
NORTH- HOIJ_AND

Learning to Compose
Fuzzy Behaviors for

Autonomous Agents*
Andrea Bonarini and Filippo Basso

Politecnico di Milano A I and Robotics Project,
Dipart imento di Elettronica e Informazione,

Politecnico di Milano, Milano, Italy

A B S T R A C T

We present S-ELF, an evolutionary algorithm that we have deL,eloped to learn the
context o f activation of fuzzy logic controllers implementing fuzzy behaviors for an
autonomous agent. S-ELF learns context metarules that are used to coordinate basic
behaviors in order to perform complex tasks in a partially and imprecisely known
environment. Context metarules are expressed in terms o f positive and negated fuzzy
predicates. We also show how S-ELF can learn robust and portable behaviors, thus
reducing the time and effort to design behavior-based agents. © 1997 Elsevier Science
Inc.

K E Y W O R D S : reinforcement learning, fuzzy control, autonomous agents

1. I N T R O D U C T I O N

Since Brooks ' s first semina l p a p e r s [11, 12], many a u t o n o m o u s agents
have b e e n i m p l e m e n t e d fol lowing the behavior-based pa rad igm, where the
behavior of an agent comes f rom the compos i t i on of basic behaviors, in
p r inc ip le i n d e p e n d e n t of each other . This is cons ide red a successful des ign
pract ice , accord ing to the p r inc ip le of problem decomposition.

Address correspondence to Andrea Bonarini, Dipartimento di Elettronica e Informazione, Politec-
nico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy. E-mail:
b o n a r i n i @ e l e t . p o l i m i . i t .

*We would like to thank A. Saffiotti, who suggested important issues during interesting
discussions. This work has been partially supported by the MURST Project 60% "Develop-
ment of autonomous agents through machine learning."

Received September 1, 1996; accepted December 1, 1996.

International Journal of Approximate Reasoning 1997; 17:409 432
© 1997 Elsevier Science Inc. All rights reserved. 0888-613X/97/$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0888-613X(97)00002-9

410 Andrea Bonarini and Filippo Basso

Among the possible implementations for behaviors, the most common
are finite-state machines, following Brooks's original approach [11, 19, 18];
classifier systems [13, 23]; and fuzzy rules [21, 2, 4, 6].

The combination of the different basic behaviors is often obtained
through the application of inhibition mechanisms, in some cases integrated
in the subsumption architecture [11, 19, 18]. The adoption of a fuzzy logic
representation makes possible also other forms of interaction, such as
effect combination [21, 3].

One of the main problems for the behavior-based approach to agent
design concerns the identification of the combination of the most suitable
basic behaviors to achieve a task in a given situation. Some approaches to
support this design phase by machine learning have been proposed. Among
the others, Mahadevan and Connell [18] propose a system that learns the
basic behaviors most suitable for a given, predefined behavior architecture.
The system of Dorigo and Colombetti [13] learns behaviors organized in
different hierarchical architectures. That of Bonarini [3, 6, 8] learns a
coordinator, implemented by fuzzy rules, that weights the output of basic
behaviors.

In this paper, we present S-ELF (symbolic ELF), a reinforcement learning
[17] system that learns to coordinate predefined basic behaviors by identi-
fying the best contexts for each of them. We have developed S-ELF from
ELF (evolutionary learning of fuzzy rules) [2, 4], a system that we have
successfully adopted in the past to learn fuzzy behauiors (i.e., behaviors
implemented by fuzzy rules), and their coordination [3, 6, 8].

S-ELF learns the context of activation for each available basic behavior.
It works on contexts described by logical expressions composed by conjunc-
tions of both positive and negative high-level fuzzy predicates, such as "(in
corridor-l)" or "(face door-2)." S-ELF produces fuzzy metarules that relate
each behavior to the best contexts in which it can be applied. A standard
fuzzy composition mechanism then combines the different behaviors in
contexts described by different sets of fuzzy predicates.

We have tested S-ELF on a control architecture similar to that of Flakey
[21], where navigation is programmed in terms of fuzzy behaviors and their
contexts of activation. I_~arning a control system described by high-level
predicates brings about robust behaviors that can be instantiated in
different environments, as we show with our experiments.

In this paper, we first present the conceptual framework we have
adopted to represent fuzzy behaviors, and the architecture of the fuzzy
control system that we have implemented (Section 2). Then we describe
the main features of S-ELF, focusing on some learning mechanisms that
may be interesting for any reinforcement learning algorithm (Section 3).
Finally, we discuss the experimental results that we have obtained by
applying S-ELF in the framework described in Section 2.

Learning to Compose Fuzzy Behaviors 411

2. FUZZY BEHAVIORS AND COORDINATION

2.1. Fuzzy Behaviors

Following the f ramework proposed in [21], we have defined a behavior
as a triplet

(C, BBA, O)

where:
• C is the context o f application of the behavior, that is, a description of

the situations where the behavior should be applied;
• BB A is a function that computes, for each state-action pair (s, a) , how

desirable it is to per form the action a when the agent is in the state s,
in order to realize the basic ability A (for instance, from BB A we have
a measure of how desirable it is to turn left by 20 degrees when there is
an obstacle in front of the agent in order to achieve the basic ability
follow the corridor);

• 0 is the object with reference to which the basic ability A is realized
(in the ment ioned example, corridor-I).

We can say that BB A represents how to implement a basic ability, C when
to do it, and 0 the element of the environment on which the ability is
applied.

