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A b s t r a c t - - I n  this paper, conditions for matrices P, Q so that the Beta matrix function B(P, Q) 
satisfies B(P,Q) = B(Q,P) and B(P,Q) = F(P)F(Q)F-I(P + Q) are given. Counter-examples 
showing that hypotheses cannot be removed are also included. A limit expression for the Gamma 
function of a matrix is established. 

K e y w o r d s - - G a m m a  matrix function, Beta matrix function, Simultaneous diagonalization. 

1. I N T R O D U C T I O N  

I t  is well known tha t  many  of the ordinary  special functions of  mathemat ica l  physics, and most  

of their properties,  can be derived from the theory  of group representations. Special functions of 

a mat r ix  a rgument  appear  in the s tudy  of spherical functions on certain symmetr ic  spaces and 
mult ivar iate  analysis in statistics, see [1]. Special functions of two diagonal matr ix  a rgument  

have been used in [2]. Be ta  functions of two matr ix  arguments,  but  where one of t hem is a scalar 
multiple of  the identi ty has been recently used in [3] in the framework of or thogonal  mat r ix  
polynomials.  

In this paper,  some properties of the G a m m a  and Beta  matr ix  functions are proved. An  
analogue of  the expression of  the  scalar G a m m a  function as a limit is given for the G a m m a  

function of a matrix.  Condit ions for matrices P, Q in C r×r  so tha t  B(P,  Q) is well defined and 

satisfy B(P, Q) = B(Q, P) and B(P, Q) = F(P)F(Q)F-I(P + Q) are established. For the sake 
of clarity, in the presentat ion we recall some properties of  the Riesz-Dunford functional calculus 

t ha t  may  be found in [4-6]. If  P is a matr ix  in C rXr, we denote by ]IPII its 2-norm defined in [6, 

p. 56]. The  set of all the eigenvalues of P is denoted by a(P) .  
If  P is a matr ix  in C r×r  such tha t  Re(z) > 0 for all eigenvalue z of P ,  then F ( P )  is well defined 

a s  

F(P) = e - t t  P - I  dt, t P - I  = exp ( (P  - I )  In t ) .  (1) 

Since the reciprocal Gamma function denoted by F - l ( z )  = 1/r(z) is an entire function of the 
complex variable z, for any matrix P in C ~x~, the Riesz-Dunford functional calculus shows that  
the image of F - l ( z )  acting on P, denoted r'-l(P), is a well-defined matrix (see [4, Chapter 7]). 
Fur thermore ,  if P is a matr ix  such tha t  

P + n I  is invertible for every integer n >_ 0, (2) 
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then r(P) is invertible, its inverse coincides with r -I(P), and 

P ( P + I ) . . .  ( P +  ( n -  1 ) I )C  -1 (P + n I )  = F -1 (P) ,  n > 1 (3) 

(see [5, p. 253]). If f ( z )  and g(z) are homomorphic functions of the complex variable z, which are 
defined in an open set fl of the complex plane, and P is a matrix in C rxr such that  a(P)  C fl, 
then from the properties of the matrix functional calculus [4, p. 558], it follows that  f ( P ) g ( P )  = 
g ( P ) f ( P ) .  Under condition (2), from that,  equation (3) can be written in the form 

P ( P  + I ) . . . ( P  + ( n -  1)I) = F ( P +  nI)  F -1 (P) ,  n > 1. (4) 

If we take into account the scalar factorial function denoted by (z)n and defined by (z)n = 
z(z  + 1) . . .  (z + n - 1), n > 1, (z)0 = 1, then by application of the matrix functional calculus to 
this function, for any matrix P in C r×~ one gets 

( P ) n =  P ( P  + I ) ' ' ' ( P + ( n - 1 ) I ) ,  n _ > l ,  ( P ) 0 = I "  (5) 

If f ( P )  is well defined and S is an invertible matrix in C r×r, then [6, p. 541] 

f ( S P S  -1) = Sf(P)S -I. (6) 

If P lies in C ~x~, using its Schur decomposition and denoting ~(P) = maxzEa(p) {P~e(z)} for 
t E R, it follows that [6, pp. 336,556]: 

- k! " (7) 
t ,  k=0 

2.  O N  T H E  G A M M A  A N D  T H E  B E T A  M A T R I X  F U N C T I O N S  

Let M be a matrix in C rxr such that  

Re(z) > 0, for all z in a(M) ,  

and let n be an integer n > 1. By [7, p. 17], we have 

g(z) = (1 - s) ~s  ~-1 ds = n! [z(z + 1) . . .  (z + n)] -1 ,  

(8) 

