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The main result of this paper is the following extension of an embedding theorem by Nagata: 
given a sequence of zero-dimensional sets X, , X,, . . . in a metrizable space X of weight zz H,, 

the set of homeomorphic embeddings h of X into S(s) uo, satisfying h(X,)c K,_,(r) for R = 

1,2,..., is dense in the function space of all continuous mappings of X into S(t)uo, where K,(r) 
is the n-dimensional universal Nagata’s space in the countable product of the star-space S(r) of 

weight r. This seems to be a new result even in the separable case r =x0 and provides in particular 

an answer to a question asked by Kuratowski (see Remark 2.6 for the details). 

AMS (MOS) Subj. Class.: 54F45, 54C25, 54E35 

Nagata’s n-dimensional universal space zero-dimensional 

countable dimensional generalized Baire space 

1. Notation and basic definitions 

Our terminology follows [9]. All spaces considered in this paper are assumed to 
be metrizable. By dimension we understand the covering dimension dim. A space 
X is countable-dimensional if it is the union of countably many O-dimensional 
subsets. We denote by Z the unit interval with the usual metric and by I” the Hilbert 
cube with the standard metric p({Xi}, {yi}) = [I:, 2-i]Xi -yi]*]“*. By IAl we denote 
the cardinality of the set A. 

1.1. The function space C(X, Y). Given spaces X and Y, with a fixed bounded 
metric p’ in Y, we denote by C(X, Y) the space of all continuous mappings of X 
to Y, endowed with the supremum metric d(f, g) = sup{b(f(x), g(x)): x E X}. 

1.2. The universal metrizable space S(T) uo. Let {Z, : a E A} be a system of intervals 
Z, = Z. The star-space with the index set A is the set S(A) obtained by identifying 
all zeros in U {I _: a E A}, endowed with the metric 

p(x, Y) = 
Ix - y] if x, y belong to the same interval Zp, 

x+Y if x, y belong to distinct intervals. 
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The r-star space S(r) is the space S(A), where IAl = T (this space is also called a 
hedgehog of spininess 7). By a rational point in S(T) we mean a point which is at 
a rational distance from ‘origin’ 0. By a theorem of Kowalsky [2] every metrizable 
space of weight ~2 K,, is homeomorphic with a subspace of the countable power 
S(T)~O of the r-star-space. We fix a metrix in the space S(r)Ko by putting l/2 b({xi19 {YiI) = f 2-ip(x,y)2 i=l 1 . 
1.3. The Nagata’s n-dimensional and countable-dimensional universal spaces K,(r) 
and K&T). Let K,(r) (respectively K,( 7)) be the subspace of the space S(r)Ko 
consisting of all points in S(r)Ho which have at most n (respectively, only finitely 
many) rational coordinates distinct from 0. Nagata proved (see [6; 7; 9, Theorems 
VI. 10 and VI.1 1) that a metrizable space X of weight S r has dim X s n (respectively, 
X is countable-dimensional) if and only if X is homeomorphic to a subset of K,(r) 
(respectively, KoD( 7)). 

1.4. The generalized Baire space B(r). Let r be a cardinal number aK,. By B(T) 
we denote the generalized Baire space of weight T, i.e. the Cartesian power D( T)~o, 
where D(T) is the discrete space of cardinality 7: We fix a metrix u in B(T) by putting 

u({ail, {Pi}) = ’ 
min{ i: ai # pi}’ 

where Ui, pi E D( 7) for i = 1,2,. . . , {(Yi} # {pi}. 

1.5. Strongly metrizable spaces. A space is strongly metrizable if it has a o-star-finite 
open basis (see [ 1, Ch. 6,§ 31). As was proved by Morita [3], every strongly metrizable 
space of weight T b No can be embedded into the product B(T) x I". Below we 
consider the space B(T) x I" with the fixed metric 

p’((x1, YA (xz, Yd) = [+I 9 x2)*+P(Y*, Y2)211’2 

for x, , x2 E B(T), y, , y2 E I”, where u is a metric defined in 1.4 and p is the standard 
metric in I”. 