As ment ioned before, the information from the desirability function is
more flexible, complete, and useful than that from a mapping between a
state and the best action the agent can do in such a state. In fact, besides
stating which is the best action in each state, it gives a grade, to any
possible action, so enabling a composit ion of desirability functions related
to different behaviors active at the same time. For instance, the desirability
function can be implemented by means of a set of rules, of which the ith is

IF (state IS S i) THEN (action IS Ai) ,

where both the antecedent and the consequent are fuzzy sets. In such a
case, to each rule can be associated a function Ds~_~ A(S, a), given by

Ds _~ A(S, a) = l~s,(S) ® IZA,(a) ,

where ® is a T-norm.
The desirability function BB A of the behavior is given by

BB A = (~ Dsi_~A(s,a)
i = l , . . . , n

where n is the number of rules that implement the basic behavior, and
is a T-conorm.

412 Andrea Bonarini and Filippo Basso

The context of application C is defined by means of a logical combination
of predicates. In Saffiotti's work [21], the context of application of a
behavior is hand-coded: therefore, the designer is responsible for its
correct implementation. It is of interest to understand whether it is
possible to design an algorithm that automatically learns such contexts.
Reinforcement learning algorithms suggest themselves for this application,
since the only knowledge they need from the environment is an evaluation
of the agent's performance. S-ELF is a reinforcement learning algorithm
for the contexts of behaviors coded according to Saffiotti's framework.

Before explaining the algorithm in more detail, we can note that the
situations in which a behavior has to be applied depend both on the
agent's overall task and on the environmental conditions the agent has
currently to face. In other words, it is possible to distinguish two conceptu-
ally distinct classes of predicates involved in the context definition:

• Some predicates are intimately coupled with the task the agent has to
accomplish: for instance, the utility of the behavior follow-corridor is
different if the task is to reach a point at its end or to enter the next
door on the right. It is easy to see that such predicates are linked to
the above definition of mission.

• Some other predicates represent the interaction of the agent with the
environment: for example, the action computed by the behavior
avoid-obstacles depends on current obstacle positions as detected by
the sensorial apparatus.

We call the part of context defined by the first kind of predicates global
context (GC), and we call the part linked to the environmental predicates
the environmental context (EC).

Behavior activation is implemented by rules such as

IF (state s IS in context C) THEN (apply behavior A)

where C = EC • GC.
In order to make more evident the distinction between global and

environmental contexts, we rewrite such rules as

IF (state s IS in environmental context EC)

THEN (apply behavior A)

WHEN (state s is in global context GC)

As mentioned before, the global context is closely related to the current
high-level goal of the agent, i.e., to its mission. In our present implementa-
tion, missions are mutually exclusive; in other words, their applicability
conditions (implemented as logical combinations of crisp predicates) define
disjoint sets of situations. It is easy to understand that the applicability

Learning to Compose Fuzzy Behaviors 413

conditions are the mission-level equivalent of the global context at the rule
level. In other terms, the global context involves only crisp predicates,
called mission switches: they are also responsible for the selection of the
current mission. We can think of the rule base as composed of conceptu-
ally distinct subsets: to each subset belong all and only the rules sharing
the same global context; they are only responsible for the accomplishment
of a particular task, i.e., the development of a particular mission.

It is possible to replace the part

WHEN (state s IS in global context GC)

with

WHEN (mission is M)

where M is the mission that occurs when the state s is in the global
context GC.

An example of a behavior activation rule is

IF (at door-l) AND (closed door-l)

THEN (pass door-l)

WHEN (in room-l)

where the antecedent of the rule corresponds to the environmental con-
text, BB A, is referred to by the name pass; 0 is door-l; and (in room-l) is
the mission the rule refers to.

It is now possible to express better the aim of S-ELF. It learns which is
the best environmental context for each basic behavior, given a mission to
accomplish. In other words, S-ELF is able to learn the environmental
context of a behavior, while its global context must still be hand-coded.
This is not an important limitation: the definition of the global context is
an easy task, because it involves only a very small number of crisp
predicates, while the environmental context is defined by a larger number
of fuzzy predicates.

To summarize, S-ELF is not able to select the current agent's mission,
but, given a mission, it learns how to coordinate the basic behaviors to
obtain it. To do so, it evolves a number of sets of rules, each one referring
to a particular mission, such as

IF (at door-l) AND (closed door-l) THEN (pass door-l)

The environmental context of the behavior mentioned in the THEN part
is obtained as the disjunction of the IF parts of all the rules sharing the
same consequent.

414 Andrea Bonarini and Filippo Basso

Such rules work at a hierarchically higher level than the ones imple-
menting a basic behavior, so they are metarules for the activation of a
behavior. To avoid confusion, in the remainder of this paper, we will call
them metarules or context rules, to distinguish them from the control rules
implementing a basic behavior.

In the next section, we will describe in more detail how the control rules
are implemented and how the context can shape them.

2.2. Context and Basic Behaviors

Even if the above-mentioned fuzzy metarules (or context rules) are, f rom
the syntactical viewpoint, fuzzy implication relations [14], they are not
implemented by using one of the standard fuzzy implication operators
(e.g., T-conorms or pseudo inverses of T-norms, as in [21]). Instead, the
truth value of the context in the current situation (i.e., the truth value of
the IF part of the metarule) shapes the membership functions of either
the antecedents or the consequents of the control rules that implement
BB A. In other terms, the fuzzy sets adopted in the control rules are
dynamically modified by the context in a way described by the context
rules. Thus, the context influences the interpretation of data or control
actions in the control rules.