Re(~) > o, (9) 

f (z )  = 1 - s ~-1 ds = n! n z [z(z + 1). . .  (z + n)1-1 , Re(z) > 0. (10) 

As f and g are homomorphic functions in Re(z) > 0, by application of the matrix functional 
calculus in (9) and (10), one gets 

g(M)  = (1 - s) n s M - I  ds = n! [M(M + I ) . . .  ( M  + n / ' ) ]  - 1  , (11) 

/o ° 
( B 

f(M) = 1 -  -~) s M-x ds = n! n M [M(M + I ) . . .  ( M  + hi)] -1 (12) 

By (1) and (12), we can write 

r(M) - n! n M [M(M + I ) . . .  (M + hi)] -~ 

= fo~°e - t 'M- l  d t -  fo~ ( 1 -  ~ )  ~ ' M - I  d' (13) 

n _ _ $ M - I  d t  + [ e - i t  M - I  d t .  
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Since f o  e - t t M- I  dt is convergent, one gets 

fn  ~ e - t t  M - I  dt = O. 

Now we prove that  

l imecfon[e- t - -  ( 1 - - ~ ) n ] t M - l d t = O ,  

By [7, p. 16], one gets 0 _< e - t  - (1 - t / n )  n <_ t 2e - t / n ,  0 < t < n, hence, 

_ tM_ z 1 n 

By (7) and using In t _< t for t > 0, we can write 

~-~ [(IIMII + 1) v~ln t ]  j IIt'+III ta (M)+l  < 
- Z . .  j! 

j=0 

] [(IIMII + i) 47 t] j < _ t a(M)+l j! , t > 0 .  

: = 0  

By (16) and (17), 

/on } 1 n 1 [(IIMI] + 1) x/7]J e - t t  ~(M)+:+j de -~ IItM+III e - t  dt < - j! 
n ( j = o  

Since, for 0 <: j < r - 1, we have 

fo ~ e- t t  ~(M)+I+j dt < +oc, 

by (16)-(19) one gets (15). Thus, the following result has been established. 

THEOREM 1. Let  M be a matrix satisfying (8) and let n > 1 be an integer. Then 

r(M) = lira (n - 1)! (M)S: nM, 
n---~ OO 

where (M)~  is defined by (5). 

Let P, Q be matrices in C rxr such that  

Re(z) > 0, Re(w) > 0, for all z e a (P) ,  w E a(Q).  

By (7) and using ln t  < t and ln(1 - t) < 1 - t for 0 < t < 1, it follows that  

fo  1 I I tP- l l l  (1 - t) Q-I dt 

r - 1  r - 1  
-<ZZ 

j=o k=0 
v - - 1  r - - 1  

-<ZZ 
j=0 k=0 
r - - 1  r - - 1  

--ZZ; 
j=o k=o 
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(14) 

(15) 

(16) 

(11) 

(is) 

(19) 

(20) 

(IIPII + 1) j (IIjQ.II +k[ 1)k (v/-r)J+k f01 ta(P)-I ( 1 -  t) a(Q)-I in j ( t) in k ( 1 -  t ) d t  

(IIPI[ + 1) J (IIQII + 1) k r(J+k)/2 j~o 1 j [  k[ t a ( P ) + j - 1  (1 - t) a(Q)+k-1 dt 

(IIPII + 1) j (IIQII + 1) k rO+k)/2B (a (P)  + j ,  a(Q) + k) 

j~ k! 
<: q-oO. 
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Thus, we can define 

B(P,  Q) = tP-I(1 - t) Q-I dr. (21) 

In [3], it has been shown that if P, Q are matrices in C ~xr satisfying (20) and P or Q are scalar 
multiples of the identity matrix, then B(P, Q) = B(Q, P). The next two examples show that 
if P, Q are not diagonalizable, or if they do not commute, then the property B(P,  Q) = B(Q, P) 
does not hold true. 