1.6. The Nagata’s universal spaces for n-dimensional and countable-dimensional 
strongly metrizable spaces of given weight. Let ZVZ (respectively, N:) be the 
subspace of the Hilbert cube I” consisting of all points which have at most n 
(respectively, only finitely many) rational coordinates. J. Nagata proved (see [4; 5; 9, 
Theorem VI.51) that a strongly metrizable space X of weight T 2 K. has dim X d n 
(respectively, X is countable-dimensional) if and only if X is homeomorphic to a 
subset of the product B(T) x Nz (respectively, B(T) X IV;). In particular, a metriz- 
able separable space is countable-dimensional if and only if it is homeomorphic to 
a subset of NZ:c I”. 
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2. The main results 
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The following theorem is the main result of this paper. 

2.1. Theorem. Let X be a metrizable space of weight r 2 KO and X, , X2, . . . a sequence 

of subspaces such that dim X,, S 0 for n = 1,2, , . , . Then the set 

%={h~ C(X, .S(T)~~): h is an embedding and h(X,)c &-i(r) 

foreuetyn=1,2,...} 

is dense in the space C(X, S(r)“o). 

2.2. Corollary. If X is a metrizable space of weight r 2 K,, and dim X s n (respectively, 

X is countable-dimensional), then the set of all homeomorphic embeddings of X into 

K,(T) (respectively, K,(T)) is dense in the space C(X, S(T)~O). 

We prove also a similar result about strongly metrizable spaces. 

2.3. Theorem. Let X be a strongly metrizable space of weight r 2 K,, and Xi, X,, . . . a 

sequence of subspaces such that dim X, s 0 for n = 1,2,. . . . Then the set 

%‘={~EC(X,B(T)XI”): hisanembeddingandh(X,)cB(r)xN~_, 

for every n = 1,2, . . .} 

is dense in the space C(X, B(r) x Y). 

2.4. Corollary. If X is a strongly metrizable space of weight T z NO and dim X s n 
(respectively, X is countable-dimensional), then the set of all homeomorphic embeddings 
of X into B(T) x IV: (respectively, B(T) x Nz) is dense in the space C(X, B(T) x I”). 

2.5. Remark. It seems that Theorems 2.1. and 2.3 are new even for separable spaces, 

i.e. for T= H,,. In the special case of separable spaces Corollary 2.4 is a classical 

theorem for n-dimensional spaces (see [9, IV.4.C] or [l, Ch. 4, Theorem 12]), but 

gives a new result for countable-dimensional spaces: 

For a countable-dimensional metrizable separable space X the set of all homeo- 

morphic embeddings of X into Nz is dense in the space C(X, I”). 

2.6. Remark. Corollary 2.2 provides in particular a positive answer to the following 

question stated by Nagata [8] (attributed to K. Kuratowski): 

Is the set of all homeomorphic embeddings of an n-dimensional metrizable space 

X of weight T> K,, into K,(T) dense in the space C(X, S(T)~O) of all continuous 

mappings of X into S(T)~O (as in the separable case)? 

However, in this case the result can be considerably strengthened (see [ll, 

Theorem 3.11): 
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For an n-dimensional metrizable space X of weight ~2 K,, the set X of all 

homeomorphic embeddings h of X into S( 7)x0 such that h(X) c K,(r) is a residual 

set in C(X, S(r)“o) (i.e. % contains a dense G,-subset of C(X, S(T)~O)). 

