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A B S T R A C T  

We present S-ELF, an evolutionary algorithm that we have deL,eloped to learn the 
context o f  activation of  fuzzy logic controllers implementing fuzzy behaviors for an 
autonomous agent. S-ELF learns context metarules that are used to coordinate basic 
behaviors in order to perform complex tasks in a partially and imprecisely known 
environment. Context metarules are expressed in terms o f  positive and negated fuzzy 
predicates. We also show how S-ELF can learn robust and portable behaviors, thus 
reducing the time and effort to design behavior-based agents. © 1997 Elsevier Science 
Inc. 
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1. I N T R O D U C T I O N  

Since Brooks ' s  first semina l  p a p e r s  [11, 12], many  a u t o n o m o u s  agents  
have b e e n  i m p l e m e n t e d  fol lowing the  behavior-based pa rad igm,  where  the  
behavior of  an agent  comes  f rom the compos i t i on  of  basic behaviors, in 
p r inc ip le  i n d e p e n d e n t  of  each  other .  This  is cons ide red  a successful  des ign 
pract ice ,  accord ing  to the  p r inc ip le  of  problem decomposition.  
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Among the possible implementations for behaviors, the most common 
are finite-state machines, following Brooks's original approach [11, 19, 18]; 
classifier systems [13, 23]; and fuzzy rules [21, 2, 4, 6]. 

The combination of the different basic behaviors is often obtained 
through the application of inhibition mechanisms, in some cases integrated 
in the subsumption architecture [11, 19, 18]. The adoption of a fuzzy logic 
representation makes possible also other forms of interaction, such as 
effect combination [21, 3]. 

One of the main problems for the behavior-based approach to agent 
design concerns the identification of the combination of the most suitable 
basic behaviors to achieve a task in a given situation. Some approaches to 
support this design phase by machine learning have been proposed. Among 
the others, Mahadevan and Connell [18] propose a system that learns the 
basic behaviors most suitable for a given, predefined behavior architecture. 
The system of Dorigo and Colombetti [13] learns behaviors organized in 
different hierarchical architectures. That of Bonarini [3, 6, 8] learns a 
coordinator, implemented by fuzzy rules, that weights the output of basic 
behaviors. 

In this paper, we present S-ELF (symbolic ELF), a reinforcement learning 
[17] system that learns to coordinate predefined basic behaviors by identi- 
fying the best contexts for each of them. We have developed S-ELF from 
ELF (evolutionary learning of fuzzy rules) [2, 4], a system that we have 
successfully adopted in the past to learn fuzzy behauiors (i.e., behaviors 
implemented by fuzzy rules), and their coordination [3, 6, 8]. 

S-ELF learns the context of activation for each available basic behavior. 
It works on contexts described by logical expressions composed by conjunc- 
tions of both positive and negative high-level fuzzy predicates, such as "(in 
corridor-l)" or "(face door-2)." S-ELF produces fuzzy metarules that relate 
each behavior to the best contexts in which it can be applied. A standard 
fuzzy composition mechanism then combines the different behaviors in 
contexts described by different sets of fuzzy predicates. 

We have tested S-ELF on a control architecture similar to that of Flakey 
[21], where navigation is programmed in terms of fuzzy behaviors and their 
contexts of activation. I_~arning a control system described by high-level 
predicates brings about robust behaviors that can be instantiated in 
different environments, as we show with our experiments. 

In this paper, we first present the conceptual framework we have 
adopted to represent fuzzy behaviors, and the architecture of the fuzzy 
control system that we have implemented (Section 2). Then we describe 
the main features of S-ELF, focusing on some learning mechanisms that 
may be interesting for any reinforcement learning algorithm (Section 3). 
Finally, we discuss the experimental results that we have obtained by 
applying S-ELF in the framework described in Section 2. 
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2. FUZZY BEHAVIORS AND COORDINATION 

2.1. Fuzzy Behaviors 

Following the f ramework proposed in [21], we have defined a behavior 
as a triplet 

(C,  BBA, O )  

where: 
• C is the context o f  application of the behavior, that is, a description of 

the situations where the behavior should be applied; 
• BB A is a function that computes,  for each state-action pair (s,  a ) ,  how 

desirable it is to per form the action a when the agent is in the state s, 
in order  to realize the basic ability A (for instance, from BB A we have 
a measure of how desirable it is to turn left by 20 degrees when there is 
an obstacle in front of the agent in order  to achieve the basic ability 
follow the corridor); 

• 0 is the object with reference to which the basic ability A is realized 
(in the ment ioned example,  corridor-I). 

We can say that BB A represents how to implement  a basic ability, C when 
to do it, and 0 the element of the environment on which the ability is 
applied. 

