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Stable Equivalence of Dualizing R-Varieties* 

MAURICE AUSLANDER AND IDUN REITEN 

In order to explain the background of this and succeeding papers in 
this series, it is useful to review some basic facts concerning artin 
algebras. 

Throughout this discussion R denotes a commutative artin ring 
with radical r. An R-algebra A is said to be an artin R-algebra if it is 
finitely generated as an R-module. Suppose A is an artin R-algebra. 
Then A °p, the opposite ring of A, is also an artin R-algebra. It is well 
known that mod(A) and mod(A°o), the categories of finitely generated 
A and A°P-modules are dual categories. This duality is given as follows. 
Let E(R/r) be an injective envelope for the R-module R/r. Then the 
functor [1] D: rood(A) -+ mod(A °p) given by D(M) = HomR(M, E(R/r)) 
is our desired duality. The first part of this paper is devoted to developing 
a generalization of the notion of an artin R-algebra which we call a 
dualizing R-variety. Before giving a formal definition, we try to explain 
the origins of the notion of a dualizing R-variety. 

In recent work on the representation and module theory of artin R- 
algebras (see [5] and [6] for example) the abelian category (mod(A) °p, Ab) 
of all additive functors from the opposite category of mod(A) to abelian 
groups, has played a significant role. Following [4], we usually denote 
the category (rood(A) °~, Ab) by Mod(mod(A)), which we call the 
category of modules on rood(A). The full subcategory mod(mod(A)) of 
Mod(mod(A)) consisting of the finitely presented mod(A)-modules plays 
a particularly significant role. We recall that a mod(A)-module M is 
finitely presented if there is an exact sequence Homa(.,A) ~ Homa(' ,B)-+ 
M --~ 0 of mod(A)-modules with A and B in mod(A) (see [4] for further 
details). Of critical importance in studying bo th  rood(A) and 
mod(mod(A)) is the fact that the duality D: mod(A) --~ mod(A °p) can 
be extended to give a duality D: mod(mod(A))--~mod(mod(A) °p) 
defined by D(M)(X)= HomR(M(X), E(R/r)) for all X in mod(A). 

* This  paper  was writ ten while M. Auslander was partially supported by N S F  GP28486 
and I. Reiten was suppor ted  by N A V F  (Norwegian Research Council). 
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This fact serves as the primary motivation for the definition of a 
dualizing R-variety. 

We recall that a variety of annuli, or more simply, a variety is a 
skeletally small additive category in which idempotents split. An 
R-variety is a variety C together with an R-module structure on the 
abelian group C(A, B) for each pair of objects A and B in C, such that 
the composition maps C(A, B) × C(B, C) --~ C(A, C) in C are bilinear 
R-module maps. An R-variety C is said to be a finite R-variety if 
C(A, B) is a finitely generated R-module for each pair of objects A, B 
in C. Clearly if A is an artin R-algebra, then rood(A) is a finite R-variety. 
Also if C is a finite R-variety, then C °p is a finite R-variety. 

Suppose C is a finite R-variety. If M: C °p -+ Ab is a C-module (i.e., 
an additive functor from C °p to abelian groups), then for each X in C, 
the abelian group M(X) also has a structure as an Endc(X)°V-module 
and hence as an R-module since Endc(X) °p is an R-algebra. Further, 
if f :  M -+ M'  is a morphism of C-modules, i.e., a morphism of functors, 
then fx: M(X) --~ M'(X) is an R-module morphism for each X in C. 
We denote by (C °p, mod(R)), the full subcategory of (C °p, Ab) consisting 
of all C-modules M such that M(X) is a finitely generated R-module. 
Because R is an artin ring, it is easily seen that (C °p, mod(R)) is an 
abelian category with the property that the inclusion morphism 
(C °p, m o d ( R ) ) ~  (C °p, Ab) is exact. It is also easily checked that C 
being a finite R-variety implies that (C °p, rood(R)) contains mod(C), 
the full subeategory of finitely presented C-modules. 

In general, the functors D: (C °p, mod(R)) --+ (C, rood(R)) and 
D: (C, rood(R)) --~ (C °v, rood(R)) given by D(M)(X) = Hom,(M(X),  
E(R/r)) for all X in C °p and all X in C, define a duality between 
(C °p, rood(R)) and (C, mod(R)). However it is not always the case that 
if M is a finitely presented C-module (C°P-module), then D(M) is 
a finitely presented C°P-module (C-module) even though as observed 
earlier this is always the case when C = mod(A) with A an artin algebra. 
This fact leads us to define a dualizing R-variety to be a finite R-variety 
C with the property that for each finitely presented C-module (C °p- 
module) M, the C°P-module (C-module) D(M) is also finitely 
presented. Hence if C is a dualizing R-variety, we have the duality 
D: mod(C) ~ mod(C °p) given by D(M)(X) = HomR(M(X), E(R/r)) for 
all X in mod(C). From our previous discussion it follows that if C is 
the category of finitely generated projective modules over an artin ring, 
then C is a dualizing R-variety. 

One of the advantages gained by introducing the notion of dualizing 
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R-varieties is that very often constructions on dualizing R-varieties 
again yield dualizing R-varieties. For example, it is shown in Section 2 
that mod(C) is a dualizing R-variety if C is a dualizing R-variety. 
Hence if A is an artin R-algebra, then mod(mod(A)) is a dualizing 
R-variety. 

The first part of this paper is devoted to establishing this as well as 
other basic formal properties of dualizing R-varieties. The rest of the 
paper is devoted to discussing a particular type of dualizing R-variety 
which we now describe. 

Let C be a dualizing R-variety and D the dualizing R-variety rood(C). 
We denote by DIP the category of C-modules modulo projeetives. 
That is, the objects of D/P  are the same as the objects of D and D/P(A, B) 
for each pair of objects A, B in D, is the group D(A, B)/P(A, B), 
where P(A, B) is the subgroup of those morphisms from A to B which 
factor through projective objects in D. In Section 6 it is shown that 
DIP is a dualizing R-variety. In Section 8 the notion of stable equivalence 
is introduced. Namely, two dualizing R-varieties C and C' are said to 
be stably equivalent if the dualizing R-varieties DIP and D'/P are 
equivalent where D = mod(C) and D ' =  mod(C'). A basic question 
is to describe what it means for two dualizing R-varieties to be stably 
equivalent. Some preliminary results along these lines are obtained in 
Section 9. While they are in no sense definitive, they do suffice to derive 
quite satisfactory descriptions of when a dualizing R-variety C has 
the property that gl dim rood(D/P) = 0, 1, or 2 where D = mod(C) as 
is shown in Section 10. 

In this connection, it is pointed out in Section 10 that i f  
gl dim mod(C) ~ 1, then gl dim(D/P) ~ 2. Hence if C is stably equiva- 
lent to C' with gl dim(D'/P) ~< 2 (D' ~ mod(C')), then gl dim(D/P) ~ 2. 
If C is the category of finitely generated projective modules over an 
artin R-algebra A, it was shown in [6], that if gl dim(D/P) ~< 2 then e 
is stably equivalent to a hereditary artin algebra. While this result is 
true for a larger class of dualizing R-varieties than the categories of 
finitely generated projective modules over artin R-algebras, it is not 
true for arbitrary dualizing R-varieties. The problem of describing 
precisely which dualizing R-varieties C have the property that 
gl dim(D/P) ~< 2 implies C is stably equivalent to a hereditary dualizing 
R-variety will be taken up in [7], another paper in this series. 

The rest of the papers in this series will deal with rather specific 
calculations and examples. 

In general, we follow the notation and conventions established in [4]. 
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In particular, the unadorned word module always means a left module. 
Right modules will generally be viewed as left modules over the opposite 
ring. 

1. R-CATEGORIES 

Let R be a commutative ring. By an R-category we mean a preadditive. 
category A together with an R-module structure on each abelian group 
A(A1, A~) such that the composition maps A(A1, A~) × A(A 2 , Aa) --~ 
A(A~, Aa) are bilinear maps of R-modules, where A(X, Y) denotes 
the group of morphisms in A from the object X to the object Y. It should 
he noted that preadditive categories are the same thing as Z-categories 
where Z is the ring of integers. 

Suppose A, B, and C are R-categories. An R-functor F: A--+ B is a 
functor F: A --+ B of preadditive categories such that F: A(A 1 , A2) -+ 
B(B1, B2) is an R-module morphism, not just a morphism of abelian 
groups, for all A1, A2 in A. Clearly if F: A -+ B and G: B --+ C are 
R-functors, then GF: A--~ C is an R-functor. Suppose F, G: A--~ B 
are two R-functors. Given a morphism f :  F - +  G and an element r in R, 
it is easy to see that rf: F -+  G given by (rf)A = r(fA) for all A in A 
is also a morphism of functors. We say that A is skeletally small if the 
collection of isomorphism classes of objects is a set. If we assume that A 
is skeletally small, then the operation just described of R on the abelian 
group (F, G), the group of morphisms from F to G, makes (F, G) an 
R-module in such a way that R -- (A, B), the category of all R-functors 
from A to B is an R-category. Because the R-functors are the only 
functors we will ever consider between R-categories, we will usually 
refer to them simply as functors and denote R -  (A, B) by (A, B) 
when A and B are R-categories with A skeletally small. 

Suppose A is an object in the R-category A. The fact that A(A, A) 
is an R-module enables us to define the map R - +  A(A, A) given by 
r ~ r • 1A for each r in R and 1A the identity on A. It is easily checked 
that this map is a ring morphism R--* EndA(A) with the property that 
Im(R--~ Enda(A)) is contained in the center of EndA(d). This means 
that R--+ Enda(d) is an R-algebra and it is the only way we consider 
EndA(d) an R-algebra. 

Suppose now that F: A ---* Ab is an additive functor. Then for each A 
in A, the abelian group F(A) is an EndA(A)-module and hence an 
R-module by means of the standard ring morphism. Hence associated 
with each functor F: A -+ db is the functor F ' :  A -+ Niod(R) where 
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F'(A) is the R-module F(A) we just described for each A in A. It is 
not difficult to check that F': A--~ Mod(R) is an R-functor where 
Mod(R), the category of R-modules is considered an R-category in the 
usual fashion. Therefore we obtain the functor (A, Ab)--~R--(A, Mod(R)) 
given by F --+ F' for all additive functors F in (A, Ab). It is not difficult 
to check that this functor is an isomorphism of categories. We generally 
view this isomorphism as an identification and use the notations (A, Ab) 
and R -- (A, Mod(R)), or more simply, (A, Mod(R)) interchangeably. 

Suppose A is an R-category. Then we consider A °p an R-category 
by letting A°P(A1, Ae) be the R-module A(A~, AI). We recall (see [4]) 
that if A is skeletally small, then (A °p, Ab) is called the category of 
A-modules and is usually denoted by Mod(A). Hence our previous 
remarks show that M o d ( A ) =  (A °p, Mod(R)). We now recall the 
notion of a relation on an additive category. 

Let A be an R-category. A relation S on A is a collection of R-sub- 
modules S(A1, A2) of A(A 1 , A~), one for each pair of objects A1, A~ 
in A satisfying: 

(a) if f is in S(A~, A~) and g is in A(A2, A3), then gf  is in 
S ( A I  , A3); 

(b) if f is in S(A~, A2) and g is in A(Ao, A1), then fg is in 
S(Ao, A2). 

Suppose S is a relation on A. It is easily seen that for A1, A~, Aa 
in A, there is a unique bilinear map of R-modules 

A(A1, A2)/S(Ax , A2) × A(A~, A~)/S(A 2 , Aa) --~ A(A1, A~)/S(At , A~) 

which makes the diagram 

A(AI ,  A2) X A(As,  A3) > A(A I , Aa) 

A(A1, A2)/S(A1, A2) × A(A2, A~)/S(A2 , A3) ---~ A(A1, A3)/S(A1, Aa) 

commute, where the vertical maps are given by the canonical morphisms 
of a module onto a factor module. It is now easily checked that the 
following data define a preadditive category A/S. 

(a) The objects of A/S  are the objects of A; 
(b) (A/S)(A1, A~) = A(A1, A~)/S(A1, A2) for all A1, A2 in A/S; 
(c) the composition maps (A/S)(AI,A2) × (A/S)(A~,A3)---~ 

(A/S)(A1, A3) are the unique bilinear maps described above. 
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The category A/S  is called the category A modulo S. Clearly A/S  is 
an R-category with the property that the functor A--~ A/S  given by 
.d ~ A for each object A in A and A(AI ,  As) ~ (A/S)(A1, As) is the 
canonical morphism, is a full R-functor which is an isomorphism on 
objects. It is the only functor from A to A/S  we shall ever consider. 

It is well known and not difficult to check that the functor A --~ A/S  
has the following properties. 

PROPOSITION 1.1. Let B be an R-category. 

(a) A functor F: A --~ B has the property that S(A1, A2) is contained 
in Ker(F: A(Aa, Az) --+ B(F(A1) , F(A2) ) for all A 1 and A2 in A if and 
only if there is a functor G: A[S ~ B such that F is the composition 
A -~ A /S  __+a B. Further if such a G exists it is unique. 

(b) The functor (A/S, B) -+ (A, B) induced by A --~ A/S  is a fully 
faithful functor. 

Stated in other words, Proposition 1.1 simply says that the morphism 
(A/S, B)--~ (A, B) induces an isomorphism of categories between 
(A/S, B) and the full subcategory of (A, B) consisting of those functors 
which vanish on the relation S. We will often view this equivalence as 
an identification. 

We end this section by extending the following notions for pre- 
additive categories to R-categories. 

A category A is said to be an annulus if A is a skeletally small additive 
category in which idempotents split and which has an additive generator 
G, that is, every object in A is a summand of a finite sum of copies of G. 
An R-category A is said to be an R-annulus if A as an additive category 
is an annulus. A category A is said to be a variety of annuli or more 
simply a variety if A is a skeletally small additive category in which 
idempotents split. An R-category A is said to be an R-variety or R-variety 
of annuli if A, as an additive category, is a variety or variety of annuli. 

2. DESCRIPTION OF DUALIZING R-VARIETIES 

Throughout this section we assume that R is a commutative ring. 
In studying the category of finitely generated modules over an R-algebra 
A which is a finitely generated R-module, not only do the R-categories 
p(A). the category of finitely generated projective A-modules and 



312 AUSLANDER AND REITEN 

mod(A), the category of finitely presented A-modules play an important 
role, but also the finitely presented modules over mod(A). In this 
section we describe a certain class of R-varieties which provides 
common framework in which to discuss these and other R-varieties 
which occur in studying artin algebras. 

Let C be an R-variety and rood(R) the category of finitely presented 
R-modules. The category of all functors (C °p, mod(R)) is obviously 
the same thing as the full subcategory of Mod(C) consisting of all 
C-modules M such that M(C) is a finitely generated R-module for all 
C in C. Clearly, if 0 -+ M 1 --~ M2 --~ M3 --~ 0 is an exact sequence of 
C-modules, then M z is in (C °p, mod(R)) if and only if M 1 and Mz are 
in (C °p, mod(R)). Hence (C °p, mod(R)) is an abelian category and the 
inclusion functor (C °p, mod(R)) --+ Mod(C) is exact. 

We recall that since R is a commutative artin ring, the injective enve- 
lope E of R/r, where r is the radical of R, is a finitely generated R-module 
with the property that the contravariant functor D: mod(R) --~ mod(R) 
defined by D(X)--HomR(M, E) is a duality. We recall that 
the isomorphism ~:Imoa(R)--~D2 giving this duality is defined by 
~x: X--+ HomR(HomR(X, E), E) where ~x is the usual R-morphism 
~x(X)(f) = f ( x )  for all x in X and f in HomR(X, E). 