For a bet ter understanding of this topic, further details on the shape of
our control rules are needed. In our implementat ion, each basic behavior
is implemented by means of only one control rule:

IF (s IS S) THEN (a I S A)

where both the antecedent and the consequent are fuzzy sets, and the
fuzzy implication is implemented as a T-norm [14].

In particular, the fuzzy set S is defined over a set of values of a
convenient state variable, and it can be seen as a fuzzy predicate represent-
ing some propert ies of the environment where the agent operates. We
consider two such properties: the usefulness of having a given relationship
with some input variable (desirability), and the possibility of doing so,
according to environmental obstacles (viability). To be more concrete, we
can imagine considering the heading of the agent as an input variable (say
a) . The propert ies we associate to a are the usefulness of going along a
in order to realize the basic behavior itself (desirability), and the possibility
of doing so, given the environmental situation (viability). Both the desir-
ability and the viability are integrated in the antecedent predicate S, which
is implemented as the intersection of two fuzzy subsets (S = D N V): D
represents the desirability, and V, the viability. The desirability is a
measure of how much the agent would like to be in a specific state s

Learning to Compose Fuzzy Behaviors 415

(described by a) in order to reach its current goal, by adopting the action
A described in the consequent of the control rule, while the viability is a
measure of the extent to which it can really perform that action given the
current environmental situation (e.g., obstacles a n d / o r occlusions along
the desired path).

For instance, in Figure 1 we show on the left the desirability and
viability of being oriented in given direction in order to follow a corridor,
when the agent is in the situation shown on the right. It is most desirable
that the agent be oriented in the direction of the corridor, whereas, given
the situation shown on the left of the figure, it is more viable to have a
heading smaller than - 10 degrees, that is, to turn left with respect to the
present position.

As can be easily seen, D is related to a global viewpoint concerning the
agent 's mission, while V is linked to a local viewpoint about the detected
world.

In a similar way, we define the fuzzy set A over a (crisp) set of actions
that the agent can perform in the world; A yields all the information
available about the agent 's actions. Such information depends on the
specific control variable that is selected. In our example, the effector
variable is the steering angle (or direction of mouement) of the agent: the
information about this action is linked to its utility and possibility. The
fuzzy set A is defined as the intersection of two fuzzy subsets: A = U ¢q L.
The first one (U) represents the utility of the specific action for reaching
the goal, while the second (L) is related to the limitations that the
mechanical and physical constraints of the actuators impose on the agent 's
actions (e.g., the maximum steering angle).

In the appendix, we will describe how the context of application of a
behavior acts on the control rules that implement it. We have adopted a
kind of interaction different from the ones proposed in the literature. The
only approach, to our knowledge, in which the context of application of a
behavior is defined via logical predicates and operations is Saffiotti's; in
that work, the context acts on control rules by means of a pseudoinverse of

V
/ / / / / / / / / / / /

D

v

-10° 10 ° cc

Figure 1. S, D, and V for the variable a.

/ / / / / / / / / / / /

416 Andrea Bonarini and Filippo Basso

a T-norm. In our implementation, the truth value of the context shapes the
membership functions either of the antecedents or of the consequents of
the control rules. In the appendix, we report details about how this is
implemented in S-ELF.

3. MISSION

To take account of the different tasks an agent must face during its
activity, we have introduced the notion of mission. It is a data structure
that links a particular goal of the agent to the strategy of coordination of
simple behaviors that can accomplish it. More formally, a mission is
defined as an ordered 4-tuple

<C, AC, O, CS>

where:
• G is the goal of the mission, that is, the task the mission allows the

agent to accomplish;
• AC are the applicability conditions and code all the situations in which

the mission has to take place;
• 0 is the object with reference to which the mission is developed;
• CS is the strategy of coordination of simple behaviors that realizes the

mission.
For example, imagine that the mission is to follow the corridor labeled

corr-1; this can be represented as follows:
• the goal G is to follow a generic corridor;
• the only applicability condition AC for the agent is to be in the

corridor;
• the object 0 gives the reference to the specific instance of the generic

corridor mentioned in G, here the one labeled corr-1.
In other words, G, AC, and CS depend on 0 , which plays the role of a
variable; if 0 is not instantiated, then the defined structure is considered a
mission template: a particular mission can be instantiated by assigning a
value to O. In this way, the same abstract strategy of behavior coordina-
tion allows for the realization of the same type of mission in different
environments.

Two observations can be made now. First of all, the applicability
conditions of a mission depend on the overall task of the agent: for
example, the mission follow a corridor may be useful for reaching a point
at its end, but not for turning into the first door on the left. Second, the
definition of a mission rests on the existence of a set of behaviors that we
consider as basic. We must take care to choose them so that we are
confident that their cooperation will allow the agent to accomplish the

Learning to Compose Fuzzy Behaviors 417

kind of tasks we want it to face. Under this hypothesis, to learn a strategy
for behavior coordination plays an important role, as we have demon-
strated with S-ELF.

3.1. A Fuzzy Control Architecture Based on Coordinated Behaviors

Figure 2 shows the architecture of the system we have implemented. We
can recognize four main modules:

• The learning system implements S-ELF, the learning algorithm that we
describe in the next section; it continuously updates a rule base
containing the fuzzy context metarules.