As ment ioned before, the information from the desirability function is 
more flexible, complete,  and useful than that from a mapping between a 
state and the best action the agent can do in such a state. In fact, besides 
stating which is the best action in each state, it gives a grade, to any 
possible action, so enabling a composit ion of desirability functions related 
to different behaviors active at the same time. For  instance, the desirability 
function can be implemented by means of a set of rules, of which the ith is 

IF (state IS S i) THEN (action IS Ai) ,  

where both the antecedent  and the consequent are fuzzy sets. In such a 
case, to each rule can be associated a function Ds~_~ A(S, a), given by 

Ds _~ A(S, a) = l~s,(S) ® IZA,(a) , 

where ® is a T-norm. 
The desirability function BB A of the behavior is given by 

BB A = ( ~  Dsi_~A(s,a)  
i = l , . . . , n  

where n is the number  of  rules that implement  the basic behavior, and 
is a T-conorm. 
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The context of  application C is defined by means of a logical combination 
of predicates. In Saffiotti's work [21], the context of  application of a 
behavior is hand-coded: therefore, the designer is responsible for its 
correct implementation. It is of interest to understand whether it is 
possible to design an algorithm that automatically learns such contexts. 
Reinforcement  learning algorithms suggest themselves for this application, 
since the only knowledge they need from the environment is an evaluation 
of the agent's performance. S-ELF is a reinforcement learning algorithm 
for the contexts of behaviors coded according to Saffiotti's framework. 

Before explaining the algorithm in more detail, we can note that the 
situations in which a behavior has to be applied depend both on the 
agent's overall task and on the environmental conditions the agent has 
currently to face. In other words, it is possible to distinguish two conceptu- 
ally distinct classes of predicates involved in the context definition: 

• Some predicates are intimately coupled with the task the agent has to 
accomplish: for instance, the utility of the behavior follow-corridor is 
different if the task is to reach a point at its end or to enter the next 
door on the right. It is easy to see that such predicates are linked to 
the above definition of mission. 

• Some other  predicates represent the interaction of the agent with the 
environment: for example, the action computed by the behavior 
avoid-obstacles depends on current obstacle positions as detected by 
the sensorial apparatus. 

We call the part of context defined by the first kind of predicates global 
context (GC), and we call the part linked to the environmental predicates 
the environmental context (EC). 

Behavior activation is implemented by rules such as 

IF (state s IS in context C) THEN (apply behavior A ) 

where C = EC • GC. 
In order to make more evident the distinction between global and 

environmental contexts, we rewrite such rules as 

IF (state s IS in environmental context EC)  

THEN (apply behavior A )  

WHEN (state s is in global context GC ) 

As mentioned before, the global context is closely related to the current 
high-level goal of the agent, i.e., to its mission. In our present implementa- 
tion, missions are mutually exclusive; in other words, their applicability 
conditions (implemented as logical combinations of crisp predicates) define 
disjoint sets of situations. It is easy to understand that the applicability 



Learning to Compose Fuzzy Behaviors 413 

conditions are the mission-level equivalent of the global context at the rule 
level. In other terms, the global context involves only crisp predicates, 
called mission switches: they are also responsible for the selection of the 
current mission. We can think of the rule base as composed of conceptu- 
ally distinct subsets: to each subset belong all and only the rules sharing 
the same global context; they are only responsible for the accomplishment 
of a particular task, i.e., the development of a particular mission. 

It is possible to replace the part 

WHEN (state s IS in global context GC) 

with 

WHEN (mission is M)  

where M is the  mission that occurs when the state s is in the global 
context GC. 

An example of a behavior activation rule is 

IF (at door-l) AND (closed door-l) 

THEN (pass door-l) 

WHEN (in room-l) 

where the antecedent of the rule corresponds to the environmental con- 
text, BB A, is referred to by the name pass; 0 is door-l; and (in room-l) is 
the mission the rule refers to. 

It is now possible to express better  the aim of S-ELF. It learns which is 
the best environmental context for each basic behavior, given a mission to 
accomplish. In other words, S-ELF is able to learn the environmental 
context of a behavior, while its global context must still be hand-coded. 
This is not an important limitation: the definition of the global context is 
an easy task, because it involves only a very small number of crisp 
predicates, while the environmental context is defined by a larger number 
of fuzzy predicates. 

To summarize, S-ELF is not able to select the current agent's mission, 
but, given a mission, it learns how to coordinate the basic behaviors to 
obtain it. To do so, it evolves a number of sets of rules, each one referring 
to a particular mission, such as 

IF (at door-l) AND (closed door-l) THEN (pass door-l) 

The environmental context of the behavior mentioned in the THEN part 
is obtained as the disjunction of the IF parts of all the rules sharing the 
same consequent. 
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Such rules work at a hierarchically higher level than the ones imple- 
menting a basic behavior, so they are metarules for the activation of a 
behavior. To avoid confusion, in the remainder  of this paper,  we will call 
them metarules or context rules, to distinguish them from the control rules 
implementing a basic behavior. 

In the next section, we will describe in more  detail how the control rules 
are implemented and how the context can shape them. 