Now let M be a C-module in (C °p, mod(R)). Then the composition 
of functors C °v ~-% m o d ( R ) ~  mod(R) is a contravariant functor from 
C °p to mod(R), or what is the same thing, DM is a contravariant functor 
from C to mod(R). Thus we have the functor D: (C °p, rood(R))-~ 
(C, mod(R)) given by D(M) = DM. Clearly D(M)(X) = D(M(X)) for 
each X in C. In a similar way one obtains a functor D: (C, mod(R)) --~ 
(C°p, mod(R)). These functors establish a duality between (C °p, mod(R)) 
and (C, mod(R)) given by the isomorphisms ~: I(cop,moa(R))~ De and 
/~:/(C.mocl(R))--~D2" The morphism ~: M---~DZ(M) is given by the 
standard morphism of R-modules C¢c: M(C)--* D~(M(C)) giving the 
duality on mod(R) for each C in C °p, and /~ is defined similarly. It 
should be noted that if C' is a full R-subcategory of C, then we get 
commutative diagrams 

(C°p, mod(R)) D. (C, mod(R)) o .  (Cop , mod(R)) 

(C'op, mod(R)) v ,  (C', mod(R)) D (C,op ' rood(R)). 

This duality is of particular interest in the following circumstance. 
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We say that C is a finite R-variety if f.g.(C), the category of finitely 
generated C-modules, is contained in (C °o, rood(R)). Since a C-module 
M is finitely generated if and only if there is an epimorphism 
C(-, C) --* M ~ 0 for some C in C, it follows that C is a finite R-variety 
if and only if C(', C) is in (C °p, mod(R)) for all C in C. Obviously C 
is a finite R-variety if and only if C °~ is a finite R-variety. The  rest of 
this section is devoted to describing the finite R-varieties C which have 
the property that a C-module M in (C °p, rood(R)) is finitely presented 
if and only if the C°P-module D(M)  in (C, rood(R)) is finitely presented. 
Stated differently, we want to find which finite R-varieties C have the 
property that the duality D: (C °p, rnod(R))--+ (C, rood(R)) induces a 
duality D: mod(C °p) --+ rood(C) where mod(C °p) and rood(C) are the 
categories of finitely presented C and C°P-modules respectively. It is 
these types of finite R-varieties which will be our major concern 
throughout the rest of this paper. 

We begin with the following characterization of the finitely presented 
C-modules. 

PROVOSlTION 2.1. Let C be a finite R-variety and M a C-module in 
(C °v, rood(R)). Then the following statements are equivalent: 

(a) M is a finitely presented C-module. 

(b) There is a C in C such that M has a finite projective presentation 
over V(C) where V(C) is the annulus generated by C, or equivalently, there 
is an exact sequence C(', C1) --+ C(', Co) -+ M --~ 0 with the C i summands 
of finite sums of copies of C for i ~- 0 and 1. 

(c) There is a C in C such that the morphism res: Homc(M , N ) - +  
Homv(c)(M [ V(C), N I V(C)) is an isomorphism for all C-modules N in 
(C °p, mod(R)). 

Proof. (a) implies (b) and (b) implies (c) were proven in [4, Proposi- 
tion 3.2]. 

(c) implies (a). Since C is a finite R-variety, we know that Endc(C) op 
is artinian since it is a finitely generated R-module. Also M(C)  is a 
finitely generated R-module and hence a finitely generated Endc(C)op- 
module. Therefore M I V(C) is a finitely presented V(C)-module. Hence 
there is an exact sequence V(C)(., C1) --~ V(C)(-, Co) -+ M I V(C) ~ 0 
with C i in V(C). Let M '  be a C-module such that the sequence of 
C-modules C(', e l )  ---+ C( ' ,  Co) ---+ M '  --~ 0 is exact. Since M '  is finitely 
projectively presented over V I C, it follows that res: Homc(M',  N) --~ 
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Homv(c)(M' I V(C), N I V(C)) is an isomorphism for all C-modules N 
and so in particular for all N in (C °v, rood(R)). But M'  1 V(C) is iso- 
morphic to M I V(C). Hence the functors Homv(c)(M']V(C), ") and 
Homv(c)(MJV(C), ") from (V(C) °p, mod(R)) to abelian groups are 
isomorphic. Therefore the functors Homc(M, -) and Homc(M',  ") from 
(C °p, rood(R)) to abelian groups are isomorphic. Since M and M'  are 
in (C °p , rood(R)), it follows that M and M'  are isomorphic in 
(C °v, rood(R)) and therefore in Mod(C). Because M'  is a finitely pre- 
sented C-module, it follows that M is a finitely presented C-module. 

This characterization of when a C-module in (C °v, rood(R)) is 
finitely presented gives the following useful result. 

PROPOSITION 2.2. Let C be a finite R-variety and let D: (C °p, mod(R))--> 
(C, mod(R)) be the usual duality functor. Then the following statements 
are equivalent for a finitely presented C-module M. 

(a) D(M) is a finitely presented C°P-module. 

(b) There is a C in C such that res: Homc(N, M) ---> Homv(c)(N 1V(C), 
M]  V(C)) is an isomorphism for all N in (C °p, rood(R)). 

(c) There is a C in C such that the natural morphism ((., X), M) 
((', X) I V(C), M I V(C)) is an isomorphism for all X in C. 

Proof. (a) implies (b). Since D(M) is a finitely presented C°p-module, 
we can find a C in C such that (D(M), N) --+ (D(M) I V(C), N1 V(C)) 
is an isomorphism for all N in (C, rood(R)). Hence applying the duality 
functor D, we have that (D(N), M)--~ (D(N) EV(C), M] V(C)) is an 
isomorphism since D(N J V(C)) = D(N) j V(C) for all N in (C, mod(R)). 
Since D(N) runs through all of (C °p, rood(R)) as N runs through 
(C, rood(R)) we have shown that the object C in C has the property that 
(X, M)- -+(X[  V ( C ) , M ] V ( C ) )  is an isomorphism for all X in 
(C or, rood(R)) if D(M) is a finitely presented C°P-module. 

(b) implies (a). This can be shown by reversing the steps of the proof 
given for (a) implies (b). 

(b) implies (c). Trivial. 
(c) implies (b). Assume that C in C has the property that 

((', X), M ) - ~  ((-, X)[  V(C), M IV(C)) is an isomorphism for all X 
in C. Let N be an arbitrary object in (C °p, rood(R)) and let 

I~ (', Bi) --~ H (', D~) --+ U--~ 0 
i e l  jeJ 
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be a projective presentation for N in (C °p, Mod(R)). We then have 
the exact commutative diagram 

0 --~ (N, M) --+ ]_[ ((-, B,), M) --+ ]_[ (( ' ,  D~-), M) 

0 --~ (N, M) ~ I-I ((', B,), M) --~ 17[ ((', Dj), M) 

0--~ (NI V(C), M I V(C)) ~ I ]  ((', B~) I V(C), M I V(C)) -~ ]-[ ((., D~) I V(C), MI V(C)) 
i e l  J~J 

Since the last two bottom vertical morphisms are isomorphisms, it 
follows that (N, M) ~ (N I V(C), M f V(C)) is an isomorphism. 

Since the notion of a pseudokernel is involved in the statement of 
the next result, we recall the definition and some basic properties of 
pseudokernels [3]. 

Let C be an arbitrary variety. A morphism C ~  C 1 is said to be 
pseudokernel for a morphism C 1 g-~ C O if the sequence of funetors 

c(., c~) c( . ,~ c(-, Q) c(.,,% c(., co) 

is exact. It is well known that the following statements are equivalent 
for the category C .  

C has pseudokernels, i.e., every morphism in C has a pseudo- (a) 
kernel. 

(b) 
(c) 

Every morphism in mod(C) has a kernel. 

rood(C) is abelian. 

The reader should have no difficulty defining for himself the dual 
notion of pseudocokernel and seeing that the duals of (a), (b), and (e) 
hold. 

PROPOSITION 2.3. Let C be a finite R-variety with pseudocokernels. 
Then the following statements are equivalent. 

(a) I f  M is a finitely presented C-module, then D(M) is a finitely 
presented C°V-module. 

(b) For each object B in C, there is an object C in C such that 
res: Homc(C(', X), C(', B)) -~ Homv(c)(C(', X) I V(C), C(', B) I V(C)) 
is an isomorphism for all X in C. 
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Proof. (a) implies (b) follows from Proposition 2.2. 

(b) implies (a). Proposition 2.2 shows that the hypothesis of (b) 
implies that D(C(., X)) is a finitely presented C°P-module for each X 
in C. Suppose M is a finitely presented C-module and C(', C1)-+ 
C(', Co) --+ M - +  0 is exact. Then  0 -+ D(M) ~ D(C(., Co) ) -+ D(C(., C1) ) 
is an exact sequence in (C, mod(R)). Since C has pseudocokernels, it 
follows that C °p has pseudokernels so that mod(C °p) is abelian and 
the inclusion mod(C °p) -+ (C, rood(R)) is exact. Consequently D(M) 
is finitely presented since D(C(., Co) ) and D(C(., C1)) are finitely 
presented. 

Before stating the main result of this section, we make the following 
definition. We say that an R-variety C is a dualizing R-variety if it is 
a finite R-variety such that the duality D: (C °p, mod(R)) --~ (C, mod(R)) 
induces a duality D: mod(C) --+ mod(e°P). Obviously a finite R-variety 
C being a dualizing R-variety is equivalent to a C-module M in 
(C °p, mod(R)) being finitely presented if and only if D(M) is a finitely 
presented C°P-module. We now give a complete characterization of 
dualizing R-varieties. 

THEOREM 2.4. A finite R-variety C is a dualizing R-variety i f  and 
only if  it satisfies the following conditions. 

(a) C and C °p have pseudokernels. 

(b) Given any B in C, there is a C in C such that the morphism 

C(X, B) --+ Hom~ndclC)ov(C(C, X), C(C, B)) 

is an isomorphism for all X in C. 

(c) Given any B in C °p, there is a D in C °p such that the morphism 

C°P(X, B) -~ HomEndcOp~D)o,(C°P(D, B), C°P(D, X)) 

is an isomorphism for all X in C °p. 

Proof. Suppose that C is a dualizing R-variety. Then  the duality 
D: (C °p, mod(R)) --* (C, mod(R)) induces a duality D: mod(C) --* 
mod(Cov). Since mod(C) and mod(C °p) both have cokernels, mod(C) 
and mod(C °p) both have kernels, which is equivalent to both C and 



STABLE EQUIVALENCE OF DUALIZING R-VARIETIES 317 

C °p having pseudokernels. The  fact that C also satisfies (b) and (c) if C 
is a dualizing R-variety follows from Proposition 2.3. The  fact that C 
is a dualizing R-variety if it satisfies (a), (b), and (c) also follows from 
Proposition 2.3. 

We now apply Theorem 2.4 to obtain some examples of dualizing 
R-varieties. 

PROPOSITION 2.5. Let A be an artin algebra, i.e., the center R of A 
is an artin ring and A is a finitely generated module over R. Let p(A) be 
the category of finitely generated projective A-modules. Then p(A) is a 
dualizing R-variety. 

Proof. The fact that A is an ar t in  algebra shows that p(A) is a 
finite R-variety. Since A is an artin ring, we know that mod(A) is an 
abelian category. Hence the equivalent category mod(p(A)) is abelian 
and so p(A) has pseudokernels. Next, suppose B is in p(A). Then  the 
object A in p(A) obviously has the property that HomA(X, B)--~ 
Hom~op(HomA(A, X), HomA(A, B)) is an isomorphism for all X in 
p(A). 

In order to finish the proof we observe that p(A) °p is equivalent to 
p(A °p) by means of the duality p(A) --~ p(A °p) given by P --~ HomA(P, A) 
for all P in p(A). Since A °p is also an artin algebra with center R, it 
follows that p(A °p) = p(A) °~ has the properties just derived for p(A). 
Therefore p(A) satisfies the conditions of Theorem 2.4 and so p(A) is 
a dualizing R-variety. 

PROPOSITION 2.6. Suppose C is a dualizing R-variety. Then mod(C) 
is a dualizing R-variety. 

Proof. We have already seen in Section 1 that Mod(C) and hence 
rood(C) are R-categories. Hence mod(C) is an R-variety. The  fact that 
C is a finite R-variety obviously implies that mod(C) is a finite R-variety. 
Also the fact that C is a dualizing R-variety implies that C has pseudo- 
kernels, or equivalently mod(C) is abelian. Hence mod(C) has pseudo- 
kernels since it has kernels. 

Let M be a finitely presented C-module. Since C is a dualizing 
R-variety, we know that D(M) is a finitely presented C°V-module. 
Hence by Proposition 2.2, there is a C in C such that Homc(N, M) --~ 
Homv(c)(N[V(C), M [  V(C)) is an isomorphism for all N in mod(C). 
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From this it follows that the object C(', C) in mod(C) has the property 
that 

Homc(N, M) --+ HomEnamoa,c,,C(.,c,)op(mod(C)(C(" , C), N), mod(C)(C(', C), M)) 

is an isomorphism for all N in mod(C). The fact that C is a dualizing 
R-variety implies that C °p is also a dualizing R-variety. Hence mod(C °p) 
satisfies the types of conditions we just established for C. But mod(C) °9 
is equivalent to mod(C °p) because C is a dualizing R-variety. This 
completes the proof that mod(C) satisfies the conditions of Theorem 2.4 
and is therefore a dualizing R-variety. 

Later on we shall give other important examples of dualizing R- 
varieties. 

3. PROPERTIES OF DUALIZING R-VARIETIES 

Throughout this section we assume that R is a commutative ring 
and C is a dualizing R-variety. Our purpose now is to develop certain 
properties of dualizing R-varieties which are reminiscent of some of 
the properties of artin algebras. We begin by looking at the simple 
C-modules. 

Since the endomorphism ring of each object in C is an artin algebra, 
it follows that C is a Krull-Schmidt category, i.e., every nonzero object 
in C is a finite sum of endecomposable objects and the endomorphism 
ring of each indecomposable object is a local ring. It was shown in [4] 
that under these circumstances the C-module C(-, C) has a unique 
maximal submodule which we denote by rC(., C) for each indecom- 
posable object C in C and that C(', C) is a projective cover for the 
simple C-module C(-, C)/rC(., C). Also it was shown that given any 
simple C-module S, there is an indecomposable object C in C such 
that S is isomorphic to C(', C)/rC(., C). We now show that each simple 
C-module is finitely presented. To this end we prove the following. 

PROPOSITION 3.1. Let C be a dualizing R-variety and D: (C °p, 
rood(R)) --* (C, mod(R)) the usual duality functor. A C-module M in 
(C °p, mod(R)) is finitely presented if and only if M and D(M) are finitely 
generated C- and C°P-modules, respectively. 

Proof. Since C is a dualizing R-variety, we know that if M is a 
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finitely presented C-module, then D(M) is a finitely presented C °p- 
module. Hence if M is a finitely presented C-module, then M is a 
finitely generated C-module and D(M) is a finitely generated C °p- 
module. 

Suppose now that M is a finitely generated C-module and D(M) is 
a finitely generated C°P-module. The fact that D(M) is a finitely 
generated C°V-module means that there is an exact sequence 
C(C, -) -+ D(M) -+ 0. Applying D to this exact sequence gives the 
exact sequence 0 --+ D2(M) ~ D(C(C, ")). Since D2(M) = M and C is 
a dualizing R-variety, we obtain an exact sequence 0 ~ M ~ D(C(C, -)) 
with D(C(C, .)) a finitely presented C-module. The fact that M is a 
finitely generated C-module means that ' there is an epimorphism 
C(-, X) ~ M--+ 0 for some X in C. Thus we have the morphism of 
finitely presented C-modules C(., X) Z~D(C(C,-)) with I m f =  M. 
Since rood(C) is abelian we know that K e r f  is also finitely presented. 
Hence we have the exact sequence 0 ~ Kerf--+ C(., X) --~ M --~ 0 
which shows that M is finitely presented since K e r f  and C(', X) are 
both finitely presented. 