• The coordinator computes the activation level of all the behaviors that
are to be fired in the current episode. To do so, first of all, it selects
the current mission, according to the truth value of some binary
predicates, called mission switches, supplied by the switch generator
SG, which computes them from the sensorial observations. Then, the
behavior activation levels are computed with reference to a subset of
the rule base, composed of the rules selected for firing among the
matching rules (i.e., the rules that match the current world state as it

LEARNING
SYSTEM

rtdes

C O O R D I N A T O R

[approxm'utte
map

predicate ¢1
, ,r,,,h ~,,.ue.~ I ~ n ~ I-

I- t2S - PeT, ',U

switch

detected]

BASIC l
BEHAVIORS[

levels

Figure 2. The system architecture.

S 4----

A

c
T
U
A
T
o
R
S

W
o

418 Andrea Bonarini and Filippo Basso

has been perceived). In particular, during learning, not all the match-
ing rules are fired, to make more evident the contributions of a small
number of rules to the emergent behavior of the agent.

- The basic behaviors can be seen as a collection of operating modules
that can act in parallel. Their activation and coordination is per formed
by the coordinator, which computes their activation level according to
the sensed state and the current mission.

* The sensorial data manager (SDM) aggregates the information coming
from sensors, and matches it with an approximate map of the environ-
ment where the agent has to act. In particular, the aggregation takes
place at different levels of abstraction and interpretation, so that all
the modules needing information about the surrounding world can
find them at the required level of abstraction. The highest level of
abstraction is implemented by a detected map that aggregates all the
high-level information about elements of the environment, such as
corridors and doors. Moreover, the SDM computes the truth values of
the predicates used by the rule-matching algorithm.

4. LEARNING THE COORDINATOR

S-ELF is a reinforcement learning algorithm that operators on a popula-
tion of fuzzy rules. Each m em ber of the population is encoded by a chain
of genes that represent the antecedent and the consequent of the rule.
The antecedent of each rule encodes a context for a behavior, represented
by the consequent.

The antecedent consists of n genes, one for each of the input predicates
(positional encoding). Each gene may take a value in the set {1,0, #},
where 1 means that the corresponding predicate is considered as positive,
0 means that it is considered as negative, and # means that the predicate
value is irrelevant for the characterization of the context for the behavior.
Notice that, with this encoding, S-ELF can learn a complex description of
a context, composed by conjunction of possibly negated predicates. For
instance, the antecedent of the already ment ioned rule

IF (at door-l) AND (closed door-l) THEN (pass door-l)

is encoded as # # 1 # 0 , where the third and fifth positions correspond to (at
door-l) and (closed door-l).

The consequent contains only one gene, which denotes a basic behavior
applied to an object [in the mentioned example, (pass door-l)].

Learning to Compose Fuzzy Behaviors 419

4.1. Partitioning the Population

As in ELF [4], the rule population is partitioned into subpopulations in
order to consider at each evaluating step only the controllers that have
contributed to the agent's activity since the last evaluation. Thus, the
competition among members of the population is local (it is limited to a
niche [10, 23]). This improves the speed of convergence to a good solution
by up to two orders of magnitude, compared with other proposals adopting
genetic algorithms to learn fuzzy rules [4]. In ELF, each subpopulation
corresponds to an antecedent configuration, since ELF should learn the
best action for a given state. In S-ELF, we would like to learn the best
context for a given basic behavior; thus, each subpopulation corresponds to
a basic behavior, and the members of each subpopulation have different,
competing contexts for the same behavior. Moreover, by adopting this
partitioning, we have a relatively small number of subpopulations, since
the number of basic behaviors is much smaller than that of the possible
contexts.

4.2. Episodes

The evaluation of the performance of the agent is done at the end of a
sequence of control steps, called episode. This produces some interesting
effects [5]. If the episode ends when the agent reaches a particular (fuzzy)
state, then the performance evaluation is done when something relevant
happens, and, probably, it brings interesting information. In any case, this
evaluation strategy averages the effects of the single rules, and, in general,
it has a stabilizing effect.

At the beginning of an episode a subpopulation (i.e., a basic behavior) is
selected, and during all the episode only rules belong to this subpopulation
can trigger. At the end of each episode, the reinforcement program evalu-
ates the agent's performance and distributes the corresponding reinforce-
ment to the rules that have contributed to controlling the agent during the
episode.

4.3. Reinforcement Distribution

To each rule is associated a measure of its estimated strength, i.e., of the
estimated suitability of its antecedent to represent the context for the
application of the basic behavior encoded by the consequent. The strength
is updated at the end of each episode by a function that has the shape
(common for reinforcement learning):

s(t + 1) = (1 - a)s (t) + aR(t) ,

420 Andrea Bonarini and Filippo Basso

where
• s is the strength of the rule;
• R is the reinforcement computed by the reinforcement program;
• a is the learning rate, computed in our case as

Y'. 7~- l Cyc le-act- leve l i

min(enough- tes ted , ~ o 1 cycle-act- level i) "

Here:
• cycle-act- level i is the activation level of the rule at control cycle i, i.e.,

how well its antecedent matches the state perceived at that cycle;
• n c is the number of control cycles in the current episode;
• n a is the number of control cycles to which the rule has given some

contribution since its introduction in the rule base;
• enough- tes ted is a paramete r that states when a rule has given enough

contribution to the per formed actions to be considered as tested
enough, i.e., the rule strength can be considered a good estimation of
the actual suitability of its antecedent to represent the appropriate
context for the consequent.