2.2. Context and Basic Behaviors 

Even if the above-mentioned fuzzy metarules (or context rules) are, f rom 
the syntactical viewpoint, fuzzy implication relations [14], they are not 
implemented by using one of the standard fuzzy implication operators  
(e.g., T-conorms or pseudo inverses of T-norms,  as in [21]). Instead, the 
truth value of the context in the current situation (i.e., the truth value of 
the IF part of  the metarule)  shapes the membership  functions of either 
the antecedents or the consequents of  the control rules that implement  
BB A. In other  terms, the fuzzy sets adopted in the control rules are 
dynamically modified by the context in a way described by the context 
rules. Thus, the context influences the interpretation of data or control 
actions in the control rules. 

For a bet ter  understanding of this topic, further details on the shape of 
our control rules are needed. In our implementat ion,  each basic behavior 
is implemented by means of only one control rule: 

IF (s IS S) THEN (a I S A )  

where both the antecedent  and the consequent are fuzzy sets, and the 
fuzzy implication is implemented as a T-norm [14]. 

In particular, the fuzzy set S is defined over a set of values of a 
convenient state variable, and it can be seen as a fuzzy predicate represent-  
ing some propert ies  of the environment where the agent operates.  We 
consider two such properties: the usefulness of having a given relationship 
with some input variable (desirability), and the possibility of doing so, 
according to environmental  obstacles (viability). To be more concrete, we 
can imagine considering the heading of the agent as an input variable (say 
a) .  The propert ies we associate to a are the usefulness of going along a 
in order to realize the basic behavior itself (desirability), and the possibility 
of doing so, given the environmental  situation (viability). Both the desir- 
ability and the viability are integrated in the antecedent  predicate S, which 
is implemented as the intersection of two fuzzy subsets (S = D N V): D 
represents the desirability, and V, the viability. The desirability is a 
measure of how much the agent would like to be in a specific state s 
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(described by a )  in order  to reach its current goal, by adopting the action 
A described in the consequent of the control rule, while the viability is a 
measure of the extent to which it can really perform that action given the 
current environmental  situation (e.g., obstacles a n d / o r  occlusions along 
the desired path). 

For instance, in Figure 1 we show on the left the desirability and 
viability of being oriented in given direction in order to follow a corridor, 
when the agent is in the situation shown on the right. It is most desirable 
that the agent be oriented in the direction of the corridor, whereas, given 
the situation shown on the left of the figure, it is more  viable to have a 
heading smaller than - 10 degrees, that is, to turn left with respect to the 
present position. 

As can be easily seen, D is related to a global viewpoint concerning the 
agent 's  mission, while V is linked to a local viewpoint about the detected 
world. 

In a similar way, we define the fuzzy set A over a (crisp) set of  actions 
that the agent can perform in the world; A yields all the information 
available about  the agent 's actions. Such information depends on the 
specific control variable that is selected. In our example, the effector 
variable is the steering angle (or direction of mouement) of the agent: the 
information about this action is linked to its utility and possibility. The 
fuzzy set A is defined as the intersection of two fuzzy subsets: A = U ¢q L. 
The first one (U)  represents the utility of the specific action for reaching 
the goal, while the second (L)  is related to the limitations that the 
mechanical and physical constraints of  the actuators impose on the agent 's 
actions (e.g., the maximum steering angle). 

In the appendix, we will describe how the context of  application of a 
behavior acts on the control rules that implement  it. We have adopted a 
kind of interaction different from the ones proposed in the literature. The 
only approach,  to our knowledge, in which the context of application of a 
behavior is defined via logical predicates and operations is Saffiotti's; in 
that work, the context acts on control rules by means of a pseudoinverse of 

V 
/ / / / / / / / / / / /  
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v 

-10° 10 ° cc 

Figure 1. S, D, and V for the variable a. 

/ / / / / / / / / / / /  
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a T-norm. In our implementation, the truth value of the context shapes the 
membership functions either of the antecedents or of the consequents of 
the control rules. In the appendix, we report details about how this is 
implemented in S-ELF. 

3. MISSION 

To take account of the different tasks an agent must face during its 
activity, we have introduced the notion of mission. It is a data structure 
that links a particular goal of the agent to the strategy of coordination of 
simple behaviors that can accomplish it. More formally, a mission is 
defined as an ordered 4-tuple 

<C, AC, O, CS> 

where: 
• G is the goal of the mission, that is, the task the mission allows the 

agent to accomplish; 
• AC are the applicability conditions and code all the situations in which 

the mission has to take place; 
• 0 is the object with reference to which the mission is developed; 
• CS is the strategy of coordination of simple behaviors that realizes the 

mission. 
For example, imagine that the mission is to follow the corridor labeled 

corr-1; this can be represented as follows: 
• the goal G is to follow a generic corridor; 
• the only applicability condition AC for the agent is to be in the 

corridor; 
• the object 0 gives the reference to the specific instance of the generic 

corridor mentioned in G, here the one labeled corr-1. 
In other words, G, AC, and CS depend on 0 ,  which plays the role of a 
variable; if 0 is not instantiated, then the defined structure is considered a 
mission template: a particular mission can be instantiated by assigning a 
value to O. In this way, the same abstract strategy of behavior coordina- 
tion allows for the realization of the same type of mission in different 
environments. 