As a consequence of this description of finitely presented C-modules 
we have the following proposition. 

PROPOSITION 3.2. Let S be a simple C-module. 

(a) S is in (C °p, mod(R)). 
(b) D(S) is a simple C°P-module. 
(c) S is a finitely presented C-module. 

Proof. (a) Since S is simple it is finitely generated and so is in 
(C °p, rood(R)). 

(b) Follows easily from the fact that D: (C °p, rood(R)) --~ (C, rood(R)) 
is a duality. 

(c) Follows from Proposition 3.1 since S and D(S) are finitely 
generated. 

As an immediate consequence of this proposition we have the fol- 
lowing. 

COROLLARY 3.3. Each finite C-module (i.e., module of finite length) is 
finitely presented. 

We now want to describe the radical of a finitely presented C-module 
M. We define the radical of M, which we denote by rM, to be the 
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intersection of the maximal submodules of M. Obviously if C is an 
indecomposable object in C, then the radical of C(', C) is the unique 
maximal submodule re(. ,  C) of C(', C). We now determine the radical 
of arbitrary finitely generated projective C-modules. 

PROPOSITION 3.3. Let C be a nonzero object in C and let C = [_[i~I Ct 
be a representation of C as a finite sum of indecomposable objects in C. 
Then the epimorphism C(-, C) -~ L[~I C(', C~)/r(C(., C,) has the following 

properties: 

(a) I f  S is a semisimple C-module, then 

Homc (in[~ c(., C,)/rC(', C,), S) --~ Homc(C(', C), S) 

is an isomorphism. 

(b) Ker(C(., C) --~ L[i~z C(., Ci)/rC(., C/) ) = [I/~, rC(', C~) is the 
radical of C(', C). 

(c) rC(-, C) is a finitely presented C-module. 

Proof. (a) If C is indecomposable, then the fact that re(. ,  C) is 
the unique maximal submodule of rC(', C) shows that a) is true in this 
case. The general situation now follows trivially. 

(b) Since C(', C)/IJi~irC(',  Ci) is semisimple, it follows that 
IlieI re( ' ,  Ci) contains the radical of C(', C). On the other hand part (a) 
shows that every maximal submodule of C(', C) contains H i d  rC(', C~). 
Thus rC(-, C) contains LI~* re(., C3 and so they are equal. 

(c) By (b) we know that 

0 --~ re(', C) --* C(', C) ---> ]_1 C(', Ci)/rC(', Ci) --* 0 
g e l  

is exact. Now L[i~iC(', Ci)/rC(', Ci) is finitely presented, since it is 
a finite sum of simple C-modules each of which is finitely presented 
(see Proposition 3.2). Hence rC(., C) is finitely presented. 

In order to use this result to describe the radical of arbitrary finitely 
presented C-modules we need the following result. 

PROPOSITION 3.4. Every finitely presented C-module has a minimal 
projective presentation. In particular, every finitely presented C-module 
has a projective cover. 
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Proof. It was shown in [4] that every finitely presented C-module 
has a minimal projective presentation if Endc(C) °p is semiperfect for 
every C in C. Since each Endc(C) °9 is an artin ring it is certainly semi- 
perfect. 

We now describe the radical of arbitrary finitely presented C-modules. 

PROPOSITION 3.5. Let C(', C)-M M--~ 0 be a pr@ctive cover for 
the finitely presented C-module M. 

(a) f - a ( rM)  = rC(., C) and so f ( rC( ' ,  C)) = rM. 

(b) C(', C)/rC(-, C) is isomorphic to M/rM. 

(c) MIrM is a finitely generated semisimple module with the property 
that Homc(M/rM, S) --~ Homc(M, S) is an isomorphism for each semi- 
simple C-module S. 

(d) A submodule M' of M contains rM if and only if MIM' is semi- 
simple. 

(e) rM is finitely presented. 

(f) I f  g: M -~ N is a morphism of finitely presented C-modules, then 
g(rM) C rN. 

(g) I f  g: M--~ N is an epimorphism, then g(rM) = rN. 

Proof. (a) Let {Mi}j~ I be the family of maximal submodules of M. 
Because f is an epimorphism, it is clear tha t f - l (Ms)  is a maximal sub- 
module of C(-, C) for each j in jr. On the other hand suppose L is a 
maximal submodule of C(', C). The  fact that f :  C(', C)--~ M is a 
projective cover shows that f ( L ) ~  M (for otherwise L = C(', C)). 
Hence C(., C)/L--~ M/ f  (L) is a nontrivial epimorphism and therefore 
an isomorphism since C(', C)/L is simple. Thus  f (L)  is a maximal 
subobject of M with the propertyf-l(f(L)) = L. Therefore the family 
{f-l(Mi)}i~, is the family of all maximal submodules of C(-, C). Because 
rM = Ni~* M i  , it follows that 

s-,(,M) = s-' ( a  M, )  = ns-'(M,) = 
i e l  t~I 

Thus  f ( rC( . ,  C)) • rM (remember f is an epimorphism). 
(b) and (c). These follow readily from (a). 

(d) and (e). These follow from (c) and (b) respectively. 

6o7/xz/3-4 
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(f) Supposeg: M--+ N i s  a morphism in mod(C). Then  M/g-1(rN) --+ 
N / r N  is a monomorphism and so M/g-l(rN) is semisimple. Therefore 
g-l(rN) contains rM and so g(rM) C rN. 

(g) Follows from (d) and (f). 

Let s.s.mod(C) be the full subcategory of semisimple objects in 
rood(C). Then  as a consequence of part (f) we see that M ~  M / r M  
defines a functor rood(C)-+ s.s.mod(C). As a direct consequence of 
Proposition 3.5 we have the following. 

PROPOSITION 3.6. The functor rood(C) ~ s.s.mod(C) given by 
M --+ M / r M  has the following properties. 

(a) The composition s.s.mod(C) __~1~ rood(C) --~ s.s.mod(C) is the 
identity. 

(b) rood(C)--~ s.s.mod(C) is a left adjoint for the inclusion 
s.s.mod(C) --~ rood(C) and so isright exact. 

Another consequence of Proposition 3.5 is the following• 

PROPOSITION 3.7. Let M be in rood(C). 

(a) M - +  M / r M  is an essential epimorphism. 

(b) M = 0 i f  and only if  M / r M  = O. 

(c) An epimorphism f:  P -+ M is a projective cover if  and only if  
Kerfc rP. 

Proof. (a) Let C(-, C)I_~ M be a projective cover for M. Since 
C(',  C) --~ C(', C)/rC(', C) is a projective and M / r M  -~ C(', C)/rC(., C) 

• . , . f l  (see Proposition 3.5), we see that the composltton C(.,  C)--+ M~-~ M / r M  
is an essential epimorphism. Since f is also an essential epimorphism, 
it follows that g is an essential epimorphism. 

(b) Follows from (a). 
(e) We have already seen in Proposition 3.5 that if f :  P --+ M is a 

projective cover, t h e n f - l ( r M )  = rP which shows that Kerfc rP. Suppose 
f :  P ~ M is an epimorphism with P projective and Kerfc rP. Then  
M / r M  -= P/rP and so the composition P --# M --~ M / r M  is an essential 
epimorphism. Hence P i~ M is an essential ep'imorphism. 

Suppose M is a finitely presented C-module. Then  we know that 
r M  is a finitely presented C-module and M / r M  is a finitely presented 
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semisimple C-module. Hence we can define r~M for each nonnegative 
integer i as follows: r°M = M, ri+XM ---- r(riM). In this way we obtain 
a filtration called the Loewy series for M 

M = r°M D rM D r~M D -." 

with the properties that each r im  is a finitely presented C-module and 
ri+lM = r(riM) for all i. Hence each riM/ri+XM is a finitely generated 
semisimple C-module. If r im  ~ 0 for all i, then we say that the Loewy 
length of M is infinite. Otherwise we define the Loewy length of M to be 
the smallest integer i such that r iM = O. It is not difficult to see that 
the Loewy length of M is finite if and only if M is a finite C-module. 
We denote the Loewy length of M by LL(M). 

We now describe some basic properties of the Loewy length of 
modules. 

PROPOSITIO~ 3.8. Let M be a finitely presented C-module. 

(a) Let f:  M --~ N be a morphism in rood(C). 
(i) 1f f:  M - ~  N is a monomorphism, then LL(M) ~< LL(N). 

(ii) 1f f :  M - +  N is an epimorphism, then L L ( M ) / >  LL(N). 

(b) I f  M - =  I~i~, Mi is a finite sum in mod(C), then LL(M)----- 
maxi~z LL(N/i). 

(c) Let n be a nonnegative integer. Then LL(P) <~ n for all indecom- 
posable finitely generated projective C-modules i f  and only i f  LL(M) ~< n 
for all finitely presented C-modules M. 

(d) I f  there is a finite filtration of M in mod(C) M = M o D M 1 D. . .  
D M,~ = 0 with the Mi/Mi+ a semisimple for i -~  0,..., n -  l, then 
LL(M) ~< n. 

Proof. (a)(i) Follows from the fact that f(r3'M) C r~N for all j >/1 
(see Proposition 3.5). 

(ii) Follows from the fact that f ( # M ) =  # N  for all j >/ 1 (see 
Proposition 3.5). 

(b) Follows from the fact that M--+ riM is a functor from mod(C) 
to rood(C), for all j >/1.  

(c) Follows from (a)(ii) and (b). 

(d) It follows from (a) and Proposition 3.5(d) that r~M C M s for all 
j<~n .  
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We define the Loewy length of mod(C), denoted by LL(mod(C)) to 
be the suprenum of the Loewy length of all C-modules. By Proposi- 
tion 3.8 LL(mod(C)) is equal to the suprenum of the Loewy lengths 
of the indecomposable projectives. If C ~- p(A) for an artin algebra A, 
LL(mod(C)) is the usual Loewy length of the artin algebra A, and so 
it will often be denoted by LL(A). 

We end this section by pointing out the dual concept to the Loewy 
length. 

We recall that the socle of M denoted by soc M is the submodule of M 
generated by all the semisimple submodules of M. Using the fact that 
the duality D: rood(C) ~ mod(C °~) preserves simple objects, it follows 
that soc(M)~-D(D(M)/rD(M))  and so soc(M) is a finitely presented 
submodule of M. Hence we have that M/soc(M) is finitely presented 
so that soc(M/soc(M)) is also finitely presented. We define soci(M) 
by induction as follows: SOCo(M ) = 0, soci+l(M ) ~-pre image of 
soc(M/soci(M)) under the canonical morphism M---~ M/soci(M ). We 
then obtain a filtration 

0 = soc0(M) C socl(M) C..- C soci+l(M) C... 

of M having the property that each sock(M) is a finitely presented 
submodule of M such that soc~+l(M)/soct(M ) is the socle of M/soci(M ) 
and so each soc~+~(M)/soci(M ) is a finitely generated semisimple C- 
module. This filtration is called the socle series for M. If sock(M) @ M 
for all i, we say that the socle length of M is infinite. Otherwise, we say 
that the socle length of M is the smallest integer i such that sock(M ) = M. 
We denote the socle length of M by SL(M). Clearly SL(M) is finite if 
and only if M is a finite C-module. 

The same type of duality argument as used in this discussion of the 
socle series also can be used to show that every object in mod(C) has an 
injective envelope because every object in mod(C °p) has a projective 
cover. In analogy with LL(mod(C)), we define the socle length 
SL(mod(C)) to be the suprenum of SL(M) for all M in mod(C). 

We now point out the following connection between the Loewy 
length and the socle length. 

PROPOSITION 3.9. Let C be a dualizing R-variety. 

(a) I f  M is a finitely presented C-module, then 
(i) SL(M) > /LL(M) .  

(ii) SL(M) = LL(D(M)). 
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(b) LL(mod(C)) = LL(mod(C°v)). 

(c) SL(mod(C)) = LL(mod(C)). 

Proof. (a) Since the socle series for M has the property that 
soci+l(M)/soe,(M ) is semisimple, (i) follows from Proposition 3.5(d). 

(ii) Follows from the fact that D ( r X ) =  soc(D(X)) for a finitely 
presented C-module X. 

(b) By (a) we have LL(mod(C))~< SL(mod(C) )=  LL(mod(C°P)). 
Hence (b) follows by symmetry. 

(c) Follows from (a) and (b). 

4. ADJOINTS FOR mod(D) --* rood(D) 

Let C be a fixed dualizing R-variety. Throughout this section we will 
denote the dualizing R-variety rood(C) by D. As we saw in the last 
section D is a dualizing R-variety which is an abelian category in which 
every object has a projecti~ e cover and an injeetive envelope. Our main 
concern in the rest of this paper is the dualizing R-variety rood(D) of 
finitely presented D-modules and a certain full subcategory mod(D) 
of rood(D) which we now describe. 

We denote by rood(D) the full subcategory of mod(D) consisting of 
those D-modules M such that M ( P )  ~ 0 for all projective objects P 
in D. Clearly if 0 --~ M'  -+ M--+ M" --~ 0 is an exact sequence of 
D-modules, then M is in rood(D) if and only if M'  and M" are in 
rood(D). Thus rood(D) is an abelian category and the inclusion 
rood(D)--+ rood(D) is exact. We now describe the objects in rood(D) 
by means of their projective presentations in mod(D). 

PROPOSITION 4.1. The following statements are equivalent for a 
D-module M.  

(a) M is in mod(D). 

(b) If 
D(', D1) __~D~..s), D(', Do) --* M -+ 0 

is exact, then f :  D 1 --+ D O is an epimorphism in D. 
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(e) There is an exact sequence 

D(', DI) D(..f)~ D(', Do) --~ M ~ 0 

with f :  D 1 --~ D o an epimorphism in D. 

(d) HomD(M, P) = 0 for all projective D-modules P. 

Proof. (a) implies (b). 
P in D. If 

D(', D1) 

is exact, then 

Suppose M ( P )  = 0 for all projective objects 

v("t), D(., Do) --~ M---> 0 

D(P, D1) V(~'.1)_+ D(P, Do) --~ 0 

is exact for all projective objects P in D. Since D has enough projectives 
this implies that f :  D 1 --> D o is an epimorphism. 

(b) implies (c). Trivial since given any M in rood(D) there is an 
exact sequence 

D(', D~) m..1), D(', Do) -+ M --~ 0 

in rood(D). 
(c) implies (d). Since each projective D-module is isomorphic to 

D(',  D) for some D in D, it suffices to show HomD(M, D(', D)) = 0 for 
all D in D. Now let f :  D x --~ D O be an epimorphism such that 

D(-, D~)- D(. d), D( ", Do) -+ M --~ 0 

is exact. Then we have the exact sequence 

0 -+ Homn(M, D(', D)) --~ Homv(D(-, Do), D(', D)) --~ HomD(D(', D1), D(', D)). 

Hence HomD(M, D(., D)) = 0  for all D in D if 0--~D(D 0 , D ) - +  
D(D1, D) is exact for all D in D. But this is the case since f :  D 1 -+ D o 
is an epimorphism. 

(d) implies (a). Suppose 

D(', D1) D(.d)> D(', Do) --~ M ---> 0 

is exact and HomD(M, D(', D)) = 0 for all D in D. Then the argument 
used in establishing (c) implies (d) shows that f :  D 1 --+ D O is an epi- 
morphism in D. Hence if X is a projective object in D, then 
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D(X, D1)---~D(X, Do)--~ 0 is exact, which shows that M(X)= 0 for 
all projective objects X in D. 

In connection with Proposition 4.1, it is worthwhile pointing out the 
following. 

PROPOSITION 4.2. (a) gl dim rood(D) ~< 2. 

(b) I f  M is in rood(D), then ExtDI(M, D(., D)) = 0 for all D in D. 