In other terms, the value of a considers the fact that the rules can
partially match a state, as is typical for fuzzy rules. So they receive a
reinforcement that is proport ional to the contribution they have given to
reach the evaluated state.

At the end o f each episode, reinforcement is also given to rules that
have triggered in past episodes. Their strength is updated by

s (t + 1) = (1 - a) s (t) + a y k R (t) ,

where y is a discount factor and k is the number of episodes between the
current one and the one where the rule was triggered.

The relationship between this reinforcement distribution algorithm and
Q-learning [22] is discussed elsewhere [5].

4.4. Rule Generation and Deletion

New rules are generated by the cover detector opera tor when the agent
is in a state that is not matched by any rule. In this case, a new rule is
generated for the selected subpopulation; the antecedent of the new rule
covers the current state, with either positive or negated predicates, and it
may contain some "don ' t care" symbols.

At the end of each episode, the two standard genetic operators, muta-
tion and crossover, are applied to the rules of the selected subpopulation.
All the rules are classified in one of two sets: the set of rules that have

Learning to Compose Fuzzy Behaviors 421

been tested enough (in the sense mentioned above), and those that have
not yet had the chance to run enough to have a reliable strength. Only the
rules belonging to this last set are subject to mutation.

The standard one-point crossover operator is applied to the enough-tested
rules of the selected subpopulation at the end of each episode with a given
probability. Both the parents are taken from the same subpopulation, and
they remain in the population with a probability proportional to their
strength. The children become part of the population if they are not
duplicated.

The set of the enough-tested rules is in turn partitioned into three
subsets, which we will describe after the introduction of the concept of
steady rule. A rule r is steady at a given step j if its degree of stability
sd(r, j) is within a given percentage of the module of the current rule
strength. The degree of stability is defined as

J
sd(r, j) = ~7~ [pg ia(i)],

i = a v e - d e t , - s i g n

where:
• j denotes a generic episode at least ave-dev-sign episodes after the

rule has become enough tested;
• p is a discount factor that gives more importance to recent 6(i);
• 6(i) is the variation of the strength s of the rule at the end of the ith

episode, defined as

6(i) = I s (i) - s(i - 1)l.

In other terms, a rule is steady when it has been tested enough, and its
strength does not change too much. This is important in our application,
since we have a lot of "don't care" symbols in the antecedents of the rules.
Thus, we have general rules that may trigger in many different situations.
If a rule is steady, then its strength is a good estimation of its suitability
over its whole range of applicability.

The set of enough tested rules is partitioned in three subsets: the steady
rules, the unsteady rules, and the pending rules, i.e., the rules that have been
declared enough-tested less than ave-dev-sign episodes before.

A population is steady when a given percentage of its rules is steady.
When a population is steady for a given number of episodes, the unsteady
rules are eliminated from the population, and the steady rules are tested
for a given number of control cycles. If their performance is high enough,
they are saved and the mutation operator is applied with a given probabil-
ity before continuing the learning activity.

Finally, steady and pending rules are deleted when other steady and
stronger rules cover them, i.e., when these last could trigger in at least the

422 Andrea Bonarini and Filippo Basso

same states, with at least the same degree. An unsteady rule is deleted
when there is another stronger, enough-tested rule that covers it.

5. EXPERIMENTAL RESULTS

Here , we report about two experiments done with S-ELF: in the first
one, the algorithm learns a set of fuzzy metarules to accomplish a given
mission; in the second one, the strategies learnt by S-ELF are used,
together with other hand-coded strategies for other missions, to achieve a
goal of reactive navigation. In both the cases, the reference agent was
CAT, whose features exploited in the considered tasks are summarized
below.

5.1. CAT, Our Reference Robot

CAT is about 60 cm long, wide, and high (see Figure 3). It has a carlike
kinematics, with steering front wheels and posterior traction. It can move
forward and backward at a maximum speed of 20 c m / s , and it has a
maximum steering radius of 1.2 m.

For the tasks that we mention in this paper, we use data that come from
sonar, bumpers, and the odometer .

Figure 3. The robot CAT.

Learning to Compose Fuzzy Behaviors 423

Sonar sensors suffer from:
• imprecision, since they may receive an echo f rom objects present in a

multilobed zone in front of them;
• low reliability in a real environment, due to the high probability of

missing echoes, and to the different reactions to different reflecting
surfaces.

CAT mounts four Polaroid sonar sensors on a rotating turret, and fires
them three times during a control cycle, in different positions, covering 360
degrees.

Bumpers can only detect contacts. They are very reliable.
The odometer is based on two free wheels, coaxial with the traction

wheels and connected to two encoders. The free wheels may stick or slip
f rom time to t ime on irregularities of a real floor, causing errors in the
odometr ic measures. In the work we are presenting in this paper, data
from sonar are used to limit the problems due to the intrinsic low quality
of the odometer .

5.2. Learning a Rule Base

In this first experiment, we have tested the learning algorithm with
reference to two different missions: corridor following and aligning along a
corridor. In both cases, learning has taken place in a 3-m-wide corridor. In
each learning session, more than one stable rule base has been identified;
in particular, a rule base is saved when its stability level is higher than a
stability threshold, whose value is continuously incremented.

• Its initial value is set to 0.5; when a rule base shows a stability higher
than this for a given number of consecutive episodes, then it is saved,
all the unsteady rules are eliminated, and a test phase is started.