Two observations can be made now. First of all, the applicability 
conditions of a mission depend on the overall task of the agent: for 
example, the mission follow a corridor may be useful for reaching a point 
at its end, but not for turning into the first door on the left. Second, the 
definition of a mission rests on the existence of a set of behaviors that we 
consider as basic. We must take care to choose them so that we are 
confident that their cooperation will allow the agent to accomplish the 
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kind of tasks we want it to face. Under  this hypothesis, to learn a strategy 
for behavior coordination plays an important role, as we have demon- 
strated with S-ELF. 

3.1. A Fuzzy Control Architecture Based on Coordinated Behaviors 

Figure 2 shows the architecture of the system we have implemented. We 
can recognize four main modules: 

• The learning system implements S-ELF, the learning algorithm that we 
describe in the next section; it continuously updates a rule base 
containing the fuzzy context metarules. 

• The coordinator computes the activation level of all the behaviors that 
are to be fired in the current episode. To do so, first of all, it selects 
the current mission, according to the truth value of some binary 
predicates, called mission switches, supplied by the switch generator 
SG, which computes them from the sensorial observations. Then, the 
behavior activation levels are computed with reference to a subset of 
the rule base, composed of the rules selected for firing among the 
matching rules (i.e., the rules that match the current world state as it 
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Figure 2. The system architecture. 
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has been perceived). In particular, during learning, not all the match- 
ing rules are fired, to make more  evident the contributions of  a small 
number  of  rules to the emergent  behavior of the agent. 

- The basic behaviors can be seen as a collection of operating modules 
that can act in parallel. Their  activation and coordination is per formed 
by the coordinator, which computes  their activation level according to 
the sensed state and the current mission. 

* The sensorial data manager (SDM) aggregates the information coming 
from sensors, and matches it with an approximate map of the environ- 
ment  where the agent has to act. In particular, the aggregation takes 
place at different levels of abstraction and interpretation, so that all 
the modules needing information about the surrounding world can 
find them at the required level of abstraction. The highest level of 
abstraction is implemented by a detected map that aggregates all the 
high-level information about elements of  the environment,  such as 
corridors and doors. Moreover,  the SDM computes the truth values of 
the predicates used by the rule-matching algorithm. 

4. LEARNING THE COORDINATOR 

S-ELF is a reinforcement learning algorithm that operators  on a popula- 
tion of fuzzy rules. Each m em ber  of  the population is encoded by a chain 
of genes that represent the antecedent  and the consequent of the rule. 
The antecedent  of each rule encodes a context for a behavior, represented 
by the consequent.  

The antecedent consists of n genes, one for each of the input predicates 
(positional encoding). Each gene may take a value in the set {1,0, #}, 
where 1 means that the corresponding predicate is considered as positive, 
0 means that it is considered as negative, and # means that the predicate 
value is irrelevant for the characterization of the context for the behavior. 
Notice that, with this encoding, S-ELF can learn a complex description of 
a context, composed by conjunction of possibly negated predicates. For 
instance, the antecedent  of the already ment ioned rule 

IF (at door-l) AND (closed door-l) THEN (pass door-l) 

is encoded as # # 1 # 0 ,  where the third and fifth positions correspond to (at 
door-l) and (closed door-l). 

The consequent contains only one gene, which denotes a basic behavior 
applied to an object [in the mentioned example, (pass door-l)]. 
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4.1. Partitioning the Population 

As in ELF [4], the rule population is partitioned into subpopulations in 
order to consider at each evaluating step only the controllers that have 
contributed to the agent's activity since the last evaluation. Thus, the 
competition among members of the population is local (it is limited to a 
niche [10, 23]). This improves the speed of convergence to a good solution 
by up to two orders of magnitude, compared with other proposals adopting 
genetic algorithms to learn fuzzy rules [4]. In ELF, each subpopulation 
corresponds to an antecedent configuration, since ELF should learn the 
best action for a given state. In S-ELF, we would like to learn the best 
context for a given basic behavior; thus, each subpopulation corresponds to 
a basic behavior, and the members of each subpopulation have different, 
competing contexts for the same behavior. Moreover, by adopting this 
partitioning, we have a relatively small number of subpopulations, since 
the number of basic behaviors is much smaller than that of the possible 
contexts. 

4.2. Episodes 

The evaluation of the performance of the agent is done at the end of a 
sequence of control steps, called episode. This produces some interesting 
effects [5]. If the episode ends when the agent reaches a particular (fuzzy) 
state, then the performance evaluation is done when something relevant 
happens, and, probably, it brings interesting information. In any case, this 
evaluation strategy averages the effects of the single rules, and, in general, 
it has a stabilizing effect. 

At the beginning of an episode a subpopulation (i.e., a basic behavior) is 
selected, and during all the episode only rules belong to this subpopulation 
can trigger. At the end of each episode, the reinforcement program evalu- 
ates the agent's performance and distributes the corresponding reinforce- 
ment to the rules that have contributed to controlling the agent during the 
episode. 