Proof. (a) Let M be a D-module. Let 

D(', D1) 0(" 'e) • D(', Do) --~ M--~ 0 

be exact. Since D is abelian, we have an exact sequence 0--~ D 2 g-~ 
D1 I_~ Do on D. Hence 

0--+D(', n2) D("g)~D(', D~) 0(.,I), D(', Do)--,-M-+O 

is exact and so p d M  ~< 2. Since this is true for every M in rood(D), it 
follows that gl dim rood(D) ~ 2. 

(b) Since M is in mod(D), w e  know by Proposition 4.1 that there 
is an exact sequence 0 -~ D~ -~ D1 ~ Do --* 0 of objects in D such that 
0 ---* D(-, D2) --~ D(-, D1) --~ D(-, Do) --* M --~ 0 is a projective resolution 
of M. Thus the homology of the complex 0 ---* D(Do, D) ---* D(D1, D) -+ 
D(D2, D)- - ,  0 gives the Extv~(M, D(',  D)) for each D in D. Hence 
ExtDi(M, D(., D)) = 0 for i = 0, 1 since the sequence 0 --~ D~ ---* D 1 ---* 
D O --* 0 is exact in D. 

The fact that the D-modules M in rood(D) are characterized by the 
property HOmD(M, P) = 0 for all projective D-modules P, shows that 
they are very similar to "torsion" modules. The extent of this similarity 
is shown in the following proposition which we state after giving some 
definitions. 

We say that a D-module M is a torsion module if M is in mo____d(D). 
We say that M is a torsionless module if it is a submodule of a projective 
D-module. 

PROPOSITION 4.3. For each D-module M, there is a unique (up to 
isomorphism) exact sequence 0 --* Mo --~ M --* D(., DM) --* M1 --* 0 of 
D-modules with the M~ in rnod(D) and DM is an object in D. This exact 
sequence has the following properties. 
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(a) The map M---~D(., DM) is completely determined, up to iso- 
morphism, by the property that for each D in D, the induced map 
HomD(D(., DM), D(., D)) ~ HomD(M, D(', D)) is an isomorphism. 

(b) Given any morphism f: M---~ N of D-modules there is a unique 
commutative diagram 

, M o , M-----~ D(', DM) ,311 ,0  

, No -----+ N -  > D( . ,  DN) > N~ ~. O. 

Thus the sequence is functorial in M. 

(c) I f  X is in mvd(D), then HomD(X, M o ) ~  Homv(X, M) is an 
isomorphism. 

(d) Let 0 -~ M o --~ M -~ M'  -+ 0 be exact. Then M'  is torsionless and 
given any torsionless D-module Y, the map HomD(M', Y) -+ HomD(M, Y) 
is an isomorphism. 

Proof. The existence and uniqueness (up to isomorphism) of this 
exact sequence is shown in [1, Proposition 3.2]. 

(a) LetO-+ Mo-+ M - *  M'--~Oand O--~ M ' - + D ( ' ,  DM)-~ M~--~O 
be exact. If D is in D, then we have the exact sequence 

0 -+ HomD(M~, D(', D)) -+ HomD(D(', DM), D(', D)) 

-+ HomD(M', D(-, O)) -+ ExtDl(M2 , D(', D)). 

Since M 2 is in mod(D), it follows that HomD(Me, D(-, D))-~ 0 = 
ExtDI(M2,D( ., D)) (see Proposition 4.2). Hence HomD(D(', DM), 
(., D)) - -  HomD(M', D(', D)) is an isomorphism. 

On the other hand, the exact sequence 0 --~ M 0 -+ M ~ M'  -+ 0 gives 
the exact sequence 

0 -+ HomD(M', D(', D)) -+ HomD(M, D(', O)) -+ HomD(M0, D(', D)). 

Since M o is in mod(D), we have that HomD(M', D(., D ) ) - ,  
HomD(M, D(-, D)) is an isomorphism. Hence HomD(D(., DM), D(-, D))--~ 
Horny(M, D(', D)) is an isomorphism since it is the composition of the 
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two isomorphisms HomD(D(', DM), D(', D)) --~ HomD(M', D(', D)) and 
HomD(M', Of., O)) --+ HomD(M, Of', D)). 

(b) This is an immediate consequence of (a). 

(c) and (d) follow easily from (b). 

For each D-module M we define Im(M o -+ M) to be the torsion 
submodule of M which we denote by t(M). It follows from Proposition 4.3 
that if f: M--~ N is a morphism of D-modules, then f ( t (M))  C t(N). 
Hence we obtain a functor t: rood(D)--+ mod_(D) by sending M to 
t(M) and f: M - +  N to f l t(M). It also follows from Proposition 4.3, 
that HomD(X, t(M))--+ Homn(X, M) is an isomorphism for all X in 
mod(D), which shows that t: m o d ( D ) ~  mod(D) is a right adjoint to 
the inclusion rood(D)-+ rood(D). Thus t is left exact. 

Another consequence of Proposition 4.3 is that M/t(M) is a torsionless 
D-module and the canonical epimorphism M--+ M/ t (M)-+ 0 has the 
property that HomD(M/t(M), X)  ~ HomD(M, X) is an isomorphism for 
all torsionless D-modules X. Hence if we denote by T(D), the full 
subcategory of rood(D) consisting of the torsionless D-modules, we 
have the functor T: mod(D)-+ T(D) given by T ( M ) =  M/t(M). This 
is a left adjoint of the inclusion T(D)--+ mod(n). It is not difficult to 
check that T preserves epimorphisms and monomorphisms. 

Having shown that the inclusion funetor .rood(D)--+ rood(D) has 
a right adjoint we end this section by showing that it has a left adjoint. 

PROPOSlTIOZ~ 4.4. (a) For each M in rood(D), there is a uniquely 
determined finitely presented submodule M" of M satisfying: 

(i) there is an epimorphism D(', P)--+ M '  with P a projective 
object in D; 

(ii) i f  D(', P') ~-~ M is any morphism with P" a projective object 
in D, then I m f  is contained in M'; 

(b) if f:  M 1 --, M 2 is a morphism in rood(D), then f ( M l '  ) C M2'; 

(c) if for each M in mod(D), we denote the finitely presentedD-module 
M / M '  by M, then: 

(i) M is in mod(D ) for all M in rood(D). 
(ii) M ~- 3/I if and only if M is in m_od(D). 

(iii) The epimorphism M--+ M has the property that the induced 
map HomD(_M, N ) - +  Homn(M, N) is an isomorphism for all N in 
rood(D). 
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(iv) I f  M ~ N is a morphism in D, there is a unique morphism 
f :  M --+ N_ such that the diagram 

M , M  

N ,_N 
commutes. 

(v) The functor mod(D) --* m0d(D) given by M~-. M andf:  M--* N 
goes to f :  M - - .  N_ is a left adjoint to the inclusion rood(D) --* mod(D) 
and is therefore right exact. 

Proof. (a) Let M be in rood(D). We know that there is an exact 
sequence D(-, D) -+ M - +  0 with D in D. Let P --~ D -+ 0 be exact 
with P a projective object in D. We claim that the submodule M'  of M 
which is the image of the composition D(., P) --~ D(', D) -+ M has our 
desired properties. 

Clearly M'  is a finitely presented D-module since it is a finitely 
generated submodule of the finitely presented D-module M. It is also 
obvious from the definition that (i) is true. 

(ii) Suppose D(-, P')_~t M is a morphism in mod(D) with P'  a 
projective object in D. Since D(., D) -+ M ~ 0 is exact and D(', P') is 
a projective D-module, there is a morphism g: P'  ---, D such that f is 
the composition 

D(' ,  P' )  D(.,.) ~ D( ' ,  D)  --* M. 

Since P--* D--~ 0 is exact and P'  is projective, there is an h: P'---~ P 
--* P --* D. From this it follows that f such that g is the composition P' ~ 

is the composition D(', P') --* D(-, P) --~ D(., D) --~ M and so I m f  is 
contained in M'.  Clearly there is only one submodule M'  of M satisfying 
(i) and (ii). 

(b) This follows trivially from (i) and (ii). Thus the proof of part (a) 
of the proposition is complete. 

(c) This part follows easily from part (a). 

5. MINIMAL PROJECTIVE PRESENTATIONS IN mod(D) 

As in the previous section, D = rood(C) where C is a dualizing 
R-variety. We now use the results of the previous section to investigate 
the projective objects in mod(D). For ease of notation, we make the 
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convention that for each D in D, the functor HomD(. ,D) will be denoted 
by HomD(', -D). A useful preliminary result along these lines is the 
following. 

PROPOSITION 5.1. (a) Let P I_~D._+O be an exact sequence of 
objects in D with P a projective object in D. I f  g: D(', D) --+ M is an 
epimorphism, then 

D(-,P) ~D(..I)> M - - ~ M - * O  
is exact. 

(b) Let D be in D. 
(i) Hom,(D(. ,  _D), M) ----- M ( D ) f o r  all M in m0d(D ). 

(ii) D(',  D) is projective in rood(D). 

(c) For each M in mod(D) there is a projective presentation 
D(-, _D1) --~ D(., Do) --* M -+ 0. 

Proof. (a) This is just the description of the submodule M '  of M 
given in Proposition 4.4. 

(b)(i) By (a) if P -+ D --~ 0 is exact with P a projective object in D, 
then D(', P) -*  D(., D) -+ D(-, _D) -* 0 is exact. Hence (D(', -D), M) -*  
(D(', D), M) is an isomorphism for each D-module M in rood(D). This  
establishes (i). 

(ii) Keeping in mind that a sequence 0 --+ M '  --~ M--~ M" --~ 0 in 
rood(D) is exact if and only if it is exact as a sequence in rood(D), it is 
trivial to show that (i) implies (ii). 

(c) Suppose M is in mod(D ). Then  there is a projective presentation 
D(', D1) --~ D(-, Do) -+ M--~ 0 in rood(D). Applying the right funetor 
X ~+ X, we obtain the exact sequence D(., -/)1) --~ D(',  -Do) --~ M --, 0 
in rood(D). Because M is in rood(D), we know that M = M and so 
we have the desired exact sequence D(-, -D1) -~ D(., -Do) -+ M--~ 0. 

This last result suggests that the projectives in rood(D) and rood(D) 
should be intimately related. For instance, does the fact that projective 
covers exist in rood(D) imply the same for mod(D ) ? We now answer 
this question in the affirmative. 

PROPOSITION 5.2. (a) I f  M - +  M"--* 0 is an essential epimorphism 
in mod(D), then M -+ M" -~ 0 is an essential epimorphlsm in mod(D ). 

(b) I f  D(., D ) - +  M - + O  is a projective cover in mod(D), then 
D(', D) -~ 3 / - ~  0 is a projective cover in rood(D). 
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(c) A D-module M in rood(D) is projective in rood(D) if  and only 
i f  M is isomorphic to D(', _D) for some D in D. 

(d) Every object in rood(D) has a projective cover. 

Proof. (a) Let M--+M"--~O be an essential epimorphism in 
rood(D). We have already seen that given any X in rood(D), there is 
an epimorphism D(., D) --> X for some D in D. Hence, to show that 
the epimorphism M - +  M is essential, it suffices to show that if a 
composition D(., D) -+ M -+ ?,_/" is an epimorphism, then D(., _D) -~ M 
is an epimorphism. 

Suppose D(., D)--+ 3/[ is a morphism such that the composition 
D(',  D) -+ N / -+  3//" is an epimorphism. Since D(., D) is projective in 
rood(D) and M--+ M is an epimorphism, there is a commutative 
diagram 

D(. ,  D) > M )- M" 

l ; l 
D(-, p)  - - ~  M - - ~  M" 

with the composition of the bottom row an epimorphism. By Proposi- 
tion 5.1, we know there is an exact sequence D(., P) ~ M" ~ M" ~ 0 
of D-modules with P projective in D. Since D(-, P) is a projective in 
mod(D) and M---> M"-->0 is exact, it follows that the morphism 
D(., P)--~ M" can be factored through M--~ M". Thus we get a mor- 
phism D(',  D) I i  D(',  P) --~ M which is easily seen to have the property 
that the composition D(., D) LID(. ,  P) --~ M--> M" is an epimor- 
phism. Since M---~ M" is an essential epimorphism, it follows that 
D(., D) I~ D(., P) --> M is an epimorphism. But D(-, P) = 0 since P 
is a projective object in D. Consequently D(., _D) ~ M is an epimorphism 
which finishes the proof of (a). 

(b) Follows easily from (a) and the fact that D(',  D) is projective 
in mod(D ) (see Proposition 5.1). 

(e) Let M be a projective object in mod(D) and let D(., D)--~ M 
be its projective cover in rood(D). Then  D(',  D)--~ M is a projective 
cover for M in rood(D) by part (b). But M = M since M is in rood(D). 
Therefore D(', D) --+ M is a projective cover in mod(D ) of the projective 
object M and so is an isomorphism. 

(d) Easy consequence of previous results and the fact that every 
object in rood(D) has a projective cover. 
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Since the functor mod(D) -*  mod(D) given by X ---* _X is right exact, 
this last result suggests that if D(', D1)-+D( ' ,  Do) - -~M- -*O is a 
minimal projective presentation for M in rood(D), then D(., D1)--~ 
D(-, Do)-+ 3 / / -+0  is a minimal projective presentation for M in 
rood(D). While this is not true generally, it is true if M is in mod(D ) 
as we will now show. To do this, we need the following preliminary 
result. 

PROPOSITION 5.3. Let 0 -~  M1 -+ M2 --~ Ma --* 0 be an exact sequence in 
mod(D). I f  M~ is in mod(D), then the sequence 0 -+ M~ ~ M2 ~ M3 --~ 0 
is exact. 

Pro@ Let M 1' be the kernel of the epimorphism M 1 -+ M 1 . Then 
we have the exact commutative diagram 

0 0 

M~' = MI' 

~ M~ , M~ 

, M_I - - - - .  M ; M I '  

0 0 

,M3 ,0  

,M~ ~0 

Since M 1 and Ma are in mo_d(D), it follows that M 2 / M  ~' is in mod(D) 
because mod(D) is closed under taking extensions. 

Since there is an exact sequence D(., P) ~ M1 --+ _M1 --+ 0 with P a 
projective object in D, there is an exact sequence D(., P ) ~  M2--+ 
M J M  1' ~ O. Therefore 3/1' is contained in M~ = Ker(M2 --~ M2). Also, 
because D ( . , P ) - + M  2 ~ M 2 / M  ~'--+0 is exact and D(-,_P) = 0 ,  it 
follows that M 2 --~ M z /M 1' is an isomorphism. But M 2 / M  1' = M2/MI '  
since M 2 / M  ~' is in mod(D). Therefore _/M 2 --~ M 2 / M  ~' is an isomorphism 
which shows that M (  = M 1' and hence the sequence 0 ~ 3"I 1 --+ M s --+ 
_3//3 -+ 0 is exact. 

COROLLARY 5.4. Let D(', D1) ~ D(',  Do) --~ M - +  0 be a minimal 
projective presentation of M in rood(D). I f  M is in mod(D), then 
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D(', D1) -+ D(', Do) --~ M ~ 0 is a minimal projective presentation of M 
in mod(D). 

Proof. We already know by Proposition 5.2 that if we let 
L ~- Ker(D(., Do) --~ M), then D(', D1) --+ _L and D(., Do) --~ M are 
projective covers in rood(D). Since M is in rood(D), we know that 
_M = M and 0 --~ L -+ D(', _Do) ~ M --~ 0 is exact. Hence the exact 
sequence D(-, -/)1) --~ D(', _Do) --~ M --~ 0 is a minimal projective 
presentation of M in rood(D). 

6. THE CATEGORY D I P  

As in the previous section D - ~  mod(C) where C is a dualizing 
R-variety. We now use the description of the projective objects in 
mod(D) given in the previous section to show that mod(D) is the 
category of finitely presented modules over a dualizing R-variety. 