Such a strengthening is not possible in a more general situation considered in 

Theorem 2.1. As we show in Remark 5.2, the set X of all homeomorphic embeddings 

of Z into I” such that h(P) c PKo= N,“, where P is the set of irrationals, is of the 

first category (both in C(X, Z”‘) and as a space). Moreover, the set X of all 

homeomorphic embeddings of a countable-dimensional me&able space X of 

weight T into the Nagata’s countable-dimensional universal space K,(r) need not 

be residual in C(X, S(T)~O). This follows from the following result, obtained recently 

by the author: 

Let X be a complete metric separable space. Then the set of all homeomorphic 

embeddings of X into the Nagata’s universal space N: is residual in C(X, I”) if 

and only if X is strongly countable-dimensional, i.e. X is the union of countably 

many closed finite-dimensional subsets. 

The proof will be published elsewhere. 

2.7. Remark. The main idea of the proofs of Theorems 2.1 and 2.3 is to modify the 

proofs of Nagata (which exploit the idea of the standard proof of Urysohn’s Lemma) 

by applying a method of constructing embeddings as limits of Cauchy sequences 

of inductively defined functions. This method leads also to a simplification of the 

original proofs of Nagata (see Section 5; for the simplest case of O-dimensional 

spaces, cf. also [ 10,6.4]). 

3. Auxiliary lemma 

Recall that if I is a family of subsets of X, then the order of I at a point x, 

abbreviated ord&, is the number of elements of I which contain x. For any subset 

V of a space X let B(V) denote the boundary of V in X. 

The following lemma can be extracted from the proof of III.4.A) of [9] or Lemma 

1, Ch.10, 0 2 of [l]. 

3.1. Lemma. Let X be a metrizable space and X, , X,, . . . a sequence of subspaces 

such that dim X, 4 0 for n = 1,2,. . . and let {K,, K,, . . . , Kk} be a family of closed 

subsets of X such that 

ord,{K1,Kz,...,K,Jsn-1 

for each x E X,. Then for every two disjoint closed subsets C and D of X there exists 

an open subset V of X such that C c V, v n D = 0 and 

ord,{K,, K2 ,..., Z&,B(V)}sn-1 

for every x E X,. 
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4. Proofs 

Let g = {g,} belong to C(X, S(T)~O). Then every open ball with center g with respect 
to the metric d described in 1.1, where p’ is a metric in S(T)~O introduced in 1.2, 
contains an open neighbourhood of the form 

LG?, e, m0) = U-= {ME C(X, S(r)KO): P(.MX), g,(x)) < r for 

everyxEX and m=l,2 ,..., m,}, 

where m, is a natural number and E > 0. Thus Theorem 2.1 can be deduced directly 
from the following proposition. 

4.1. Proposition. Suppose that X is a metrizable space of weight 72 K,, and 

X*,Xz,... a sequence of subspaces such that dim X, =Z 0 for n = 1,2, . . . . Let S( T)~O = 

Pz=, &(A,), where &(A,) is the srar-space with the index set A,,, = A for every 
m=1,2,..., and IAl = T. Let g = {g,}: X + S(T)~O be any continuous mapping, m, 

any natural number and E any real number such that 0 < e < 1. Then there exists an 
embedding h = {h,} : X + S( T)“O such that 

and 

h(X,)c K,,-,(T), for every n = 1,2,. . . , 

p(h,(x),g,(x))<e for eueryxEXand m=l,2 ,..., m,,. 

Proof. Let us take a u-discrete open basis of X, which is the union of discrete 
families W;, = { W,,: a E A,,,} for m = m,,+ 1, m,,+ 2, . . . . We can assume without 

loss of generality that there exist open sets V,,,,, a E A,,,, m = m,+ 1, m,+ 2,. . . such 
that F,, = v,,,, c W,,,, and 

for every neighbourhood U(x) of every point x E X there exist m and 

(Y E A,,, for which XE F,,,, c W,,,, c U(x). (1) 

We can assume that A,,, is the same as in the formulation of the Proposition. Putting 

w, =U{W#n,: CYEA,} and F,,,=U{F,,,,: a E A,} we obtain open sets W,,, and 
closed sets F,,, satisfying F, c W,,,, where m = m,+ 1, m0+2,. . . . 