4.3. Reinforcement Distribution 

To each rule is associated a measure of its estimated strength, i.e., of the 
estimated suitability of its antecedent to represent the context for the 
application of the basic behavior encoded by the consequent. The strength 
is updated at the end of each episode by a function that has the shape 
(common for reinforcement learning): 

s(t + 1) = (1 - a)s ( t )  + aR(t ) ,  
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where 
• s is the strength of the rule; 
• R is the reinforcement  computed by the reinforcement program; 
• a is the learning rate, computed in our case as 

Y'. 7~- l Cyc le-act- leve l i 

min( enough- tes ted ,  ~ o  1 cycle-act- level  i ) " 

Here:  
• cycle-act- level  i is the activation level of the rule at control cycle i, i.e., 

how well its antecedent  matches the state perceived at that cycle; 
• n c is the number  of control cycles in the current episode; 
• n a is the number  of control cycles to which the rule has given some 

contribution since its introduction in the rule base; 
• enough- tes ted  is a paramete r  that states when a rule has given enough 

contribution to the per formed actions to be considered as tested 
enough, i.e., the rule strength can be considered a good estimation of 
the actual suitability of its antecedent  to represent the appropriate  
context for the consequent. 

In other terms, the value of a considers the fact that the rules can 
partially match a state, as is typical for fuzzy rules. So they receive a 
reinforcement that is proport ional  to the contribution they have given to 
reach the evaluated state. 

At the end o f  each episode, reinforcement is also given to rules that 
have triggered in past episodes. Their  strength is updated by 

s ( t  + 1) = (1 - a ) s ( t )  + a y k R ( t ) ,  

where y is a discount factor and k is the number  of  episodes between the 
current one and the one where the rule was triggered. 

The relationship between this reinforcement distribution algorithm and 
Q-learning [22] is discussed elsewhere [5]. 

4.4. Rule Generation and Deletion 

New rules are generated by the cover  detector  opera tor  when the agent 
is in a state that is not matched by any rule. In this case, a new rule is 
generated for the selected subpopulation; the antecedent  of the new rule 
covers the current state, with either positive or negated predicates, and it 
may contain some "don ' t  care"  symbols. 

At the end of each episode, the two standard genetic operators,  muta-  
tion and crossover, are applied to the rules of the selected subpopulation. 
All the rules are classified in one of two sets: the set of rules that have 
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been tested enough (in the sense mentioned above), and those that have 
not yet had the chance to run enough to have a reliable strength. Only the 
rules belonging to this last set are subject to mutation. 

The standard one-point crossover operator  is applied to the enough-tested 
rules of the selected subpopulation at the end of each episode with a given 
probability. Both the parents are taken from the same subpopulation, and 
they remain in the population with a probability proportional to their 
strength. The children become part of the population if they are not 
duplicated. 

The set of the enough-tested rules is in turn partitioned into three 
subsets, which we will describe after the introduction of the concept of 
steady rule. A rule r is steady at a given step j if its degree of  stability 
sd(r, j)  is within a given percentage of the module of the current rule 
strength. The degree of stability is defined as 

J 
sd(r, j)  = ~7~ [ pg ia(i)], 

i = a v e - d e t , - s i g n  

where: 
• j denotes a generic episode at least ave-dev-sign episodes after the 

rule has become enough tested; 
• p is a discount factor that gives more importance to recent 6(i); 
• 6(i) is the variation of the strength s of the rule at the end of the ith 

episode, defined as 

6( i )  = I s ( i )  - s(i - 1)l. 

In other terms, a rule is steady when it has been tested enough, and its 
strength does not change too much. This is important in our application, 
since we have a lot of "don't care" symbols in the antecedents of the rules. 
Thus, we have general rules that may trigger in many different situations. 
If a rule is steady, then its strength is a good estimation of its suitability 
over its whole range of applicability. 

The set of enough tested rules is partitioned in three subsets: the steady 
rules, the unsteady rules, and the pending rules, i.e., the rules that have been 
declared enough-tested less than ave-dev-sign episodes before. 

A population is steady when a given percentage of its rules is steady. 
When a population is steady for a given number of episodes, the unsteady 
rules are eliminated from the population, and the steady rules are tested 
for a given number of control cycles. If their performance is high enough, 
they are saved and the mutation operator  is applied with a given probabil- 
ity before continuing the learning activity. 

Finally, steady and pending rules are deleted when other steady and 
stronger rules cover them, i.e., when these last could trigger in at least the 
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same states, with at least the same degree. An unsteady rule is deleted 
when there is another  stronger, enough-tested rule that covers it. 

5. EXPERIMENTAL RESULTS 

Here ,  we report  about two experiments done with S-ELF: in the first 
one, the algorithm learns a set of fuzzy metarules to accomplish a given 
mission; in the second one, the strategies learnt by S-ELF are used, 
together with other hand-coded strategies for other missions, to achieve a 
goal of reactive navigation. In both the cases, the reference agent was 
CAT, whose features exploited in the considered tasks are summarized 
below. 