We have already seen in the last section that D(-, D) is a projective 
object in mod(D ) for each D in D. Since 

~ 1  

for all finite families D 1 ,..., D ,  of objects in D, we see that the full 
subcategory of rood(D) consisting of the D-modules D(', D) for all D 
in D is a skeletally small additive R-subcategory of mod(D). From the 
fact that if M is a projective object in rood(D), then M is isomorphic 
to D(', D) for some D in D (see Proposition 5.2), it follows that the full 
subcategory of rood(D) consisting of all D-modules of the form D(', D) 
is an R-variety which is equivalent to p(mod(D)), the full subcategory 
of all projective objects in mod(D ). This observation enables us to 
give another description of p(mod(D)). 

Suppose D is in D and P --+ D --~ 0 is exact in D with P a projective 
object in D. Then  we know that D(., P) --~ D(-, D) --~ D(-, D) --+ 0 is 
exact. Hence for each X in D we have that 

Homo(D(', X), D(', P)) --~ Hom.(D(', X), D(', D)) 

--+ Hom.(D(', X), D(', D)) --+ 0 

is exact. Since Hom.(D(.,X), HomD(',p)) = Hom.(D(.,_X), Hom.(-,D)), 
it follows that D(X, P) ~ D(X, D) -+ HomD(D(-, _X), HomD(', D)) -+ 0 
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is exact. Hence HomD(D(', X), HOmD(', _D)) is the same as the R-module 
D(X, D) modulo the R-submodule P(X, D) consisting of all morphisms 
from X to D which factor through the epimorphism P ~ D--~ 0. It is 
not difficult to see that P(X, D) actually consists of all morphisms from 
X to D which factor through any projective object in D. Hence we see 
that the functor F: D--~ mo_d(D) given by F(D)= D(., D) is a full 
functor with the property that P(D1, D 2 ) =  Ker(F:D(D1,  D2)--~ 
HomD(F(D1) , F(D2))). It follows from this observation that the collection 
P(D1, D2) of R-submodules of D(D1, D2) defines a relation in D which 
we denote by P. The category DIP is called the category D modulo 
projectives or the projective stabilization of D. From our previous discus- 
sion, it is obvious that the functor D/P --~ rood(D) given by D ~ D(., D) 
is a fully faithful functor which induces an equivalence of categories 
D/P---~ p(mod(D)). Since p(m0d(D)) is an R-variety, it follows that 
DIP is an R-variety. To simplify notation we make the convention that 
we will write D instead of D when we are viewing an object D in D as 
an object in D/P. Also if f :  D 1 ~ D 2 is a morphism in D, we denote 
its image in D(DI ,  D2)/P(D1, D2) by f :  0 1  ~ 0 2 . In this notation, the 
canonical morphism D--+ D/P takes the form 'D ~ D for all D in D 
and f ~ - f  for all morphisms f :  D 1 --~ D 2 in D. Finally it is clear that 
the diagram 

D -~ rood(D) 

D/P , mod(D) 

commutes where D -+ mod(D) is given by D ~-~ D(., D), DIP ~ m0d(D ) 
is given by D ~-~ D(-, D) and the other functors are the usual ones. 

Let M be a D°P-module. Then it is not difficult to see that M(P) = 0 
for all projective objects in D if and only if for each pair of objects D 1 
and D~ in D and f :  D 1 --~ D 2 in P(D1, D2) we have M(f) = 0. Thus by 
Proposition 1.1, we see that the functor ((D/P), Ab) ~ (D, Ab), induced 
by D ~ D/P, gives an isomorphism of ((D/P), Ab) and the full sub- 
category of (D, Ab) consisting of those D°P-modules M such that 
M(P) = 0 for all projective objects P in D. This isomorphism shows 
that the functor mod((D/P) °p) -~  mod(D °p) given by M I--~ N, where 
N(D) = M(D) for all D in D is an isomorphism of categories, which 
we often view as an identification. Combining this observation with 
the fact that D °p is a dualizing R-variety since C is a dualizing R-variety, 
it is not difficult to establish the following proposition. 
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PROPOSITION 6.1. The R-variety D/P has the following properties. 
(a) (D/P) °v has pseudohernels. 

(b) Given any M in mod(D/P°p), there is a D in DIP such that the 
morphism 

HOm(b/V)o~(N , M)--~ HomEno(D/v)op(O)o,(N(D), M(D)) 

is an isomorphism for all N in mod(D/P°P). 

Proof. (a) As we have already seen, D/P has pseudokernels if and 
only if mod(D/P °g) is abelian. But rood(DIP) is abelian since it is 
isomorphic to the abelian category rood(D). 

(b) Using the identification of mod(D/P °v) with mod(D °p) we can 
view our given D/P°l~-module M as being in mod(D°g). Since D °v is 
a dualizing R-variety, we know there is a D in D °g such that 

Hombop(N , M)--~ UomEndDop~o,(N(D), M(D)) 

is an isomorphism for all N in mod(D°P). But if N is in mod(D°g), 
then N(D) -~ N(_D). 

Similarly M(D) ~ M(_D). Hence _D in DIP has the property that 

Hom~D/v)op(N, M)--+ HOmEnd(D/e)o,¢o)(N(_D), M(D_ )) 

is an isomorphism for all N in mod((D/P)°P). 

In view of Theorem 2.4, to show that D/P is a dualizing R-variety, it 
suffices to show that (D/P) °g has the same properties as those just 
established for D/P in Proposition 6.1. This  will follow from the fact 
which we now establish that (D/P) °g is equivalent to D°P/P. In order 
to show this we need to introduce a contravariant functor Mod(C)--~ 
Mod(C °g) which is a generalization of the functor Mod(A) --+ Mod(A °p) 
given by M ~-+ HomA(M, A) for all A-modules M. 

For each C-module M define M*: C -~ Ab by M*(C) ~- Homc(M, 
C(', C)). Clearly M* is a C°g-module. In this way we obtain the eontra- 
variant functor Mod(C) -+ Mod(C °g) given by M ~-~ M*. Also for each 
M in Mod(C) we can define the morphism f :  M--+ M** as follows. 
For each C in C, we have to define fc: M(C) ~ M**(C). Now let x be 
in M(C). We have to associate with x a morphism fc(x): M* ~ C(C, -), 
i.e., for every X in C we have to define (fc(x))x: M * ( X ) ~  C(C, X). 
But M * ( X ) =  Homc(M,C( . ,  X)). Hence we obtain a morphism 
(fc(X))x: M*(X) ~ C(C, X)) for each X in C by setting (fc(X))x(g) = g(x) 
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for each g in Homc(M , C(', X)) = M*(X). It is not difficult to check 
that the morphisms fc: M ( C ) ~  M**(C) defined in this way give a 
morphism of C-modules f: M ~ M**. Straightforward calculations also 
show that given any morphism g: M --~ N of C-modules the diagram 

M 7 M** 

N ---+ N** 

commutes. 
Suppose C is in C. Then C(', C)*(X) = Homc(C(', C), C(., X)) = 

C(C, X)) for all X in C. Hence C(., C)* = C(C, .). A similar calculation 
shows that C(C, ")* = C(', C). From this it is easy to see that for each 
finitely generated projective C-module P we have that P* is a finitely 
generated projective C°P-module and P--~ P** is an isomorphism. 

Choose for each finitely presented C-module M a fixed minimal 
projective presentation C(,, CI(M)) --~ C(', Co(M)) --~ M-+ O. Then 
define the C°P-module Tr(M) to be Coker(C(-, C0(M))* -*  C(', CI(M)*) 
which we call the transpose of M. Obviously Tr(M) is a finitely presented 
C°P-module. We can obviously do the same thing for finitely presented 
C°P-modules. Because C(', CI(M))** -+ C(', C0(M))** is isomorphic to 
the morphism C(', CI(M)) --~ C(', Co(M)) it follows that: 

(a) C(., C0(M))* -+ C(., C~(M))*--~ T r ( g ) - - ~ 0  is a minimal pro- 
jective presentation of Tr(M); 

(b) Tr(M) = 0 if and only if M is projective; 

(c) for each finitely presented C-module M we have 

(i) Tr(Tr(M)) has no nontrivial projective summands, 
(ii) there is a uniquely determined (up to isomorphism) 

finitely generated projective C-module P such that Tr(Tr(M)) H P is 
isomorphic to M; 

(d) suppose M is a C-module with no nonzero projective summands: 

(i) Tr(Tr(M)) is isomorphic to M, 
(ii) M is indecomposable if and only if Tr(M) is indeeom- 

posable; 

(e) if M 1 and 214z are C-modules with no nonzero projective sum- 
mands, then M 1 and M 2 are isomorphic C-modules if and only if 
Tr(M1) and Tr(M~) are isomorphic C°P-modules. 

6o7/I2/3-5 
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Suppose we are given a morphism f:  M -* N in rood(C). Then we 
can find a commutative diagram 

C(., G(M)) ~C(., Co(M))- , M -} 0 

C(., C~(N)) ---~ C(., Co(N)) , N , 0  

which gives rise to a unique m0rphism TUod1(f): T r ( N ) - +  Tr(M) in 
mod(C °p) such that the diagram 

C(-, Co(N))* ~ C(., Cx(N))* , Tr(N) , 0  

e( ' ,  Co(M))*---* C(', C~(M))* , Tr(M) , 0  

is commutative. Although the morphism TUod~(f ) depends on the 
particular choice of f0 and f l ,  it is not difficult to see that if we choose 
a different commutative diagram 

c( . ,  G ( M ) )  • ,  c ( - ,  co(M)) , M , o 

C(-,Ca(N)) . , C( ' ,  Co(N))-----~ N . , 0  

then Trlodl(f ) - -TD, ,  c ( f ) :  Tr(N)--* Tr(M) factors through a pro- 
jective C°P-module. In this way we obtain the contravariant functor 
mod(C)-+  mod(C°P)/P given by Mv-~ Tr(M) and f v +  Tr ( f ) .  Since 
this functor takes projectives in rood(C) to zero in mod(C°P)/P, it 
follows that there is a unique contravariant functor, which we call the 
transpose and denote by Tr: mod(C)/P--~ mod(C°p)/P, such that the 

• . ~ r r  o p  " " composmon rood(C) --~ mod(C)/P--~ mod(C ) / P  is the contravarlant 
functor rood(C)--~ mod(C°P)/P. Obviously we also have the contra- 
variant functor Tr: m o d ( C ° P ) / P ~ - m o d ( C ) / P  defined in a similar 
manner. It is not difficult to see. that the transpose functors are dualities 
which are inverses of each other. This substantiates our earlier claim 
that (mod(C)/P) °p and mod(C°p)/P are equivalent categories. Hence 
(mod(C)/P) °p also has the properties proved in Proposition 6.1 for 
mod(C)/P. Therefore, applying Theorem 2.4 we obtain the following 
proposition. 
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PROPOSITION 6.2. Let C be a dualizing R-variety. 

(a) mod(C)/P is a dualizing R-variety. 

(b) Tr:  mod(C)/P -+ mod(C°P)/P is a duality. 

(c) The functor D: mod(mod(C)/P)-+mod(mod(C°P)/P) given by 
D(M)(X) = D(M(Tr(X)) for all X in mod(C°P)/P is a duality. 

(d) The functor D:mod(mod(C))- ->mod(mod(C°~))  given by 
_D(M)(X) ---- D(M(Tr(X))) for all X in mod(C °p) is a duality. 

Proof. (a) and (b). These were proven in the discussion preceding 
the statement of the proposition. 

(c) Since mod(C)/P is a dualizing R-variety, the functor 

_D: mod(mod(C)/P) --~ mod((mod(C)/p)op), 

given by D(M)(X) = D(M(X)) for all X in mod(C)/P, is a duality. Com- 
bining this with the fact that the functor Tr: mod(C°p)/P --+ (mod(C)/P) 
is a duality gives the desired result. 

(d) Follows from (c) by means of the identifications of mod(mod(C)/P) 
with rood(rood(C)) and of mod(mod(C°p)/P) with mod(mod(C°p)). 

7. THE DUALITY D 

We now use the results of the previous sections to develop a basic 
computational tool that will be used throughout the rest of this work. 
As usual C is a fixed dualizing R-variety. We begin by investigating the 
duality D: mod(mod(e) ) -~mod(mod(C°P))  defined in the previous 
section which is given by D(M)(X)-~ D(M(Tr(X))) for all X in 
mod(C°P). Our immediate aim is to show that for each C-module A we 
have D((., A)) = Ext~op(., D(A)), where D(A) is the C°p-module given 
by the duality D: mod(C)--~ mod(C°p). To prove this we need some 
preliminaries about tensor products of C-modules. 

We recall that for each variety C, there is a unique functor 
@: Mod(C °p) × Mod(C) -+  Ab, called the tensor product having the 
following properties: 

(a) For each M in Mod(C°p), the functor M@: Mod(e ) - -~Ab 
given by (M@)(N) ----- M @ N for all N in Mod(C) is a right exact functor 
which commutes with sums and has the property M @ (., C) = M(C) 
for all C in C. 
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(b) For each N in Mod(C), the functor @N: Mod(C °9)--+Ab 
given by (@N)(M) = M @ N for all M in Mod(C or) is a right exact 
functor which commutes with sums and has the property that 
(C, .) @ N = N(C) for all C in C. 

Let M be an object in rood(C). Associated with M is the funetor 
M*@: mod(C) --+ Ab given by X ~-~ M* @ X for all X in mod(C) and 
the funetor Home(M, "): rood(C) --~ Ab given by X~--~ Homc(M , X) for 
all X in rood(C). On the basis of the properties of the tensor product 
listed above it is not difficult to see that there is a unique (up to iso- 
morphism) morphism M*@--~ Home(M,-)  such that M* @ (-, C)--+ 
Home(M, (-, C)) is the identity for all C in C (remember M* @ (., C) = 
M*(C) = Homc(M , (., C)). 

LEMMA 7.1. Let M be in mod(C). Then 

Home(M, X) = Coker(M* @ X-+  Homc(M , X)) 

for all X in mod(C). 

Proof. Because X is in rood(C), we know there is an exact sequence 
(', C) --~ X --~ 0 for some C in C. From this it follows that we have the 
exact commutative diagram 

M* @(., C)---+ M* @ X- - -+O 

Home(M, X) = Home(M, X) 

Homc(M, _X) 

0 

which gives our desired result. 

PROPOSITION 7.2. Let M be in mod(C). Then the functors 
Torl(Tr(M), -): mod(C) --+ Ab and Home(M, -): mod(C) -~ Ab are iso- 
morphic where 

Torx(Tr(/kl), ")(X) = TOrl(Tr(M), X) 

and Home(M, -)(X) = Home(M, X) for all X in rood C. 
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Proof. Let C (  ", C1) ~ C( ", CO) ~ "  M --~ 0 be a minimal projective 
presentation of M. Then we obtain the exact sequence of finitely 
presented C°P-modules 

0 --~ M* --~ C(', Co)* --~ C(', C1)* ~ Tr(M) -+ 0. 

Now C(', Ci)* = C(Ci, ") for i = 0, 1 and so tensoring with a finitely 
presented C-module X, we obtain the sequence 

M* @ X-S-~ C(Co ' .) @ X - ~  C(C1, ") @ X. 

Clearly TOrl(Tr(M), X) = Ker g/Im f. Since C(Ci , .) @ X = X(C 0 
for i = 0, 1, we have that 

Ker(C(Co, ") @ X--~ C(C 1 , ') @ X) = Ker(X(Co) --+ X(CI)) 
Ker(Homc(C(', Co), X) --~ Homc(C(', Ca), X)) ~- Uomc(M, X). 

Hence we have the exact sequence M*@X--~Homc(M,X) - -*  
TOrl(Tr(M), X) -*  0 which is easily seen to be functorial in X. Applying 
Lemma 7.1, we have that the functors Homc(M, .) and Torl (Tr(M),-)  
are isomorphic. 