[ 1 0 ] , Q =  [~1] b e m a t r i c e s i n C 2 X 2 w i t h a ( p ) = a ( Q ) =  {1,2}. Hence, EXAMPLE 1. Let P = 2 2 
they are diagonalizable and 

Note that ol ol '~ = Ol Ol and = for all n _> 1. Hence, for 0 < t < 1, one gets 

[00 [ 1 1 ] =  1 ~] o l [ ~ - ~ t  ] 
t P - 1 =  t ( 1 -  t )Q- i  = ( 1 -  t)[o l] = 

t - 1  ' 1 t ' 

=-t  1 t t Q - I = t [ ~ l ]  
~ t ' 

i0 ' 7][ 0 B(P,  Q) = tP-I(1 - t) Q-I dt = t - 1 1 - t 

io [ = t - 1  2 t (1 - t )  d t =  
i 

~01 ~01[~ t - l ]  [ 1  0 ] B(Q, P) = tQ-I(1 - t) P- I  dt = dt 
t t 1 - t  

9•01 [ - t 2 + t + l  
= _t2 

Hence, B(P,  Q) :fi B(Q, P). 

- ( 1 - t ) 2 ]  d t =  
t(1 t) J 

7 -1  
i Y 

- 1  1 

-5- i 

The following lemmas are easy to prove. For the sake of brevity, we only prove the first. 

LEMMA 1. Let P, Q be commuting matrices in C ~x~ satisfying (20). Then B(P, Q) = B(Q, P). 

PROOF. Since PQ = QP, it follows that (P - I ) ( ln  t ) ( Q - I ) l n ( 1 - t )  = ( Q - I ) ( l n ( 1 - t ) ) ( P - I ) l n t  
for 0 < t < 1. Hence, we can write 

]o 1 ]o 1 B(P ,Q)  = tP-I(1 - t ) Q - I  dt = e(P-l)lnte(Q-I)ln(1-t) dt 

= e ( Q - l )  ln(1-t)e(P-I ) In t dt = e(Q-~) In ue(P-1) In(l-u) du = B(Q, P). 

LEMMA 2. Let D, E be diagonal matrices in C ~×~ satisfying (20). Then, 

B ( D , E )  = F(D)F(E)F-I(D + E). 
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THEOREM 2. Let P ,Q  be diagonaBzable matrices in C rxr  such that P Q  = Q P  and satisfy 

condition (20). Then, 
B(P,  Q) = r(P)r(Q)r-~(P + Q). (22) 

PROOF. Since P, Q are diagonalizable and commute by [8, Theorem 1.3.12], they are simultane- 
ously diagonalizable. Let S be an invertible matrix in C rx~ such that  

S - 1 P S  = D, S - 1 Q S  = E; D, E are diagonal matrices. (23) 

In order to prove (22), note tha t  by [8, p. 54], if a ( P )  = {A , , . . . ,A r}  and or(Q) = { # l , . . - , # r } ,  

then a ( P + Q )  = {Al+#i j  }3=1, for some permutat ion il, i 2 , . . . ,  i~ of 1, 2 , . . . ,  r. Since matrices P 
and Q satisfy (20), it follows tha t  

Re(w) > O, for all w c o ( P  + Q). (24) 

By Lemmas  1 and 2 and (23), it follows P + Q = S(D + E ) S  -1 and 

[/0 ] F ( P  -F Q) = S e - t t  D+E-I dt S -1 = SF(D + E ) S  -1, 

r ( P )  = Sr(D)S -~, r(Q) = sr(E)s -~, 
B ( P , Q )  = S B ( D , E ) S  -~  = S [F(D)r (E) r - ' (D + E)] s -~ 

(25) 

(26) 

(27) 

By (25), one gets F - I ( D  + E) = S - 1 F - I ( P  + Q)S, and by (26) and (27), it follows tha t  

B(P,Q) = SF(D)F(E) [ s - l r - I (P  + Q)S] S -~ 
= (SI'(D)S -~) (Sr(E)S -1) F - I ( P  + Q) = r ( P  + Q) = r ( P ) r ( Q ) r - l ( P  + Q). 

Thus, the result is established. 

REMARK. Apar t  from the commutat ivi ty  hypothesis, the diagonalizability condition of Theo- 

rem 2 guarantees that  every eigenvalue z of the matrix P + Q lies in the right half-plane. The 
following example shows that ,  in general, if P,  Q are matrices satisfying (20), its sum P + Q 
does not satisfy this condition. Let a ,b be positive numbers such tha t  ab > 1. Then matri-  

ces P = [1,2 0 a  1,2 ' ]  Q = [1,2 b 0  ,/2] satisfy or(P) = a(Q)  = {1/2}, but P+Q = [~bl] and 

a ( P  + Q) = {1 - v/-~, 1 + v/-~} with 1 - ~ < 0. 
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