5.1. CAT, Our Reference Robot 

CAT is about 60 cm long, wide, and high (see Figure 3). It  has a carlike 
kinematics, with steering front wheels and posterior traction. It can move 
forward and backward at a maximum speed of 20 c m / s ,  and it has a 
maximum steering radius of  1.2 m. 

For the tasks that we mention in this paper,  we use data that come from 
sonar, bumpers,  and the odometer .  

Figure 3. The robot CAT. 
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Sonar sensors suffer from: 
• imprecision, since they may receive an echo f rom objects present in a 

multilobed zone in front of  them; 
• low reliability in a real environment,  due to the high probability of  

missing echoes, and to the different reactions to different reflecting 
surfaces. 

CAT mounts four Polaroid sonar sensors on a rotating turret, and fires 
them three times during a control cycle, in different positions, covering 360 
degrees. 

Bumpers can only detect contacts. They are very reliable. 
The odometer is based on two free wheels, coaxial with the traction 

wheels and connected to two encoders. The free wheels may stick or slip 
f rom time to t ime on irregularities of  a real floor, causing errors in the 
odometr ic  measures.  In the work we are presenting in this paper,  data 
from sonar are used to limit the problems due to the intrinsic low quality 
of the odometer .  

5.2. Learning a Rule Base 

In this first experiment,  we have tested the learning algorithm with 
reference to two different missions: corridor following and aligning along a 
corridor. In both cases, learning has taken place in a 3-m-wide corridor. In 
each learning session, more than one stable rule base has been identified; 
in particular, a rule base is saved when its stability level is higher than a 
stability threshold, whose value is continuously incremented.  

• Its initial value is set to 0.5; when a rule base shows a stability higher 
than this for a given number  of  consecutive episodes, then it is saved, 
all the unsteady rules are eliminated, and a test phase is started. 

• At the end of such a phase, the stability is higher, because of the 
elimination of unsteady rules; the new threshold is given by the new 
stability value plus an increment, equal to 0.05 in this experiment.  

The test phase is composed of some trials, different from each other  
because of the initial agent position. Since such initial values are selected 
to cover all the space of the possible initial conditions, the agent behavior 
tested in this phase is considered to be a good approximation of the 
behavior of the agent starting from any initial position. The ability of  a 
rule base to perform well in such trials is used to evaluate its completeness, 
defined as the sampling likelihood for the agent governed by the consid- 
ered rule base to reach its goal in a given number  of steps. 

5.2.1. LEARNING TO FOLLOW A CORRIDOR In this first learning experi- 
ment,  the agent must learn to follow a corridor that can also contain 
unmapped  obstacles. 
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Table 1. 
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Partitioning of the Rule Bases with Respect to their 
Completeness a 

Complete- Fraction of 
ness,% rule bases,% 

100 97 
88 98.5 
77 100 

< 77 0 

aOver the total of 72 learnt rule bases. 

The reinforcement program provides a positive reinforcement, propor- 
tional to the movement along the corridor and to the alignment to it, when 
the agent moves in the correct direction; a negative reinforcement propor- 
tional to the movement in the wrong direction is also given. Finally, a 
strong punishment is given whenever the agent touches a wall or an 
obstacle. 

We have run 18 independent learning sessions. In each one of them, 
more than one complete rule base has been learnt: Table 1 shows the 
percentage of rule bases that have a completeness higher than a given 
value; the percentage is computed with reference to the total number of 72 
rule bases, even if learnt in different sessions. In Table 2 we report the 
results referring to the most complete rule bases learnt in each learning 
session; whenever more than one had the same completeness, we have 
selected the rule base with the highest performance. The value reported 
for each rule base is obtained by averaging the values relative to the 
different trials during the test phase. The performance value is computed 
according to a law that gives higher performance values when the agent 
proceeds in the middle of the corridor and is oriented approximately along 
it. In the definition of both the performance and the reinforcement 
program we have adopted fuzzy models. 

Table 2. Results Concerning the Best Rule Bases Learnt in Each 
Learning Session 

Quantity Average Std. dev. min max 

Number of enough-tested rules 75.53 12.01 49 96 
Stability level 0.70 0.09 0.51 0.86 

Completeness (%) 100 0 100 100 
Performance 0.83 0.06 0.67 0.94 
Number of moves 197.67 5.44 192.44 210.44 
Number of crashes 0 0 0 0 
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Table 3. Results Concerning the Use of the Learnt Strategy in a 
2-m-Wide a Corridor 
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Quantity Average Std. dev. rain max 

Completeness (%) 100 0 100 100 
Performance 0.79 0.05 0.72 0.91 
Number of moves 208.56 19.23 192 255.78 
Number of crashes 1.19 1.63 0 5.22 

a Instead of 3 m wide. 

The first two values reported in Table 2 refer to the learning phase. The 
other four refer to the test phase; they are the completeness, the perfor- 
mance value, the number of moves to reach the end of the corridor (the 
minimum theoretical value is 191), and the number of contacts with walls. 

