:

Expansion Rule

If 〈α〉s ∈ C ∈ CΓ and Γ does not realize C〈α〉s,

then expand Γ to all branches Γ ;DΓ ;C〈α〉s(DΓ)t

such that Dt is an expansion of C〈α〉s and DΓ is a clause.

Note that a single clause always yields a branch. So the modal reasoner can start

with any clause.

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 109

Proposition 8.2 The modal reasoner terminates on every branch.

Proof. Since branches are finite by definition, we know by Proposition 6.4 that the

initial branch is supported by a finite base. By Proposition 7.3 we know that the

expansion rule only adds clauses that are supported by the initial base. The claim

follows since a finite base can only support finitely many clauses. �

Given termination, the correctness of the modal reasoner can be established by

showing two properties:

(i) Model Existence: Every evident branch has a model.

(ii) Soundness: Every satisfiable clause can be developed into an evident branch.

9 Model Existence

Proposition 9.1 Let Γ be an evident branch and 〈α〉s ∈ C ∈ CΓ. Then there exists

a unique path C〈α〉s . . . D〈1〉s in Γ.

Proof. The path exists since Γ is loop-free and realizes every claim with a clause

in CΓ. The path is unique since Γ is functional. �

Lemma 9.2 If X
a

−→I Y and I, Y |= B ;〈β〉s and Bβ ∈ Dα, then I,X |= 〈aα〉s.

Proof. Follows with Propositions 4.1 and 5.4. �

The model existence proof requires a somewhat involved induction, which we

realize with the following lemma.

Lemma 9.3 Let Γ be an evident branch and I be an interpretation such that:

• |I| = CΓ

• C
a
→I D ⇐⇒ ∃α, s, t, E : C〈aα〉sEt ∈ Γ and D = EΓ for all actions a

• C ∈ Ip ⇐⇒ p ∈ C for all predicates p

• Ix = C ⇐⇒ x ∈ C for all nominals x that occur in Γ

Let |Fα| := max{ |s| | s ∈ Fα }. Then for all n ∈ N:

(i) For every path C〈α〉s . . . D〈1〉s in Γ such that |Fα|, |s| < n:

I, C |= 〈α〉s.

(ii) For all C, D, σ, α, s such that |Fα|, |s| < n− 1:

If C � [α]s, σ ∈ Lα, and C
σ

−→I D, then D � s.

(iii) For all C, s such that C ∈ CΓ and |s| = n:

If C � s, then I, C |= s.

Proof. By induction on n. See [11] for details. �

Theorem 9.4 (Model Existence) Every evident branch has a finite model.

Proof. Follows with Lemma 9.3 (iii). See [11] for details. �

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113110

10 Soundness

We have now arrived at the crucial part of the correctness proof. Ideally, we would

like to show that a satisfiable branch with an unrealized claim can always be ex-

panded. However, this is not true.

Example 10.1 Consider the following branch where s := [aa∗](q ∨ [a]¬p):

〈aa∗〉p, ¬p, q, s 〈aa∗〉p, [a]¬p, s 〈aa∗〉p, ¬p, [a]¬p, s

The branch is satisfiable. Still it is impossible to realize the claim for the third

clause since each of the two possible expansions introduces a loop.

Following [10], we solve the problem with the notion of a straight model. A

straight model requires that all links on the branch make progress towards the

fulfillment of the diamond literal they serve. Every satisfiable initial branch has a

straight model, and every unrealized claim on a branch with a straight model I can

be expanded such that I is a straight model of the expanded branch.

Let I be an interpretation and A be a set of formulas. The depth of A and 〈α〉s
in I is defined as

δIA(〈α〉s) := min{ |σ| | σ∈Lα and

∃X,Y ∈ |I| : I,X |= A and X
σ

−→I Y and I, Y |= s }

where min ∅ = ∞ and n < ∞ for all n ∈ N.

Proposition 10.2 δIAs < ∞ iff I satisfies A ; s.

Proof. Follows with Proposition 4.1. �

In particular, we have δICs < ∞ for every s ∈ C ∈ Γ if I is a model of Γ.