• At the end of such a phase, the stability is higher, because of the
elimination of unsteady rules; the new threshold is given by the new
stability value plus an increment, equal to 0.05 in this experiment.

The test phase is composed of some trials, different from each other
because of the initial agent position. Since such initial values are selected
to cover all the space of the possible initial conditions, the agent behavior
tested in this phase is considered to be a good approximation of the
behavior of the agent starting from any initial position. The ability of a
rule base to perform well in such trials is used to evaluate its completeness,
defined as the sampling likelihood for the agent governed by the consid-
ered rule base to reach its goal in a given number of steps.

5.2.1. LEARNING TO FOLLOW A CORRIDOR In this first learning experi-
ment, the agent must learn to follow a corridor that can also contain
unmapped obstacles.

424

Table 1.

Andrea Bonarini and Filippo Basso

Partitioning of the Rule Bases with Respect to their
Completeness a

Complete- Fraction of
ness,% rule bases,%

100 97
88 98.5
77 100

< 77 0

aOver the total of 72 learnt rule bases.

The reinforcement program provides a positive reinforcement, propor-
tional to the movement along the corridor and to the alignment to it, when
the agent moves in the correct direction; a negative reinforcement propor-
tional to the movement in the wrong direction is also given. Finally, a
strong punishment is given whenever the agent touches a wall or an
obstacle.

We have run 18 independent learning sessions. In each one of them,
more than one complete rule base has been learnt: Table 1 shows the
percentage of rule bases that have a completeness higher than a given
value; the percentage is computed with reference to the total number of 72
rule bases, even if learnt in different sessions. In Table 2 we report the
results referring to the most complete rule bases learnt in each learning
session; whenever more than one had the same completeness, we have
selected the rule base with the highest performance. The value reported
for each rule base is obtained by averaging the values relative to the
different trials during the test phase. The performance value is computed
according to a law that gives higher performance values when the agent
proceeds in the middle of the corridor and is oriented approximately along
it. In the definition of both the performance and the reinforcement
program we have adopted fuzzy models.

Table 2. Results Concerning the Best Rule Bases Learnt in Each
Learning Session

Quantity Average Std. dev. min max

Number of enough-tested rules 75.53 12.01 49 96
Stability level 0.70 0.09 0.51 0.86

Completeness (%) 100 0 100 100
Performance 0.83 0.06 0.67 0.94
Number of moves 197.67 5.44 192.44 210.44
Number of crashes 0 0 0 0

Learning to Compose Fuzzy Behaviors

Table 3. Results Concerning the Use of the Learnt Strategy in a
2-m-Wide a Corridor

425

Quantity Average Std. dev. rain max

Completeness (%) 100 0 100 100
Performance 0.79 0.05 0.72 0.91
Number of moves 208.56 19.23 192 255.78
Number of crashes 1.19 1.63 0 5.22

a Instead of 3 m wide.

The first two values reported in Table 2 refer to the learning phase. The
other four refer to the test phase; they are the completeness, the perfor-
mance value, the number of moves to reach the end of the corridor (the
minimum theoretical value is 191), and the number of contacts with walls.

We tried to use the same strategy learnt in a 3-m-wide corridor in a
2-m-wide one, obtaining the results reported in Table 3. Table 4 contains
the results concerning the adoption of the same strategy in a 4-m-wide
corridor. The tables show that the strategy learnt in a particular corridor is
portable, i.e., it can be used to accomplish the task even in a different
corridor. This mainly comes from the high-level description of the strategy.

Even if learning has taken place in an obstacle-free corridor, the same
strategy is able to accomplish the task in the presence of obstacles, as
shown in Figure 4. Remember that the a priori unknown obstacles are not
present in the approximate map provided to the agent; therefore, it is not
aware of their existence.

5.2.2. LEARNING TO ALIGN ALONG A CORRIDOR The aim of this
second experiment is to shape a rule base enabling the agent to align along
a corridor; this is analogous to reaching a given heading with respect to the
corridor. The reinforcement program gives a reinforcement proportional
to the proximity to the desired heading.

Table 4. Results Concerning the Use of the Learnt Strategy in a
4-m-Wide a Corridor

Quantity Average Std. dev. min max

Completeness (%) 92.16 10.61 66.7 100
Performance 0.72 0.09 0.60 0.86
Number of moves 202.98 9.42 194.11 233
Number of crashes 0.01 0.04 0 0.11

a Instead of 3 m wide.

426 Andrea Bonarini and Filippo Basso

/ ,

!
m

Figure 4. Example of trajectory followed by the agent in a corridor with obstacles.

We have run 18 independent learning sessions, in each of which more
than one rule base was saved. Table 5, analogous to Table 1, shows the
percentage of rule bases (over the total of 57 rule bases learnt in the 18
sessions) that exhibit a completeness higher than a given value.

As in the previous experiment, Table 6 shows the results concerning the
most complete rule bases learnt in each learning session: the value used
for each rule base is computed as an average of the values relative to the
different trials of a test phase. The performance value is related to the
improvement in agent orientation (a value equal to 1 states that the agent
aligns itself along the corridor in the theoretical minimum number of
moves). The first three rows of Table 6 refer to the learning phase. The
other four refer to the test phase; they are the completeness, the perfor-
mance value, the number of maneuvers to reach the correct orientation,
and the number of contacts with walls.

We have applied the same strategy learnt in a 3-m-wide corridor in a
2-m-wide one, obtaining the results shown in Table 7. It shows that the
strategy learnt in a particular corridor is able to accomplish the task even
in a different corridor.