We tried to use the same strategy learnt in a 3-m-wide corridor in a 
2-m-wide one, obtaining the results reported in Table 3. Table 4 contains 
the results concerning the adoption of the same strategy in a 4-m-wide 
corridor. The tables show that the strategy learnt in a particular corridor is 
portable, i.e., it can be used to accomplish the task even in a different 
corridor. This mainly comes from the high-level description of the strategy. 

Even if learning has taken place in an obstacle-free corridor, the same 
strategy is able to accomplish the task in the presence of obstacles, as 
shown in Figure 4. Remember  that the a priori unknown obstacles are not 
present in the approximate map provided to the agent; therefore, it is not 
aware of their existence. 

5.2.2. LEARNING TO ALIGN ALONG A CORRIDOR The aim of this 
second experiment is to shape a rule base enabling the agent to align along 
a corridor; this is analogous to reaching a given heading with respect to the 
corridor. The reinforcement program gives a reinforcement proportional 
to the proximity to the desired heading. 

Table 4. Results Concerning the Use of the Learnt Strategy in a 
4-m-Wide a Corridor 

Quantity Average Std. dev. min max 

Completeness (%) 92.16 10.61 66.7 100 
Performance 0.72 0.09 0.60 0.86 
Number of moves 202.98 9.42 194.11 233 
Number of crashes 0.01 0.04 0 0.11 

a Instead of 3 m wide. 
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Figure 4. Example of trajectory followed by the agent in a corridor with obstacles. 

We have run 18 independent  learning sessions, in each of which more 
than one rule base was saved. Table 5, analogous to Table 1, shows the 
percentage of rule bases (over the total of 57 rule bases learnt in the 18 
sessions) that exhibit a completeness higher than a given value. 

As in the previous experiment,  Table 6 shows the results concerning the 
most complete rule bases learnt in each learning session: the value used 
for each rule base is computed as an average of the values relative to the 
different trials of a test phase. The performance value is related to the 
improvement  in agent orientation (a value equal to 1 states that the agent 
aligns itself along the corridor in the theoretical minimum number  of 
moves). The first three rows of Table 6 refer to the learning phase. The 
other four refer to the test phase; they are the completeness,  the perfor- 
mance value, the number  of maneuvers to reach the correct orientation, 
and the number  of contacts with walls. 

We have applied the same strategy learnt in a 3-m-wide corridor in a 
2-m-wide one, obtaining the results shown in Table 7. It shows that the 
strategy learnt in a particular corridor is able to accomplish the task even 
in a different corridor. 

In Figure 5 we report  some trajectories followed by the agent during 
trials. Notice how the agent can manage maneuvering also in narrow 
corridors. 

Table 5. Partitioning of the Rule Bases with Respect  to Their  
Completeness a 

Complete- Fraction of rule 
ness, % bases, % 

100 87.7 
> 75 98.2 
< 77 1.8 

aOver the total of 72 learnt rule bases. 
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Table 6. Results Concerning the Best Rule Bases Learnt in Each 
Learning Session 
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Quantity Average Std. dev. min max 

Number of learning episodes 471.07 199.45 158 863 
Number of enough-tested rules 46.87 6.62 38 56 
Stability level 0.75 0.11 0.60 0.91 

Completeness (%) 100 0 100 100 
Performance 0.85 0.08 0.60 0.95 
Number of maneuvers 1.65 0.21 1.42 2.28 
Number of crashes 0 0 0 0 

5.3. Navigation in an Approximately Known Environment 

In the second group of experiments, the agent is called on to act in an 
environment that is known only in an approximate way. More precisely, it 
has an approximate map of such an environment that contains some 
features (corridors and doors), about which only rough and imprecise 
metric information are available: for example, in the map we may have a 
corridor about 3 m long. Approximation is represented by fuzzy values. 

These experiments show that the strategies learnt by S-ELF can cooper- 
ate with some other hand-coded strategies to accomplish a complex 
mission, like reaching a particular target. Moreover, some of these learnt 
strategies come from the same mission template, showing that the set of 
metarules learnt in a particular environment can be successfully applied 
even in different environments sharing the same topological characteristics 
(e.g., in different corridors). 

The mission definition allows us to use a goal-regression planner to select 
the missions (and so the strategies) that accomplish a complex task 

Table 7. Results Concerning the Learnt Strategy Applied in a 
2-m-Wide a Corridor 

Quantity Average Std. dev. min max 

Completeness (%) 91.5 11.4 55.5 100 
Performance 0.82 0.09 0.68 0.99 
Number of maneuvers 3.24 1.42 1.33 7.85 
Number of contacts 0.19 0.18 0 0.71 

a Instead of 3 m wide. 



428 Andrea Bonarini and Filippo Basso 

f F 
/ 

/ z 
/ z 
/ z 
/ z 

/ z 
/ z 

/" / 
/ / 

¢ 
d / 

agent aligning along a Figure 5. Examples of trajectories followed by the corridor. 