A link CsDt is straight for an interpretation I if δICs > δIDt whenever

δICs > 0. A straight model of a quasi-branch Γ is a model of Γ such that every link

CsDt ∈ Γ is straight for I.

Proposition 10.3 Let I be a model of a quasi-branch Γ. Then δIAs = δIA
Γs.

Lemma 10.4 (Straightness) A quasi-branch that has a straight model contains

no loops.

Proof. By contradiction. Let I be a straight model of a quasi-branch Γ and

C1
s1 . . . Cn

sn be a loop in Γ. Then n ≥ 2 and C1
s1 = Cn

sn . It suffices to

show that δICisi > δICi+1si+1 for all i ∈ [1, n − 1]. Let i ∈ [1, n − 1]. Then

si = 〈aα〉t, Ci
siDsi+1 ∈ Γ, and DΓ = Ci+1 for some a, α, t, and D. Since every

σ ∈ L(aα) contains the action a, we have δICisi > 0. Since Ci
siDsi+1 is straight

for I, δICisi > δIDsi+1. Hence δICisi > δICi+1si+1 by Proposition 10.3 since

DΓ = Ci+1. �

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 111

Theorem 10.5 (Soundness) Let I be a straight model of a branch Γ and let

〈α〉s ∈ C ∈ Γ such that Γ does not realize C〈α〉s. Then there is an expansion Dt

of C〈α〉s such that Γ ;DΓ ;C〈α〉s(DΓ)t is a branch and I is a straight model of

Γ ;DΓ ;C〈α〉s(DΓ)t.

Proof. Since I satisfies C, by Proposition 10.2, there is some σ ∈ Lα andX,Y ∈ |I|
be such that |σ| = δIC(〈α〉s) and I,X |= C and X

σ
−→I Y and I, Y |= s. Since

〈α〉s is a literal, α = aβ and σ = Aaτ for some a, β, A, and τ ∈ Lβ. Let Z ∈ |I|
be such that X

a
−→I Z and Z

τ
−→I Y . Let Bγ ∈ Dβ such that τ ∈ L(Bγ). Then

I, Z |= B and I, Z |= 〈γ〉s by Proposition 4.1 (ii). Moreover, I, Z |= RaC. Thus,

by property (i) for propositional DNFs, there is some D ∈ D(B ;〈γ〉s ∪ RaC) such

that I, Z |= D. Clearly, D〈γ〉s is an expansion of C〈α〉s and, since τ ∈ L(Bγ),

δID(〈γ〉s) ≤ |τ | = |σ| − 1 < δIC(〈α〉s). Then, by Proposition 10.3, δID
Γ(〈γ〉s) <

δIC(〈α〉s). Therefore, I is a straight model of Γ ;DΓ ;C〈α〉s(DΓ)〈γ〉s. Moreover,

Γ ;DΓ ;C〈α〉s(DΓ)〈γ〉s satisfies the nominal coherence and functionality conditions.�

11 Final Remarks

The main innovation of the present paper over our previous paper [10] is the notion

of a finitary regular DNF. This makes it possible to cover all PDL programs and

still have transparent correctness proofs.

It is straightforward to extend the clausal tableau method for HPDL to satisfac-

tion formulas @xs. To deal with such formulas, one adds an additional expansion

rule at the modal level as presented in [10]. Also, the optimizations for the modal

level of clausal tableaux discussed in [10] carry over to HPDL.

It can be seen by a straightforward analysis that the decision procedure utiliz-

ing the naive regular reasoner presented in § 5 and the tableau-based propositional

reasoner sketched in Proposition 6.5 runs in NEXPTIME.

We expect that the clausal method can be extended to difference modalities.

Less clear is the possibility of extending the method to converse modalities. As re-

cently shown by Goré and Widmann [8], converse modalities can be efficiently dealt

with by Pratt-style decision procedures. Their treatment of converse, however, does

not seem to carry over to our approach. On the other hand, Pratt-style procedures

do not seem compatible with nominals (see [10,19]). Hence, developing a grace-

fully degrading decision procedure for a logic featuring eventualities, nominals, and

converse modalities at the same time remains a challenging open problem.

Acknowledgment

We would like to thank a referee for valuable remarks that helped to improve the

paper.