In Figure 5 we report some trajectories followed by the agent during
trials. Notice how the agent can manage maneuvering also in narrow
corridors.

Table 5. Partitioning of the Rule Bases with Respect to Their
Completeness a

Complete- Fraction of rule
ness, % bases, %

100 87.7
> 75 98.2
< 77 1.8

aOver the total of 72 learnt rule bases.

Learning to Compose Fuzzy Behaviors

Table 6. Results Concerning the Best Rule Bases Learnt in Each
Learning Session

427

Quantity Average Std. dev. min max

Number of learning episodes 471.07 199.45 158 863
Number of enough-tested rules 46.87 6.62 38 56
Stability level 0.75 0.11 0.60 0.91

Completeness (%) 100 0 100 100
Performance 0.85 0.08 0.60 0.95
Number of maneuvers 1.65 0.21 1.42 2.28
Number of crashes 0 0 0 0

5.3. Navigation in an Approximately Known Environment

In the second group of experiments, the agent is called on to act in an
environment that is known only in an approximate way. More precisely, it
has an approximate map of such an environment that contains some
features (corridors and doors), about which only rough and imprecise
metric information are available: for example, in the map we may have a
corridor about 3 m long. Approximation is represented by fuzzy values.

These experiments show that the strategies learnt by S-ELF can cooper-
ate with some other hand-coded strategies to accomplish a complex
mission, like reaching a particular target. Moreover, some of these learnt
strategies come from the same mission template, showing that the set of
metarules learnt in a particular environment can be successfully applied
even in different environments sharing the same topological characteristics
(e.g., in different corridors).

The mission definition allows us to use a goal-regression planner to select
the missions (and so the strategies) that accomplish a complex task

Table 7. Results Concerning the Learnt Strategy Applied in a
2-m-Wide a Corridor

Quantity Average Std. dev. min max

Completeness (%) 91.5 11.4 55.5 100
Performance 0.82 0.09 0.68 0.99
Number of maneuvers 3.24 1.42 1.33 7.85
Number of contacts 0.19 0.18 0 0.71

a Instead of 3 m wide.

428 Andrea Bonarini and Filippo Basso

f F
/

/ z
/ z
/ z
/ z

/ z
/ z

/" /
/ /

¢
d /

agent aligning along a Figure 5. Examples of trajectories followed by the corridor.

(m&sion plan): their activation is led, at running time, by sensorial data
about the surrounding environmental conditions; in other words, it is
data-driven. We have run experiments in two different conditions: without
and with obstacles. It is important to note that the approximate map given
to the agent contains information only about the a priori known elements:
the obstacles present in the environmental configuration shown on the
right in Figure 6 are not present in such a map. The trajectories followed
by the agent in the two cases are drawn in Figure 6.

. , ¢ z l . , , , x , ' . / / / i x / / / x . , / / ,
' z# ¢ # I)

[/ / / /

Figure 6. Examples of agent's trajectories during navigation in a complex environ-
ment.

Learning to Compose Fuzzy Behaviors 429

6. CONCLUSION

We have presented an approach to support with reinforcement learning
the process of development of complex behaviors for autonomous agents.
S-ELF can learn in which contexts, described by fuzzy logic predicates,
basic behaviors are useful. Like its ancestor (ELF), it shows many interest-
ing features, such as robustness, flexibility, efficiency; the learnt rule bases
are portable and robust.

Our current research activity is oriented towards the application of
S-ELF to more complex environments and missions, and the systematic
study of the limits of the portability and robustness of the learnt control
systems. Moreover, we are also studying the integration of the learning and
control architecture here presented with another system [7] (based on a
neurofuzzy approach) that provides reliable symbol grounding [16] for the
fuzzy logic predicates.

7. APPENDIX

In this appendix we report details concerning the mechanism we have
devised to shape the control rules according to the truth evaluation of the
context predicates.

Since the context of a rule is related to a goal-oriented viewpoint about
the current agent's mission, it can be reasonably used to shape either the
desirability of a direction of observation (through D i) or the utility of a
steering angle (through Ui). In fact, the viability V i and the limitations L i
seem not to be under direct agent control, since they depend on the
environment, and consequently, they cannot shape the control rules.

There are, at least theoretically, two different ways of shaping the
control rules: the context can act either on the antecedents or on the
consequents. It is shown in [1] and [9] that these two methods, apparently
antithetical, can lead, under opportune hypotheses, to the same emergent
behavior. In other words, the context can either modify the perception of
the environment (sC), or the actions on it (AC), without any difference in
the agent's interaction with the world. The two ways of shaping are
referred to, respectively, as S c---, A and S---, AC; in the rest of this
appendix we will describe only the first one, adopted in the examples
presented in the rest of the paper.

7.1. Context Shaping Desirability

In the sC--> A modality, the context shapes only the membership
function of the desirability D i.