(m&sion plan): their activation is led, at running time, by sensorial data 
about the surrounding environmental conditions; in other words, it is 
data-driven. We have run experiments in two different conditions: without 
and with obstacles. It is important to note that the approximate map given 
to the agent contains information only about the a priori known elements: 
the obstacles present in the environmental configuration shown on the 
right in Figure 6 are not present in such a map. The trajectories followed 
by the agent in the two cases are drawn in Figure 6. 

. , ¢ z l . , , , x , ' . / / / i x / / / x . , / / ,  
' z# ¢ # I) 

[ / / / /  

Figure 6. Examples of agent's trajectories during navigation in a complex environ- 
ment. 
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6. CONCLUSION 

We have presented an approach to support with reinforcement learning 
the process of development of complex behaviors for autonomous agents. 
S-ELF can learn in which contexts, described by fuzzy logic predicates, 
basic behaviors are useful. Like its ancestor (ELF), it shows many interest- 
ing features, such as robustness, flexibility, efficiency; the learnt rule bases 
are portable and robust. 

Our current research activity is oriented towards the application of 
S-ELF to more complex environments and missions, and the systematic 
study of the limits of the portability and robustness of the learnt control 
systems. Moreover,  we are also studying the integration of the learning and 
control architecture here presented with another system [7] (based on a 
neurofuzzy approach) that provides reliable symbol grounding [16] for the 
fuzzy logic predicates. 

7. APPENDIX 

In this appendix we report  details concerning the mechanism we have 
devised to shape the control rules according to the truth evaluation of the 
context predicates. 

Since the context of a rule is related to a goal-oriented viewpoint about 
the current agent's mission, it can be reasonably used to shape either the 
desirability of a direction of observation (through D i) or the utility of a 
steering angle (through Ui). In fact, the viability V i and the limitations L i 
seem not to be under direct agent control, since they depend on the 
environment, and consequently, they cannot shape the control rules. 

There are, at least theoretically, two different ways of shaping the 
control rules: the context can act either on the antecedents or on the 
consequents. It is shown in [1] and [9] that these two methods, apparently 
antithetical, can lead, under opportune hypotheses, to the same emergent 
behavior. In other words, the context can either modify the perception of 
the environment (sC), or the actions on it (AC), without any difference in 
the agent's interaction with the world. The two ways of shaping are 
referred to, respectively, as S c---, A and S---, AC; in the rest of this 
appendix we will describe only the first one, adopted in the examples 
presented in the rest of the paper. 

7.1. Context Shaping Desirability 

In the sC--> A modality, the context shapes only the membership 
function of the desirability D i. 
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The shape of the fuzzy set D i is generated from the context through a 
generative function. In Figure 7, we show on the right the generative 
function g*(.)  that we have used to create all the Di; on the left we show 
how we select the generative function itself within a family G of functions 
that have a triangular shape of semiamplitude 6. In other terms, we select 
a generative function g*(.)  within a family of functions having the same 
semiamplitude, and different coordinates for their maximum value. To 
understand how the selection takes place, imagine that the truth value of 
the context predicate [say (in corridor-l)] in the current situation is t*. The 
function a(.),  drawn on the left of Figure 7, maps t* to a*;  ~* = a(t*). 
As mentioned before, the generative function g*(.)  that belongs to the 
family G, and that is characterized by two specific values a* and t*, is 
unique. Thus, from the truth value of the context predicate, by using the 
function c~(-), we obtain a value a* for a that, together with t*, 
univocally identifies a generative function g*(.). From g*(-), we shape all 
the control rules in this way: for each a i ~ [~* - 6, a* + 6], we generate 
a fuzzy set D i = (a i ,  g* (a i ) ) ,  whose support reduces to a single point. In 
our example, this represents the desirability of each heading value, given 
the truth value of the context predicate. In other terms, we obtain that if it 
is true that we are in corridor-l, then the desirability of having a heading a 
in the same direction of the corridor is maximum, and it has a shape like 
the one presented in Figure 7, determined by g* (.). 

Given that the context (in our case, being in corridor-l) cannot influence 
the viability of a direction, we can say that S i = D~. 

Now, still focusing on this example, it is evident that there is a direct 
mapping between the state and the control variable: for each heading 
there is one and only one steering angle allowing the agent to move in that 
direction. Thus, a control rule 

IF (s IS S) THEN (a IS A )  

is created, by introducing the corresponding A i = ( f ( o ~ i ) ,  L(f(oti))) ,  where 
f ( . )  is the function that represents the above-mentioned mapping between 

t T I i 

. . . . . . .  i O t t  t * 

0.5 t* i.0 t ~* 
Figure 7. The functions d(') (left) and g*(-) (right). 

O~ 
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state variable (e.g., direction of observation) and control action (e.g., 
steering angle). Note  that U~ does not appear  in the definition of Ai: this is 
because we have decided, in this modality, that the context influences only 
the antecedent  part  of a control rule. 
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