We will construct a sequence {fm} of mappings fm: X + &(A,) such that 

p(fm(x), g,,,(x)) c E for m = 1,2,. . . , m, and every x E X, (2) 

fm(X\W,,J=O,fm(F,,)=lEL andf,(W,,)cL 

form=m,+l, m,+2,..., (3) 

and 

I{m: fm(x) is a rational point distinct from 0 and 1}1 s n - 1 

for every x E X,. (4) 
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Arrange all rational numbers in (0, 1) into a sequence I-,, r3,. . . (without repeti_ 
tions) and put 

and 

6i=min{lrj-r~l,Iril,Irj-lI: k,jCi}, 

Ei = 2-(‘+3) . si. E, Ui=ri-&i, bi = r, + q, 

K={XE S(A): p(x,O)C~i}, Li={XES(A): p(X,O)s b,} 

Ji = {X E S(A): ai < p(X, 0) < bi}. 

For each m we will define a uniformly convergent sequence {fmi}F=, of mappings 
fmi: X + &,(A,) such that the limit fm = lim+,fmi will be the required mapping. 

We will define fmj by induction in the following order: f,, , fiz, fi,, fi3, fiz, &.., 
f 14,. . . . Suppose that fmj = f,, or that we have already defined all fkp before fmi and 
that for each such fkp we have defined an open set V,, c X such that 

r;;d(rp)=J3(Vkp) forp82 and Vkp=O forp=l, (5) 

ord,{B(V,,), B( VIZ), . . . , B( V,,)}< n - 1 for each XE X,. (6) 

TO define fmj we consider three cases: 
(a) Suppose that mE{1,2,..., m,} and j = 1. Then we put fmj = g, and Vmj = 0. 
(b) Suppose that m> m, and j= 1. As fmi we take any function such that 

fmj(X\Wm)=O, fmj( W,,,=)C I, and fmj(Fm,)=lE 1, and we put Vmj=O. 
(c) Suppose that m E {1,2, . . .} and j > 1. Let 

c =.L~-I(Kj), Cm =L~-I(Kjn la), D =_C~-*(Lj), 

0, =fmi_,(Lj n I,). 

By Lemma 3.1, there exists an open set Vmj of X such that 

CC V,,,j, v,,,jnD=O and ord,{B(V,,),B(V,,),...,B(V,j)}~n-1 

for every x E X,. We use Tietze’s Extension Theorem to define, for every (Y E A,,,, a 
function f.! :fm)-,(I=) + 1, such that fa coincides with fmj-1 on C, u Da, L’((Kj u 
Lj) n I,) = C, u 0, andfi’(q) = B( V,,j) nf$_I(l_). As fmj we take the combination 
of all f=, where (Y E A,,,. 

It is easy to verify that for every x E X 

p(fmi+,(X),fmi(X))s2’ Ei=2-(i+3). Si+l ’ E* 

Thus, for every XE X, {f,i(x)}E, is a Cauchy sequence, so the sequence {fmi}~~ 

of functions converges to a function fm : X + &(A,). 

For every x E X and all natural numbers m and k 

P(fm(X),fmt(X))~2-3.&‘[2-1.~k+,+2-2.Sk+2+...]~~-..‘~, (7) 

hence the sequence {fmk}T_, is uniformly convergent and fm is continuous. 
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In particular, for m = 1,2,. . . , m, and every x E X 

AA(x), g,(x)) = P(fm(x),fm*(x)) SQ. E < 5 

hence condition (2) is satisfied. 

Forevery m>m,wehavef,,(X\W,,,)=O,f,,(W,,,,)cZ, andf,,(F,,,,)=lEZ,. 

Since all fmj coincide with fm, on X\ W,,, and F,,,,, and &;(I=) =JQ:(Z=), condition 

(3) is satisfied. 