430 Andrea Bonarini and Filippo Basso

The shape of the fuzzy set D i is generated from the context through a
generative function. In Figure 7, we show on the right the generative
function g*(.) that we have used to create all the Di; on the left we show
how we select the generative function itself within a family G of functions
that have a triangular shape of semiamplitude 6. In other terms, we select
a generative function g*(.) within a family of functions having the same
semiamplitude, and different coordinates for their maximum value. To
understand how the selection takes place, imagine that the truth value of
the context predicate [say (in corridor-l)] in the current situation is t*. The
function a(.), drawn on the left of Figure 7, maps t* to a*; ~* = a(t*).
As mentioned before, the generative function g*(.) that belongs to the
family G, and that is characterized by two specific values a* and t*, is
unique. Thus, from the truth value of the context predicate, by using the
function c~(-), we obtain a value a* for a that, together with t*,
univocally identifies a generative function g*(.). From g*(-), we shape all
the control rules in this way: for each a i ~ [~* - 6, a* + 6], we generate
a fuzzy set D i = (a i , g* (a i)) , whose support reduces to a single point. In
our example, this represents the desirability of each heading value, given
the truth value of the context predicate. In other terms, we obtain that if it
is true that we are in corridor-l, then the desirability of having a heading a
in the same direction of the corridor is maximum, and it has a shape like
the one presented in Figure 7, determined by g* (.).

Given that the context (in our case, being in corridor-l) cannot influence
the viability of a direction, we can say that S i = D~.

Now, still focusing on this example, it is evident that there is a direct
mapping between the state and the control variable: for each heading
there is one and only one steering angle allowing the agent to move in that
direction. Thus, a control rule

IF (s IS S) THEN (a IS A)

is created, by introducing the corresponding A i = (f (o ~ i) , L(f(oti))) , where
f (.) is the function that represents the above-mentioned mapping between

t T I i

. i O t t t *

0.5 t* i.0 t ~*
Figure 7. The functions d(') (left) and g*(-) (right).

O~

Learning to Compose Fuzzy Behaviors 431

state variable (e.g., direction of observation) and control action (e.g.,
steering angle). Note that U~ does not appear in the definition of Ai: this is
because we have decided, in this modality, that the context influences only
the antecedent part of a control rule.

References

1. Basso, F., S-ELF, a learning system for the coordination of fuzzy behaviors for
an autonomous robot (in Italian), Master's Thesis Politecnico di Milano, Milan,
Italy, 1996.

2. Bonarini, A., ELF: Learning incomplete fuzzy rule sets for an autonomous
robot, Proceedings of EUFIT '93, ELITE Foundation, Aachen, Germany, 69-75,
1993.

3. Bonarini, A., Learning to coordinate fuzzy behaviors for autonomous agents,
Proceedings of EUFIT '94, ELITE Foundation, Aachen, Germany, 475-479,
1994.

4. Bonarini, A., Evolutionary learning of fuzzy rules: Competition and coopera-
tion, in Fuzzy Modeling." Paradigms and Practice (W. Pedrycz, Ed.), Kluwer
Academic, Norwell, Mass., 265-284, 1996.

5. Bonarini, A., Delayed reinforcement, fuzzy Q-learning and fuzzy logic con-
trollers, in Genetic Algorithms and Soft Computing (F. Herrera and J. L.
Verdegay, Eds.), Physica Verlag (Springer-Verlag), Heidelberg, 447-466, 1996.

6. Bonarini, A., Learning dynamic fuzzy behaviors from easy missions, Proceed-
ings of the 1PMU '96, Proyecto Sur de Ediciones, Granada, 1223-1228, 1996.

7. Bonarini, A., Symbol grounding and a neuro-fuzzy architecture for multisensor
fusion, Proceedings WAC-ISRAM, TSI Press, Albuquerque, N.M., to appear.

8. Bonarini, A., Anytime learning and adaptation of structured fuzzy behaviors,
Adaptive Behavior J., to appear.

9. Bonarini, A., and Basso, F., Designing fuzzy logic behaviors, to appear.

10. Booker, L. B., Classifier systems that learn their internal models, Machine
Learning 3, 161-192, 1988.

11. Brooks, R. A., A robust layered control system for a mobile robot, IEEE Trans.
Robotics and Automation 2(1), 14-23, 1986.

12. Brooks, R. A., Intelligence without representation, Artificial Intelligence 47,
139-159, 1991.

13. Dorigo, M., and Colombetti, M., Robot shaping: Developing autonomous
agents through learning, Artificial Intelligence 71, 321-370, 1995.

14. Dubois, D., and Prade, H., Fuzzy Sets and Systems: Theory and Applications,
Academic Press, Orlando, Fla., 1980.

432 Andrea Bonarini and Filippo Basso

15. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, Mass., 1989.

16. Harnad, S., The symbol grounding problem, Phys. D 42, 335-346, 1990.

17. Kaelbling, L. P., Littman, M. L., and Moore, A. W., Reinforcement learning: A
survey, J. Artificial Intelligence Res. 4, 237-285, 1996.

18. Mahadevan, S., and Connell, J. H., Automatic programming of behavior-based
robots using reinforcement learning, Artificial Intelligence 55, 311-365, 1992.

19. Mataric, M. J., A distributed model for mobile robot environment--learning
and navigation. Tech. Report 1228, MIT AI Lab., Cambridge, Mass., 1990.

20. Mataric, M. J., Integration of representation into goal-driven behavior-based
robots, IEEE Trans. Robotics and Automation 8(3), 304-312, 1992.

21. Saffiotti, A., Konolige, K., and Ruspini, E. H., A multivalued logic approach to
integrating planning and control, Artificial Intelligence 76(1-2), 481-526, 1995.

22. Watkins, C., and Dayan, P., Q-learning, Machine Learning 8, 279-292, 1992.

23. Wilson, S. W., Classifier fitness based on accuracy, Evolutionary Comput. 3(2),
149-175, 1995.