In order to proceed further we need the fact that since C is an R- 
variety, there is a unique R-module structure on the abclian group 
M @ N for each M in Mod(C °p) and each N in Mod(C °p) satisfying: 

(a) for each morphism of C-modules N S--~ N', the morphism 
M @f :  M @ N--~ M @ N' is a morphism of R-modules; 

(b) Similar condition as (a) on the other side; 

(c) M @ C(', C) ~- M(C), C(C, ") @ N = N(C) where ~Y/(C) and 
N(C) have their usual R-module structure. 

Moreover, for each R-module L, there is an isomorphism 
HomR(M @ N,L)--~ Homcop(M, HomR(N,L)) which is functorial in 
M, N and L where HomR(N, L) is the C°P-module HomR(N, L)(X) = 
HomR(N(X), L). We now apply these remarks to prove the following. 

PROPOSITION 7.3. Let Nbe in mod(C). Then thefunctors D(Tori(- , N)) 
and ExtCcop( ", D(N)) from mod(C °v) to Ab are isomorphic. 

Proof. Let -.. ~ P1 ~ Po ~ M --~ 0 be a projective resolution in 
mod(C °p) for the C°v-module M. Then letting P be this projective 
resolution we have by our previous remarks that 

HomR(P @ N, E) = Homcov(P , HomR(N, E)) 
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where E is an injective envelop for the R-roodule R/r. Taking homology 
of both sides and using the fact that E is injective, we have that 

HomR(Hi(P @ N), E) = Hi(Homco,(P , HomR(N, E)). 

This  gives the desired result that D(Tor,( . ,  N))  = Extico,( -, D(N)) for 
all i. 

We are now in a position to establish the result cited in the beginning 
of this section. 

PROPOSITION 7.4. The duality functor 

_D: mod(rnod(C)) ~ mod(mod(Cop)) 

has the property that D(Homc( .  , M)) = Ext~cop( ., D(M)) for all M in 
mod(C). Hence an object L in rood(rood(C°p)) is injective if and only if 
L ~ ExtXcop( ., X) for  some X in rood(C°p). 

Proof. For each X in mod(C°~) we know that D(Homc( ' ,  M))(X) = 
D(Horoc(Tr(_X), ~//)). But by Proposition 7.2 Horoc(Tr(_X), M ) ~ -  
Tor l (TrTr (X) ,  M). Since TrTr(_X) = _X, we have Torl(TrTr(_X), 3//) = 
T o r l ( X  , M)  -- Torx(X , M).  Thus  _D(moroc(-, M)) = D(Torl( .  , M)). 
But D(Torl( . ,  M ) ) =  Ext~op(., C(M)) by Proposition 7.3. Thus  
D(Horoc(. ,  M)  = Extlcop( ., D(M) for all M in rood(C). 

The  second half of the proposition follows from what we have just  
proved since we know that an object in rood(rood(C)) is projective if 
and only if it is isomorphic to Horoc(-, M)  for some M in mod(C) and 
the fact that _D: mod(mod(C))  --~ mo__dd(mod(C °p) is a duality. 

Suppose M is in mod(rood(C)).  Then  we know by Proposition 4.1 
that there is an epiroorphisro A 1 -~  A 0 in rood(C) such that the sequence 
Homc(. ,  A) --~ Horoc(.,  Ao) --~ M --~ 0 is a minimal projective presenta- 
tion for M in mod(mod(C)) .  We showed in Corollary 5.4 that the exact 
sequence Homc( ' ,  A~) --~ Horoc( ' ,  _Ao) --~ M -~  0 is a minimal projective 
presentation of M in mod'(mod(C)) .  Since rood(C) is abelian we have 
an exact sequence 0 --~ A~ -~ A 1 --~ A 0 --~ 0 which gives rise to the 
exact sequence 

Homc(', A1) --~ Homc(', Ao) -~ Extcl( ", A2) ~ Ex tc l ( ' ,  A1) 

and hence to the exact sequence 

0 --~ M--+ Extcl( ", A~) --+ Extcl( ", A1) 
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which, by Proposi t ion 7.4, we know is an injective copresentat ion of M.  
Our  aim is to show that  this is a minimal  injective copresentat ion of M.  

We begin by  defining an exact sequence 0 --~ A2 - +  -//1 --~ Ao --+ 0 in 
rood(C) to be a minimal  exact sequence if whenever  the exact sequence 
can be wri t ten as a sum of exact sequences 

0 , A 2' , d 1 ' ~ A o' , 0 

H iI IJ 
o - - - ~  A6' ~ A I  ; A~ .~ 0 

with 0 --~ A~ --+ A~ --~ A~ --+ 0 a split exact sequence, then A~ is zero 
and consequently so are A" " 2 and A0.  We  saw in [4] that  an exact 
sequence 0 --+ A 2 --+ A 1 --+ A o --+ 0 in rood(C) is minimal  if and only if 
H o m c ( ' ,  AI)  -+  H o m c ( ' ,  A0) --+ M --+ 0 is a minimal  projective presenta-  
t ion for M in mod(mod(C)) .  F r o m  this it follows easily that  an exact 
sequence 0--+ A~--+ A 1 --+ A o -+  0 in rood(C) is minimal  if and only if 
0 --+ H o m c ( ' ,  A2) --+ H o m c ( ' ,  A1) --~ H o m c ( ' ,  A0) --+ M --+ 0 is a mini-  
mal  projective resolution of M in rood(rood(C)). Hence  given any M in 
mod(mod(C)) ,  there is a unique (up to i somorphism)  minimal  exact 
sequence 0 --+ A~ --+ A 1 ~ A o ~ 0 in rood(C) such that  

0 ~ Homc( ' ,  A2) --+ Homc( ' ,  A1) --~ Homc( ' ,  A0) -~ M --+ 0 

is a minimal  projective resolution of M. Such a minimal  exact sequence 
is call a minimal  exact sequence associated with M. 

We now prove  the main  result of this section. 

THEOREM 7.5. Le t  D: mod(C)  ~ m o d ( C  °p) and _D: mod(mod(C))  
mod(mod(C°P))  be the usual dualities. Suppose M is in mod(mod(C))  
and 0 ~ Ae  -+ A 1 --+ A o ~ 0 is an exact sequence in rood(C) such that  

0 ~ Homc( ' ,  A~) ~ Homc( ' ,  A1) --~ Homc( ' ,  Ao) ~ M ~ 0 

is exact. Le t  N be in mod(mod(C°~))  such that  the sequence 

0 --+ Homcop(', O(Ao) -+ Homcop(', D(A1) --,- Homcop(', D(A2)) ~ N--+ 0 

is exact. 

(a) N is isomorphic to _D(M). 

(b) 0 --~ Az ~ A 1 --+ A o --+ 0 is a minimal  exact sequence in mod(C)  
i f  and only i f  0 -+ D(Ao)  ~ D(A1) ~ h(A2) ~ 0 is a minimal  exact 
sequence in mod(C°P). 
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(c) I f  O - ~  3 2 -+ A 1 --~ A o --~ 0 is a minimal  exact sequence in mod(C), 
then: 

(i) Homc(-, _A1) -+ Homc(.,  _Ao) --~ M --~ 0 is a minimal  projec- 
tive presentation fo r  M .  

(ii) 0 --~ M - ~  Extl( -, A2) -~ Extl( ., A1) is a minimal  injective 
copresentation fo r  M .  

Proof. (a) We know that Homc(.,  __/11) --~ Homc( ' ,  _A0) -+ M--~ 0 
is exact and so 

0 -+ D(M) --~ D(Homc(', A0) ) --~ D(Homc(', A1)) 

is exact. But by Proposition 7.4 D(Homc(. ,  ./ii) ----- Ext~op(., D(A , ) )  for 
i ~ 0, 1. Hence we have the exact sequence 

0 -+ _D(M)~ Ext~op(., D(Ao) ) ~ Ext~op(-, D(A1) ). 

On the other hand, since 

0 -~ Homco~(', D(Ao) ) ---> Homco,(-, D(A1)) -~ Homcop(', D(A2) ) -~  N--~  0 

is exact, it follows that 

0 ~ N ~ Ext~ov(., 3(Ao) ) --> Ext~op(', D(A1) ) 

is exact. Hence D(M) ~ N. 

(b) Easy consequence of the definition involved. 

(c) Suppose 0 --~ A~ --~ A 1 -+ A 0 --> 0 is a minimal exact sequence 
in rood(C). Then  0 -+ D(A0) --~ D ( A I )  ~ D(A2)  --+ 0 is a minimal exact 
sequence in mod(C °p) by (b). Therefore 

Homcop(', D(A1)) ~ Homcop(', D(A2)) --> N ~ 0 

is a minimal projective presentation for N and so 

0 ---> _D(N) --> _D(Homcop(. , D(A2)) --~ D(Homco~(', D(A1) ) 

is a minimal injective copresentation for _D(N) which by (a) is iso- 
morphic to M. But by Proposition 7.4, we have that _D(Homcop(D(A~) ) 
Extcl( ., Ai)  for i = 1, 2. So we have that 

0 -> M ~ Extcl(', A2) -+ Extcl( ", A1) 

is a minimal injective copresentation for M. This  proves part (ii). 
Part (i) was already established earlier. 
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So far we have been concentrating on how to describe minimal 
projective presentations and minimal injective copresentations for objects 
in rood(rood(C)).  We now show how to construct  complete projective 
and injective resolutions for objects in mod_(mod(C)). Unfor tunate ly  
these are not minimal in general. 

Suppose we are given an M in rood(rood(C)) and an exact sequence 
0 --+ A z --~ A 1 ~ A o --~ 0 in rood(C) such that 

Home(', A1) --~ Home(', A0) -~ M --~ 0 

is exact. T h e  long exact sequence 

Home(', AI) --~ Home(- , A0) ~ Extcl(', A2) --+ Extcl(', A1) --~ Extcl( ", A0) 

-~ Extc2( ., As) --~ ... 

gives an exact sequence 

0 --~ M --~ Extcl( ., As) --~ Extcl( ., A1) --~ Extcl( ", As) --~ Extc~( ", A0) 

~-~ Extc2(., A1) --~ ... 

which is obviously an injective resolution for M since Extci( ., A) is 
injective in rood(rood(C)) for all i > 0. Obviously if 0 --~ A 2 --~ A 1 --~ 
A0--~0  is a minimal exact sequence in rood(C), then 0 - - ~ M - - ~  
Extel(  -, As) --~ Extcl( -, A1) is a minimal injective copresentation for M. 

On the other hand, suppose that 

0 , P12 ----~ P11 ----~ Px ° ----~ 0 

0 ~ / 0  2 - - ~ / ' o l  . ,  Po ° ----> 0 

O - - - ~ A  s , A1 ' A o ~ O  

0 0 0 

is an exact commutat ive diagram with Pji projective objects in rood(C) 
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for all j and i = 0, 1, 2. Denote  by 7ri(Homc(. , At) ) the ith homology 
group of the complex 

"'" --+ Home(',/)1 ~) --~ Home(', Po t) --+ Home(', A~.) ~ 0. 

Then  it is well known that the rri(Homc(" , A~.)) are independent  of the 
projective resolutions used and that there is a long exact sequence 

• " --)- Zrl(Homc(', A~)) ~ Zrl(Homc(" , A1) ) --~ Crl(HOmc(" , Ao) ) 

--* %(Home(', An)) ~ %(Home(', A1) ) ~ %(Home(" , As) ). [8] 

I f  we denote Ker(Pi~ --~ Pi-1) by f2i+x)t~, for i = 1, 2,..., and we denote 
Ker (P  0 --* A) by  f2XAj and let f2°A~ --  A~, then it is not difficult to see 
that 7ri(Homc(" , A~)) = Home( ' ,  sC2~A~) for i = 0, 1,.. . .  Hence this gives 
a projective resolution 

• "" --~ Home(', ~1A1) -2 Home(', £21A0) ~ Home(', _As) --~ Homc(', A1) 

--~ Homc(', --L/0) --+ M--~ 0. 

If  0 -+ A S --~ A1 ~ A0 --+ 0 is minimal, we have shown that 

Homc(', _A1) --~ Homc(-, do) ~ M--,- 0 

is a minimal projective presentation for M. 
We have already geen that the functor m o d ( C ) ~  mod(mod(C))  

given by M l--~ Home( ' ,  M)  induces an equivalence between m o d ( e ) / P  
and the full subcategory of projective objects in mod(mod(C)) .  We now 
derive a similar description of the full subcategory of injective objects 
in mod(mod(C)),  

We have already seen that M in mod(mod(C))  is injective if and only 
if M is isomorphic to Extel( ., A) for some A in mod(C).  Consider the 
functor rood(C) ~ mod(mod(C))  given by A v-~ Extcl( ., A) for each A 
in mod(C).  It  is well known (see [9]) that this functor is full and that 
a morphism f :  A - - + A '  in mod(C) has the property that EXtel(',f): 
Extel( ", A)--~ Extcl( ", A')  is zero if and only if f factors through an 
injective C-module .  

The  following facts are easily checked. 

(a) Let  O-+A-~E(A)  be an injective envelope for A. Then  a 
morphism f :  A -+ A' factors through an injective C-module  if and only 
if there is an h: E(A) --~ A' such that f -~ hg. 
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(b) If for each pair (A1, A2) of objects in mod(C) we denote by 
E(A1, A2) the R-submodule of Homc(A 1 , A2) consisting of all f :  A 1 --~ A s 
which factor through injective objects, then the family of R-submodules 
E(AI, As) is a relation on rood(C) which we denote by E. 

(c) The  functor rood(C) --+ mod(mod(C)) given by A ~-+ Extcl( -, A) 
induces an equivalence between mod(C)/E and the full subcategory of 
injective objects in rood(rood(C)). 

(d) The  duality D: rood(C)-+ mod(C °v) induces a duality 

D: mod(C)/P --~ mod(C°P)/E. 

(e) The  composition mod(C)/P T~.-5> mod(C°p)/P°-,mod(C)/E is 
an equivalence of categories mod(C)/P--+ mod(C)/E given by _A~-~ 
D(Tr(A)). 

When we are considering an object .// in rood(C) as an object in 
mod(C)/I, we will usually denote that fact by writing A for A. Also 
we will often denote by f the image in Homc(A1, A2)/E(A1, As) of an 
element f in Homc(A1, A2). In this notation, the canonical morphism 
mod(C)--+ mod(C)/E takes the form A F-+ A and f~-+f. 

8. STABLE EQUIVALENCE 

Let C and C' be two dualizing R-varieties. A projective equivalence 
G: C ~ C' is an equivalence of categories G: mod(C)/P--~ mod(C')/P. 
We say that C and C' are projectively equivalent if and only if there is 
a projective equivalence G: C---~C'. Being projectively equivalent is 
obviously an equivalence relation on dualizing R-varieties. An injective 
equivalence H: C ~ C'  is an equivalence of categories H: mod(C)/E 
mod(C')/E. We say that C and C'  are injectively equivalent if and only if 
there is an injective equivalence H: C --~ C'. Being injeetively equivalent 
is obviously an equivalence relation on dualizing R-varieties. 

If  G: C- -~C '  is a projective equivalence then the equivalences 
of categories mod(C)/E--+ mod(C)/P and mod(C')/P--+ mod(C')/E 
described in the last section give rise to the injective equivalence 
G: C --+ C' which is the composition 

mod(C)/E ~ mod(C)/P a mod(C')/P---+ mod(C')/E. 
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Similarly, associated with an injective equivalence H: C---* C', there is 
the projective equivalence _H: C - +  C' given by the composition 

mod(C)/P ~ mod(C)/E ~ mod(C')/E --* mod(C')/P. 

Thus  we see that C and C' are projectively equivalent if and only if 
they are injectively equivalent. We say that C and C' are stably equivalent 
if they are projectively, or equivalently, injectively equivalent. It is the 
aim of this series of papers to study stably equivalent dualizing R-varie- 
ties. We would like to be able to determine when two dualizing R-varie- 
ties are stably equivalent as well as determine what properties stably 
equivalent dualizing R-varieties have in common. 