Now, let x E X,. Since, by (6), ord,{B( V,,), B( V,z), B( Vz,), . . .} G n - 1, the set 

No = {k: x E B( V,,) for some p} consists of at most n - 1 natural numbers. Let m E N,, 

and let ri be any rational number, where i 3 2. Since x & B( Vmi), then fmi(x) is a 

point of some Z, different from ri E Z,. For every j> i we have fmj(x)c Z,. If 

fmj(x)=fmi(X) for all i> i, then fm(x)=fmi(x) f ri E Z,. In the other case, let k be 

the smallest integer greater than i, with fmk(x) #fmi(x). Then fmk_I(x) =fmi(x) E .Zk 

and therefore p(&(x), ri) 3 & - &k 3 i * &. On the other hand, p(fm(x),fmr;(x)) d 
i.e.Sk+ Sk by (7), hence d&(x), ri) 2 i * 61, > 0. Thereforef,(x) f ri for m ‘? Z$, 

so condition (4) is satisfied. 

Let us take a positive rational number a < 1 such that the functions h, :X + 

&,(A,,,) defined by h,(x) = a *fm(x)~ Z, if XE Z, also satisfy the condition 

p(h,(x),g,(x))<~foreveryx~Xandm=1,2,...,m,.Puth={h,}:X~S(~)~0. 

Since h,,,(x) < 1 for every XE X and every m, then by (4) we have Zr(X,)c K.-,(T) 

for every n = 1,2,. . . . The mapping h is an embedding, because by (1) and (3) the 

family {h,} separates points from closed sets. Thus h has all required properties. Cl 

Corollary 2.2 follows immediately for the finite-dimensional case from an applica- 

tion of the decomposition theorem (see [9, Theorem 11.41). If X is countable- 

dimensional, we note that the monotonicity of dimension implies that X can be 

decomposed into a union of countably many disjoint sets of dimension 90. 

The proof of Theorem 2.3 follows easily from the following proposition. 

4.2. Proposition. Suppose that X is a strongly metrizable space of weight 78 K,, and 

Xl,XZ,... a sequence of subspaces such that dim X,, Q 0 for n = 1,2,. . . . Let p = 

(c, g): X+ B(T) x I” be any continuous mapping, where c = {c,}: X + B(r) and g = 

{g,}:X+ I” =PZ=, I,,,, where I,,, = Zfor m = 1,2,. . . . Let m, be any natural number 

and E any positive real number < 1. Then there exists an embedding I,!I = (d, h):X + 

B(T)xZ~, where d ={d,,,}:x+B(~) and h ={h,}:X+Z” such that 

+(X,)c B(7)X NY-, for eoery n = 1,2,. . . , 

and 

c,(x) = d,(x), o(h,,(x), g,(x)) < E 

foreverym=1,2,...,m,andeveryx~X. 

Proof. We modify the proof of Theorem VI.5 of [9] in the following way. Recall 

that if AesP, then S(A,~)=S’(A,~P)=U{BE~: BnAfO}, S”(A,d)=S 
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(.S”-‘(A, d), &) for n > 1 and S”(A, a) = IJz=“=, S”(A, d). Let K, > ‘i\r2> - - . be a 
sequence of star-finite open coverings of X such that {S(x, ,Y;): i = 1,2, . . .} is a 
neighbourhood basis at each point x E X. For i = 1,2, . . . let 

9i = {S”( N, “vi): NE y}. 

Since dvi is star-finite, we have 3, = {S,,: (Y E Ai}, where S, A 5, = 0 for (Y # p and 
S~=U{N~j:j=l,2,...}, h w ere Naj E Ni. Moreover, if A is the discrete space of 
cardinality T, we can assume that Ai = A for i = 1,2, . . . . 