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113112

References

[1] Abate, P., R. Goré and F. Widmann, An on-the-fly tableau-based decision procedure for PDL-
satisfiability, in: C. Areces and S. Demri, editors, Proc. 5th Workshop on Methods for Modalities
(M4M-5), Electr. Notes Theor. Comput. Sci. 231 (2009), pp. 191–209.

[2] Areces, C. and B. ten Cate, Hybrid logics, in: P. Blackburn, J. van Benthem and F. Wolter, editors,
Handbook of Modal Logic, Studies in Logic and Practical Reasoning 3, Elsevier, 2007 pp. 821–868.

[3] Baader, F., Augmenting concept languages by transitive closure of roles: An alternative to
terminological cycles, Technical Report RR-90-13, DFKI (1990).

[4] Berry, G. and R. Sethi, From regular expressions to deterministic automata, Theor. Comput. Sci. 48
(1986), pp. 117–126.

[5] De Giacomo, G. and F. Massacci, Combining deduction and model checking into tableaux and algorithms
for converse-PDL, Inf. Comput. 162 (2000), pp. 117–137.

[6] Fischer, M. J. and R. E. Ladner, Propositional dynamic logic of regular programs, J. Comput. System
Sci. (1979), pp. 194–211.

[7] Goré, R. and F. Widmann, An optimal on-the-fly tableau-based decision procedure for PDL-
satisfiability, in: R. A. Schmidt, editor, CADE 2009, LNCS 5663 (2009), pp. 437–452.

[8] Goré, R. and F. Widmann, Optimal tableaux for propositional dynamic logic with converse, in: J. Giesl
and R. Hähnle, editors, IJCAR 2010, LNCS 6173 (2010), pp. 225–239.

[9] Harel, D., D. Kozen and J. Tiuryn, “Dynamic Logic,” The MIT Press, 2000.

[10] Kaminski, M. and G. Smolka, Terminating tableaux for hybrid logic with eventualities, in: J. Giesl and
R. Hähnle, editors, IJCAR 2010, LNCS 6173 (2010), pp. 240–254.

[11] Kaminski, M. and G. Smolka, Clausal tableaux for hybrid PDL, Technical report, Saarland University
(2011). URL www.ps.uni-saarland.de/Publications/details/KaminskiSmolka:2011:HPDL.html

[12] Kozen, D. and F. Smith, Kleene algebra with tests: Completeness and decidability, in: D. van Dalen
and M. Bezem, editors, CSL’96, LNCS 1258 (1996), pp. 244–259.

[13] Kozen, D. and J. Tiuryn, Logics of programs, in: Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics, Elsevier, 1990 pp. 789–840.

[14] Passy, S. and T. Tinchev, PDL with data constants, Inf. Process. Lett. 20 (1985), pp. 35–41.

[15] Passy, S. and T. Tinchev, An essay in combinatory dynamic logic, Inf. Comput. 93 (1991), pp. 263–332.

[16] Perrin, D., Finite automata, in: Handbook of Theoretical Computer Science, Volume B: Formal Models
and Sematics, Elsevier, 1990 pp. 1–57.

[17] Pratt, V. R., A near-optimal method for reasoning about action, J. Comput. System Sci. 20 (1980),
pp. 231–254.

[18] Sattler, U. and M. Y. Vardi, The hybrid μ-calculus, in: R. Goré, A. Leitsch and T. Nipkow, editors,
IJCAR 2001, LNCS 2083 (2001), pp. 76–91.

[19] Widmann, F., “Tableaux-based Decision Procedures for Fixed Point Logics,” Ph.D. thesis, Australian
National University (2010).

M. Kaminski, G. Smolka / Electronic Notes in Theoretical Computer Science 278 (2011) 99–113 113

http://www.ps.uni-saarland.de/Publications/details/KaminskiSmolka:2011:HPDL.html

	Introduction
	Hybrid PDL
	Outline of the Method
	Language-Theoretic Semantics
	Regular DNF
	Propositional DNF
	Diamond Expansion and Nominal Propagation
	Branches and Expansion Rule
	Model Existence
	Soundness
	Final Remarks
	References