Suppose G: C--* C'  is a projective equivalence of categories. Then  
the equivalence of categories G: mod(C)/P---*mod(C')/P obviously 
induces an equivalence of categories mod(mod(C)/P --* mod(mod(C')/P).  
Using the identifications 

rnod(mod(C)/P) = rood(rood(C)) and mod(mod(C')/P) = mod(mod(C')), 

we have that the projective equivalence G: C --* C' induces the equiva- 
lence of categories mod(mod(C)) -~ mod(mod(C')).  

On the other hand suppose we are given an equivalence of categories 
T: mod(mod(C))--~ m0d(mod(C')). The  T induces an equivalence of 
categories between the categories of projective objects 

T: p(mod(mod(C)) --~ p(mod(mod(C'))). 

Hence the composition 

mod(C)/P---~ p(mod(mod(C))) r p(mod(mod(C'))) ---~ mod(C')/P 

where mod(C)/P--* p(mod(mod(C)) and p(mod(mod(C'))  --* mod(C') /P 
are the usual equivalences of categories (see Section 6), is an equivalence 
of categories mod(C)/P--~ mod(C')/P.  Thus  associated with an equiva- 
lence of categories T: mod(mod(C))--* mod(mod(C')) is a projective 
equivalence C --~ C'. 

Thus  we see that there is a systematic way of going back and forth 
between projective equivalences C--~ C' and equivalences of categories 
mod(mod(C)) -~  mod(mod(C')).  In  particular C and C'  are stably 
equivalent if and only if mod(mod(C)) and mod(mod(C')) are equiva- 
lent categories. Hence anything about C which can be deduced from 
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the category mod(mod(C)) will be shared by any other C'  stably 
equivalent to C. Since the category mod(mod(C)) has more structure 
than the categories C, mod(C)/P or mod(C)/E, the category mod(mod(C)) 
plays a major role in studying stably equivalent dualizing R-varieties. 

Obviously, a similar discussion to that given for projective equivalence 
can also be carried out for ~njective equivalence. The details are left to 
the reader to supply. We n6w end this preliminary discussion of stable 
equivalence by pointing out the following useful technical device for 
interpreting results concerning mod(C)/P as results about mod(C). 

We denote by mode(C), the full subcategory of mod(e) consisting of 
all C-modules with no nontrivial projective summands. Clearly mode(C) 
is an R-variety of rood(C). The functor mode(C)--~ mod(e ) /P  is 
obviously full and dense (i.e., given any M in mod(C)/P, there is an N 
in mode(C) such that _N is isomorphic to 3//). Since N in mode(C) has no 
nontrivial projective summands, it follows that Ker(Endc(N ) --~ End(N)) 
is contained in rad(Endc(N)) (see [2]). From this it follows that a 
morphism f a N - - ~  N' in mode(C) is an isomorphism if and only if 
f :  _N--* _N' is an isomorphism in mod(C)/P. In other words the functor 
mode(C) -~  mod(C)/P is a representation equivalence (see [3]). As a 
consequence we have the following useful lemma. 

LEMMA 8.1. I f  f: A--~ B is a morphism and A has no projective 
summands, then f splits if f:  _,4 ~ B_ splits. 

Finally, suppose that G: C--~ C'  is a projective equivalence. Then 
the equivalence G: mod(C)/P --~ mod(C')/P obviously has the property 
that G(M) is zero if and only if M in mod(C) is projective. Thus  
G gives a map G: Ob(mode(C)) --* Ob(mode(C')) which has the following 
properties. 

(a) M 1 and M 2 in mode(C) are isomorphic if and only if G(M1) 
and G(M~) in mode(C') are isomorphic. 

n (b) If  M is isomorphic to a finite sum L[i=a M,i, then G(M) is 
isomorphic to L[in=l G(Mi). 

(c) M is indecomposable if and only if G(M) is indecomposable. 

Similarly, we define mode(C) to be the full subcategory of rood(C) 
which has no nontrivial injective summands. We leave it to the reader 
to state and prove the obvious analogs for modE(C) that we just discussed 
for mode(C). 
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9. PaOPERTIES OF mod(mod C) 

Throughout this section we assume that C is a dualizing R-variety. 
Our object is to show what information about mod(C) can be derived 
from the knowledge of the projective and injective dimensions of objects 
in mod(mod(C)). To facilitate interpreting what this information tells 
about the relationship between stably equivalent dualizing R-varieties, 
we introduce the following notations which will remain fixed throughout 
this discussion. 

Suppose C and C' are stably equivalent dualizing R-varieties. Let 
G: mod(C)/P --~ mod(C')/P be an equivalence of categories. Because the 
functors m o d ( C ) / P  ~ rood(rood(C)) and mod(C')/P ~ mod(mod(C')), 
given respectively by _X --+ Homc(', X) and _X' --~ Homc,(-, X') for all X 
in rood(C) and X'  in mod(C'), induce an equivalence mod(C)/P-~ 
p(mod(mod(C'))), it follows that there is an equivalence of categories 
_G: mod(mod(C)) --~ mod(mod(C')) which makes the diagram 

m o d ( C ) / P ~  , moa(C') /P 

mod(mod(C)) ~ mod(mod(C')) 

commute. We remind the reader that associated with the equivalence 
G: mod(C)/P ~ mod(C')/P is the map G: Ob(mode(C)) --~ Ob(mode(C'))  
with the properties described at the end of Section 8. 

Since C and 12' are stably equivalent, we also know that there is an 
equivalence of categories H: mod(e)/E ~ mod(e')/E. In analogy with 
the above, associated with H is an equivalence of categories 
H:(mod(mod(C)) --* mod(mod(e')) having the following property. 

Denote the canonical functor mod(C)-~ mod(C)/E by X - ~  • for 
all X in mod(C) and let mod(C)/E --~ mod(mod(C)) be the fully faithful 
functor given by 2 ~ Extcl(X) for all X in rood(C). Then the diagram 

commutes. 

mod(C)/E H , mod(C')/E 

rood(rood(C)) - , mod(mod(C')) 

We remind the reader that associated with the funetor H: mod(C)/E --+ 
mod(C')/E is the map H: Ob(modE(C))--~ Ob(mode(C')) having the 
properties given at the end of Section 8. 
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PROPOSITION 9.1. Let M be a nonzero object in mod(mod(C)) and 
0 --> A2 --~ Ax --> Ao ~ 0 a minimal exact sequence in rood(C) such that 
0 --+ Home(', As) ~ Home(., A1) ~ Home(', Ao) --+ M --~ 0 is a minimal 
projective resolution of M in mod(mod(C)). 

(a) M is projective in mod(mod(C)) if  and only i f  A 1 is projective in 
rood(C). I f  M is projective in mod(mod(C)), then M is isomorphic to 
Home(', do). 

(b) M is injective in mod(mod(C)) i f  and only i f  $11 is injective in 
rood(C). I f  M is injective in mod(mod(C)), then M is isomorphic to 
Extcl( ", As). 

Proof. (a) Since 0 -+ Home(',  As) --~ Home(', A1) --~ Home(', A0) -+ 
M--~ 0 is a minimal projective resolution in rood(C), it follows from 
Corollary 5.4 that Home(. , _Ao) -+ Home(',  _At) --~ M --~ 0 is a minimal 
projective presentation for M in mod.(mod(C)). Hence M is projective 
in rood(rood(C)) if and only if Home(., _As)= 0 or, equivalently, if 
and only if _A S ~-- 0. Therefore M is projective in mod(mod(C)) if and 
only if A S is projective in mod(C). The rest of part (a) is obvious. 

(b) Follows in a manner similar to part (a) using the fact that 
0 ~ M --~ Extcl( ., A2) --~ Extcl(", A1) is a minimal injective eopresenta- 
(ion of M since 0 -+ Home(', As) --+ Home(', A1) ~ Home(', A0) -+ 
M--~ 0 is a minimal projective resolution of M in rood(C) (see Theo- 
rem 7.5). 

We are particularly interested in knowing when Extel( ", A) is projec- 
tive and Home(- , d )  is injective in rood(rood(C)). 

COROLLARY 9.2. Let A be in mod(C). 

(a) I f  A has no nonzero projective summands, then (., _A) is injective in 
mod(mod(C)) i f  and only i f  the projective cover P of A in rood(C) /~ 
injective in mod(C). 

(b) I f  A has no nonzero injective summands, then Extel( ., A) is 
projective in mod(mod(C)) i f  and only i f  the injective envelope E(A) of A 
in mod(C) is projective in rood(C). 

Proof. Let P--~ A--* 0 be a projective cover for A in mod(C). 
Since A has no nonzero projective summands, the exact sequence 
0 -+ K ~ P -+ A -~ 0 is a minimal exact sequence in rood(C). Hence 
0 --*Homc(., K) -+ nomc(. ,  P )  --~ Homc(-, A) --*Homc(- , A) ~ 0 is a 
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minimal projective resolution of Homc(. , _A) in mod(mod(C)). Applying 
Proposition 9.1 we have that Homc(. , _A) is injective in rood(rood(C)) 
if and only if P is injective in rood(C). 

(b) Let 0--,-A ~ E(A) be an injective envelope for A in rood(C). 
Since A has no nonzero injective summands,  the exact sequence of 
C-modules 0 -~- A -+ E(A) --~L ~ 0 is minimal. Hence the exact 
sequence 

0 ---> Homc(', A) -+ Homc(', E(A)) --+ Homc(- , L) --> EXtcl( ", A) -+ 0 

is a minimal projective resolution of Extca( -, A)-~-0 in rood(rood(C)). 
Applying Proposition 9.1 we have that ExtcX( ., A) is projective in 
mod(mod(C)) if and only if E(A) is projective in rood(C). 

We now show how this result can be interpreted to give information 
about stably equivalent dualizing R-varieties. 

PROPOSITION 9.3. Let H: Ob(mod~(C))-+ Ob(mode(C')) be the map 
given by the equivalence of categories H: mod(C)/E --+ mod(C')/E. 

(a) I f  M is in modE(C), then E(H(M)), the injective envelope of 
H(M) in mod(C') is projective if and only if E(M), the injective envelope 
of M in rood(C), is projective. 

(b) H gives a bijection between the isomorphism classes of C-modules 
in mode(C) whose injective envelopes are projective and the isomorphism 
classes of C-modules in mode(C') whose injective envelopes are projective. 

(c) Suppose neither rood(C) nor mod(C') have any simple objects 
which are both projective and injective. Then rood(C) has no nonzero 
objects which are both projective and injective if  and only if mod(C') has 
no nonzero objects which are both projective and injeetive. 

Proof. (a) Since H(M) = 0 if and only if M ~-- 0, we can assume 
that M ¢ 0. Let H: mod(mod(C)) --+ mod(mod(C'))  be an equivalence 
of categories such that _H(Extcl( -, A ) ) ~  Ext~c.( ., H(A)) for all A in 
mod(C). Since M and H(M) are nonzero objects of modz(C) and 
mode(C') respectively, Extca( ., M) =/= 0 and Ext,.(., H(M)) ~= O. Then  
clearly ExtcX( ., M) is projective in mod(mod(C)) if and only if 
_H(Extcl( ., M)) = Ext,.(., H(M)) is projective in mod(mod(C)). Thus  
E(M) is projective in mod(C) if and only if E(H(M)) is projective in 
mod(C'). 

(b) Follows from (a) and formal properties of H. 
(e) We show that if rood(C) has a nonzero object which is projective 
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and injeetive, then mod(C') also has a nonzero object which is both 
projective and injective. Let E be an indecomposable object in rood(C) 
which is both projective and injective. Since no simple object in rood(C) 
is both projective and injective, E is not equal to its socle which is a 
simple C-module S. Since S is not injective, it follows that Extcl( -, S) 
is projective in mod(mod(C)). Hence Extl,( -, H(S)) is a nonzero pro- 
jective object in mod(mod(C')). Therefore, by part (a) the injeetive 
envelope of H(S) is a nonzero projective and injective object in rood(C). 
The  result now follows by symmetry. 

A dual argument establishes the following proposition. 

PROPOSITION 9.4. Let G: Ob(mode(C))--+ Ob(mode(C')) be the map 
given by the equivalence of categories G: mod(C)/P--+ mod(C')/P. 

(a) I f  M is in mode(C), then a projective cover for a(2~l) in mod(C') 
is injective if and only if a projective cover for M in rood(C) is injective. 

(b) G gives a bijection between the isomorphism classes of C-modules in 
mode(C) whose projective covers in rood(C) are injective and the iso- 
morphism classes of C'-modules in mode(C') whose projective covers in 
mod(C') are injective. 

Our next result concerning the projective and injective dimensions 
of the objects in mod(mod(C)) requires the following technical fact. 

LEMMA 9.5. Let S be a simple projective object in rood(C). Then S 
is injective if  and only if S is not contained in any nonsimple indecomposable 
projective in rood(C). 

Proof. Obviously if S is injective, then S is the only indecomposable 
C-module containing S. 

Suppose S is not injective and let 0--+ S--+ E(S) be an injective 
envelope for S. Let L[i~=l Pi-~f (S)=-+ 0 be a projective cover for E(S) 
in rood(C) where each Pi is indecomposable. Then  no Pi is simple, 
for otherwise Im(P~--> E(S)) would be contained in soc(E(S)) which is 
contained in r(E(S)). But this contradicts the fact that ]_[in=l Pi--~ E(S) 
has the property that I_[ PJrP~ --+ E(S)/rE(S) is an isomorphism since 
it isa . . . . . .  • -+ E( S) projective cover for E(S). Since S as projective and ]_[i=1 PC n 
is an epimorphism, it follows that there is a morphism h: S--+ L[i=l P¢ 
such that g = fh. Because g # 0, h va 0 and so for some j the composi. 
tion S =~ ~_Ii~l Pi--+ P~ is not zero. Thus  S is contained in the inde- 
composable nonsimple projective P/  in rood(C). 

6o7/I2/3-6 
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PROPOSITION 9.6. The injective envelope E(P) is projective in rood(C) 
for each projective P in rood(C) if and only if the injective envelope in 
mod(mod(C)) is projective in mod(mod(C)) for each projective in 
mod(mod(C)). 

Proof. Suppose that E(P) is projective for each projective P in 
rood(C). Then  E(K) is projective for each submodule K of a projective 
P, since E(K) is contained in E(P) and is hence a summand of E(P). 
Since each nonzero projective object in rnod(mod(C)) is isomorphic to 
Hornc(-, M) with M in mode(C), we only have to show that the injective 
envelope E(Homc(' ,  M)) in  rood(rood(C)) is projective in mod(mod(C)). 
Let 0 --~ K -+ P -+ M --+ 0 be exact in mod(C) with P --~ M --~ 0 a 
projective cover for M. Then  0--+ M--+ Extcl( ., K)--~ Extl( ., P) is a 
minimal injective copresentation of M in rood(rood(C)). But since 
E(K) is projective in mod(C), it follows from Corollary 9.2 that 
Extcl( ", K) is projective in mod(mod(C)). Hence the injective envelope 
of Homc(' ,  M) in mod(mod(C)) is also projective in mod(mod(C)). 

Suppose now that for each M in mode(C), we have that the injective 
envelope of Homc(' ,  M) in mod(mod(C)) is projective in mod(mod(C)). 
By Corollary 9.2 this is equivalent to assuming that if M is in mode(C) 
and 0 ~ K --~ P --+ M --~ 0 is exact in mod(C) with P -+ M -+ 0 a 
projective cover, then the injective envelope of K in rood(C) is projective 
in rood(C). 

We now want to show that if P is an indecomposable projective object 
in rood(C) which is not injective then its injective envelope is projective 
in rood(C). 