For each i = 1,2,. . . construct an open covering pi of X such that 

Si={P,,: aEAi,j=1,2,...}, whereP,ic Nmj, 

and define CJij = U { Nej: a E Ai} and Fij = U {q: LY E Ai}. We now arrange all sets 
Uij and cj into sequences 

{Urn: m = m,+ 1, n&)+2,. . .} and {F,,,: m = m,+ 1, m,+2,. . .}, 

so that F, c U,,,. Next we define a sequence {fm: m = 1,2,. . .} of functions from X 
into Z satisfying 

]{m:f,(x) is a rational number distinct from 0 and l}] s n - 1 

foreveryxEX, and n=l,2 ,..., 

fm(X\k)~W, fm(Fm)c{lI for m=m,+l, mO+2, . . . , and P(.Mx),&(X))<E 
for m = 1,2,. . . , m. and every XE X. To do this, we modify the construction of 
functions fm in the proof of Proposition 4.1 by replacing S(A) by Z and making all 
necessary changes following from this replacement. 

Having functions fm defined, we take a homeomorphism j,,, : I,,, + I,,, satisfying 
j,,,( I,,,) c Z,\(O)\{ l}, j,,,( P) c P, and such that the functions h, =j,,, ofm : X + Z,,, also 
satisfy the condition p(h,(x), g,,,(x)) < E for every x E X and m = 1,2,. . . , m,. Let 
h={h,}:X+P~,,Z,,,; then h(X,)c Nz_, forevery n=l,2,... . 

Finally, we define d: X+ B(7) by putting d(x) = (c,(x), . . . , c,(x), aI, a2,. . .) 

if x E S,,, LYE E Ai, i = 1,2,. . . . Then the function $ = (d, h) : X + B(T) x I” satisfies 
$(X,)c B(T) x NY-,, for n = 1,2,. . . . The same reasoning as in the proof of 

Theorem VI.5 of [9] shows that $ is a homeomorphic embedding. 
Corollary 2.4 follows immediately from the decomposition theorem and the 

monotonicity of dimension. 

5. Remarks 

5.1. Remark. It seems that the approach given in this paper simplifies the original 
proofs of Nagata’s embedding theorems. In fact, the part of Nagata’s proofs 
corresponding to Proposition VI.2.A of [9] can be replaced by the following propo- 
sition: 

Proposition. Let X be a metric space and X, , X2, . . . a sequence of subspaces such 

that dimX,,<Oforn=l,2,... . Let {U,,,: m=l,2,...} beafamilyofopensubsets 
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of X and IF,,,: m = 1,2, . . .} a family of closed subsets of X with F,,, c U,,, for m = 

1,2,... . Then there exists a function f = {fm} : X + I” = IFD z =, I,,,, where I,,, = I for 

everym=1,2,.., such thatf(X,)c NT_, foreveryn = 1,2,. . . andf,(X\U,,,)c{O}, 

fm(F,,,)c{l} form=1,2,... . 

The construction of the sequence {fm} is analogous to the construction of {fm} 
given in the proof of Proposition 4.1 (where we consider the simpler case for which 

m. = 0 and S(A) is replaced by I) and seems to be simpler than the construction 

of a special open collection 7r given in VI.2.A) of [9]. 

5.2. Remark. We will show that the set X= {f E C( I, Iw): f is an embedding and 

f(P) c P”o} is of the first category in C( Z, I”) and as a space. First observe that the 

set 9 of all continuous mappings of 2 into I” such that f( P) c PKo and f( I) contains 

more than one point is of the first category in C(Z, I”). Indeed, for every r from 

the set of rationals Q. every j E N and every q E I let 

L,={x={x,}E~~:x~=~} and ~~~j={f~C(I,I”):f(q)EL~j}. 

It is easy to see that each Tq,. is closed and nowhere dense in C( Z, I”). If f E 9, 
then f(P) c Pso, but f(I) $ PNo as a non-one-point continuum, so there exists q E Q 

such that f( q) ti PKo. This means that f (q) E L, for some r E Q and j E N, i.e. f E 9qr.o 
Thus ScU{~~rj:qEQ,rEQ,jEN}. 

It follows that 9 and Yt’c 9 are of the first category in C(Z, Y’). Since %‘is dense 

in C(Z, I”) by Theorem 2.2, then it is also of the first category as a space. 
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