Suppose P is a nonsimple projective object in rood(C). Then  the 
exact sequence 0 -+ rP --+ P --~ P/rP --+ 0 has the following properties 

(a) P/rP is in mode(C); 

(b) P--+ P/rP-+ 0 is a projective cover and 

(c) 0 --~ rP  ---* P is an essential monomorphism. 

Hence E(P) = E(rP) which is a projective object in mod(C) by 
hypothesis. 

Suppose P is a simple projective in rood(C). If P is injective, there is 
nothing to prove. If P is not injective, then by Lemma 9.5, there is a 
monomorphism 0 - +  P--~ P '  with P '  an indecomposable nonsimple 
projective object in rood(C). Since E(P') is projective, it follows that 
E(P), which is a summand of E(P'), is also projective. 
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Before stating the next result, we give the following definition: Let C 
be an arbitrary dualizing R-variety. We say that the dominant dimension 
of C is at least n if for each P projective in mod(C) a minimal injective 
resolution in mod(C) 

0 --~ P --~ Eo(P) --~ E~(P) --+... 

has the property that Ej(P) is projective for j < n. The dominant 
dimension of C is denoted by dora dim C. 

COROLLARY 9.7. 
are equivalent. 

(a) 
(b) 
(c) 

Proof. 

For a dualizing R-variety C the following statements 

d o m d i m C / >  1. 

dom dim mod(C)/P >~ 1. 

dom dim mod(e ) /P  ~> 2. 

The equivalence of (a) and (b) was established in Proposi- 
tion 9.6. Since (c) obviously implies (b) it is only necessary to show that 
(a) implies (c). 

(a) implies (c). Let M be a nonprojective object in mod(C) and let 
0 ~ K --+ P --+ M -+ 0 be exact with P --~ M -~ 0 a projective cover. 
Since 0 --+ K ~ P --~ M --+ 0 is minimal, it follows that 

0 ~ Homc(', M) --+ Extcl( ", K) --~ ExtcX( ", P) 

is a minimal injective copresentation of Homc(., M) in mod(mod(C)). 
Since dom dim C >/ l, we know that the injective envelope of P, and 
hence that of K, is projective. But this implies, by Corollary 9.2, that 
Extc~( -, K) and Extc~( ., P) are projective in mod(mod(C)). Since this is 
true for all projectives Homc(',  M) in mod(mod(C)), we have that 
dom dim mod(C)/P >/2.  

As an immediate consequence of Corollary 9.7 we have 

COROLLARY 9.8. I f C  andC '  are stably equivalent, then dom dim C ~> 1 
i f  and only i f  dom dim C' >/1.  

Having examined when an M in mod(mod(C)) is either projective or 
injective, we now turn our attention to determining when pd M ~< 1 
and id M ~< 1 where pd M is the projective dimension of M and id M 
is the injective dimension of M. 
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PROPOSITION 9.9. Let M be in mod(mod(C) )and  let O--~Azf-~ 
A1 g-~ Ao --+ 0 be a minimal exact sequence in rood(C) such that 

0 --~ Home(', A2) -+ Home(', A1) --+ Homc(', Ao) -+ M-+  0 

is exact. 

(a) pd i ~ 1 in mod(mod(C)) i f  and only if  f: A2 --~ AI factors 
through a projective in mod(C). 

(b) id M ~ 1 in mod(mod(C)) i f  and only if g: A~ --~ A o factors 
through an injective in rood(C). 

Proof. (a) Recall that 

Home(', _-_A2) -+ Home(', A1) -+ Home(', do) --~ M-+  0 

is exact (see Section 7). Since the Home(', Ai) are projective in 
rood(rood(C)) and Home(', A~) -+ Home(', A0) --~ M -+ 0 is a minimal 
projective presentation in mod(mod(C)), it follows that pd M ~ 1 in 
mod(mod(C)) if and only if the morphism Home(. , _A~) -+ Home(', _A1) 
is zero. This is equivalent to saying that the morphism f:  A2 ~ A1 
factors through a projective in rood(C). 

(b) We know that 0 --~ M --~ Extcl(., A2) --~ Extc~(', A1) ~ Extc~(., Ao) 
is the beginning of an injective resolution for M in mod(mod(C)) with 
the property that 0 -+ M - +  Extcl(., A2)--~ Extcl(', A1) is a minimal 
injective copresentation for M. Hence id M ~ 1 in mod(mod(C)) if and 
only if the morphism ExtJ( . ,  A1) --~ Extcl( ., A0) is zero. But this is the 
case if and only if g: A 1--~ Az factors through an injective object in 
rood(C). 

Before specializing these results to the cases M = Home(. , A) and 
M = Extca( -, _A), it is convenient to introduce some definitions. 

Let C be an arbitrary dualizing R-variety and M in mod(C). We say 
that M is torsionless if there is a monomorphism 0 - +  M - +  P with P 
a projective object in rood(C). We say that M is cotorsionless if there is 
an epimorphism Q -+ M --~ 0 with Q injective in mod(C). 

PROPOSITION 9.10. Let A be an indecomposable object in mod(C). 

(a) I f  A is not injective, then pd Extel( ., A) ~ 1 in mod(mod(C)) 
i f  and only i f  A is a torsionless object in mod(C). 

(b) I f  A is not projective, then id Home(', _A) ~< 1 in mod(mod(C)) 
i f  and only if  A is a cotorsionless object in mod(C). 
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Proof. (a) Since A is indecomposable and not injective, we 
know that if 0--+ A--+ E(A) is an injective envelope for A, then 
0 --+ A / ~  E(A) --+ E(A)/A --~ 0 is minimal in rood(C). Hence by 
Proposition 9.9 we know that pd ExtcX(. , A) ~< 1 in rood(rood(C)) if 

• f • , and only if 0 --~ A --~ E(A) factors through a projecuve object P in 
rood(C). Now, if f :  A --+ E(A) factors as A g-~ P h_~ E(A), then g must 
be a monomorphism since f is a monomorphism and so A is torsionless. 
On the other hand, if we are given a monomorphism 0 --~ A -+g P, then 
there is an h: P -+ E(A) such that f -~ hg since E(A) is injective. This 
completes the proof of (a). 

(b) Let 0 --~ K--+ P - ~  A --+ 0 be exact in rood(C) with P a pro- 
jective cover for A. Since A is indecomposable and not projective, 
0 ~ K ~ P - - + A ~ 0  is minimal in rood(C). Since Homc(- ,P)  
Home(',  A) --~ Home(',  A) ~ 0 is exact, it follows by Proposition 9.9 
that id Homc(., A) ~< 1 in rood(rood(C)) if and only if g: P ~ A factors 
through an injective object in rood(C). It is not difficult to show that 
g: P --+ A factors through an injective if and only if A is a factor module 
of an injective C-module in rood(C). 

As an immediate consequence of Proposition 9.10, we have the 
following. 

COROLLARY 9.11. Let C and C' be two stably equivalent dualizing 
R-varieties. 

(a) Suppose H: C--~ C' is an injective equivalence. Then 

H: Ob(mode(C))~ Ob(modE(C')) 

induces a bijection between the isomorphism classes of indecomposable non- 
injective torsionless objects in rood(C) and those in mod(C'). 

(b) Suppose G: C --+ C' is a projective equivalence. Then 

G: Ob(mode(C))--~ Ob(modp(C')) 

induces a bijection between the isomorphism classes of indecomposable non- 
projective cotorsionless modules in rood(C) and those in mod(C'). 

For each A in rood(C), we denote by 

0 --~ Home(-, _A) -+ E0(Homc(. , _A)) ~ El(Home(- , d)) 

a minimal injective copresentation of Home(. , _A) in mod(mod(C)). We 
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now investigate which C-modules  M have the property that Extcl(., M) 
is a summand of E,(Homc(.  , A)) for some A in rood(C) and i = 0 or 1. 

PROPOSITION 9.12. Let M be an indecomposable noninjective object in 
rood(C). 

(a) There is some A in rood(C) such that Extcl( ., M) is a summand of 
El(Homd-, d)) i f  and only if  M is a nonsimple projective in rood(C). 

(b) There is an A in rood(C) such that Extcl( ., M) is a summand of 
Eo(Homc(., _A)) i f  and only if  M C rP for some projective module P in 
mod(C). 

Proof. (a) Let  M ~ P be a nonsimple indecomposable projective 
C-module.  Then  0--+ rP--~ P--~ PIrP is a minimal exact sequence in 
rood(C). Then  Extcl(-, P) = El((., PIrP)) and so we are done. 

Suppose now that Extc~( ., M)  is a summand of E~(Hom(', A)) for 
some A in rood(C). We can assume, without loss of generality, that A is 
a nonprojective indecomposable object in C. Since A is not projective, 
we know that 0 --~ K --~ P --~ A --~ 0 with P -~  A ~ 0 a projective 
cover is minimal in rood(C). Hence E~(Homc(., _A)) ---- Extc~( ., P) and 
so Extcl( ", M) is a summand_of Extcl( . , _  P). Thus  there are morphisms 
M s_~ p ~ M such that /~-~r/~_~g M is the identity on M. But since 
M is an indecomposable, noninjective object in rood(C), it follows that 
gf: M --~ M is an isomorphism (see Lemma 8.1). Therefore M is pro- 
jective because it is a summand of P. But M can not be simple. For if 
P --~ A --> 0 is a projective cover, then any simple summand of P is also 
a summand of A. This  is a contradiction since we have assumed that A 
is an indecomposable, nonprojective object in rood(C). Therefore M 
is a nonsimple, indecomposable projective object in mod(C). 

(b) Assume that M C rP  for some projective object P in rood(C). 
Then  there is an exact sequence 0 ~ M --~ P --* A --~ 0 with I m ( M  --~ P) 
contained in rP. Then  by Proposition 3.7 P--~ A--~ 0 is a projective 
cover. Without  loss of generality we may assume that no summand of A 
is projective and so 0--~ M - +  P--~ A--~ 0 is a minimal exact sequence 
in rood(C). Then ExtJ(., M) = E0(Homc(', A)). 

Suppose that Extcl( ., M)  is a summand of E0(Homc(-, _A)). Again 
without  loss of generality, we may assume that A is indecomposable 
and not projective. Hence if 0--+ K - - ~ P - - ~ A - - ~ 0  is exact with 
P--~A- -~O a projective cover, then E0(Homc( ' ,_A))= Ex t l ( ' ,K) .  
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Therefore M is a summand of K which is contained in rP. This 
completes the proof of the proposition. 

For each A in rood(C), we denote by 

Px(Extcl( -, A)) --~ Po(Extcl( ., A)) --+ Extca( ., A) -+ 0 

a minimal projective presentation of Extcl( ", A) in mod(mod(C)). The  
following result, which is nothing more than the dual of Proposition 9.12, 
can be proven using arguments dual to those for Proposition 9.12. 

PROPOSITION 9.13. Let M be an indecomposable nonprojective object 
in rood(C). 

(a) There is some A in rood(C) such that Homc(. , JM) is a summand 
of Pl(Extca( ., A)) i f  and only i f  M is a nonsimple injective object in rood(C). 

(b) There is an A in rood(C) such that Homc(., M) is a summand of 
Po(Extc~( -, A)) i f  and only i f  M = E/E' where E is injective in mod(C) 
and E' D S or E. 

As an immediate consequence of Propositions 9.12 and 9.13 we have 
the following. 

COROLLARY 9.14. Suppose C and C' are stably equivalent dualizing 
R-varieties. 

(a) I f  H: C - - + C '  is an injective equivalence, then the map 
H: Ob(mode(C))--~ 0b(mode(C')) induces a bijection between the iso- 
morphism classes of indecomposable nonsimple noninjective projective 
modules in mod(C) and mod(C'). 

(b) I f  G: C - - + C '  is a projective equivalence, then the map 
G: Ob(modv(C))---~ Ob(mode(C)) induces a bijection between the iso- 
morphism classes of indecomposable nonsimple nonprojective injective 
modules in rood(C) and mod(C'). 

10. gl dim rood(rood C) ~ 2 

Let C be a dualizing R-variety and D = mod(C). We want to apply 
our previous results to give a description of what it means for D that 
gl d immod(D)  = i, for i = 0, 1, 2. It is most convenient to first 
investigate the case gl dim mod(D) ~ 2. 
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THEOREM 10.1. The following are equivalent.for a dualizing R-variety 
D = mod(C). 

(a) gl d immod(D) ~< 2. 

(b) I f  A is an indecomposable torsionless nonprojective object in D, 
then a monomorphism 0--~ A ~ B either splits or factors through a 
projective object in D. 

(c) (i) Eeach indecomposable torsionless object in D is simple or 
projective. 

(ii) I f  s o c P C A C r P ,  for a projective object P in D, then 
HomD(S, rP/A) = 0 for each torsionless simple object S in D. 

Proof. (a) implies (b). Let A be an indecomposable torsionless non- 
projective object in D and f: A -~ B a monomorphism which does not 
factor through any projective object. We then want to show t h a t f  splits. 
We can clearly assume that A is not injective. Consider the exact 
sequence 0 - - + A ~ B  g-~C--~0, where C = C o k e r f .  Let F be the 
object determined by the exact sequence 

--~ Home(', _A) ("f~ Home(' , _B) ("g~, Homc(', _C) --~e--~ 0. 

Since by assumption gl dim mod(D) ~< 2, Im( . , f )  is a projective sub- 
object of Home(',  _B), and because we have assumed that f :  A--~ B 
does not factor through a projective object, Im( . , f )  is not zero. Since A 
is indecomposable, Home(-, _A) is also indecomposable by Lemma 8.1. 
Hence (.,_f) must be a monomorphism. Consider now the exact sequences 

0 --~ Home(', _A) (''0, Homc(', _B) --~ K --~ 0 

0 --* K ~ Home(', C) --* F ~ 0 

0 -+F ~ Extcl( ", A), 

where K = Im(., g). 
Because A is torsionless, we know by Proposition 9.10 that 

pd Extc1( ", A) is at most I. Since gl dim mod(D) ~< 2, it is then easy 
to see that p d F  ~< 1. It follows that K is projective, hence (- , f )  splits. 
Hence_f: A -+ _B splits, and because A has no projective summand, we 
conclude by Lemma 8.1 that f :  A --+ B splits. 

(b) implies (c)(i). Let A be an indecomposable torsionless non- 
projective object in D. We want to show that A is simple. Assume to 
the contrary that A is not simple. Hence A C: A/rA.  Let B be a simple 
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summand of the semisimple module A/rA, and g: A ~ B an epimor- 
phism. Clearly g is not a monomorphism. Since A is torsionless, there 
is a monomorphism f :  A--+ P with P projective. Consider the mono- 
morphism h = f L [  g: A ~ P ]_I B. Since g is an epimorphism and A 
has no nonzero projective summands,  g does not factor through any 
projective object. It  follows that h does not factor through any projective 
object. By assumption we then know that h: A --+ P L[ B splits. Since 
A is indecomposable and nonprojective, A must be a summand of B 
by the Krul l -Schmidt  theorem. This is a contradiction, which shows 
that A must  be simple. 

(ii) Let  P be a projective object in D. Let  A be an object in D, 
where soc P C A C rP. Let  S be a torsionless simple object in D, and 
assume that there is a nonzero map f :  S -~ rP/A C P/A. Then f :  S --~ P/A 
does not split, since f ( S ) C  r ( P / A ) =  rP/A. By assumption, f then 
factors through a projective object, hence through P. This  implies t h a t f  
is zero, since soc P C A. This contradiction shows that Hom(S,  P/A) is 
zero. 

(c) implies (a). Let  F be an object in mod(D ). From Section 7 we 
know that F has a projective resolution 

--~ Homc(', ~1C) (.d)~ Homc(', _A) ~ Homc(', B) ~ Homc(. , C) --+F--+ 0 

where 0 -+ A --+ B --+ C --~ 0 is a minimal exact sequence in D. Consider 
the m o r p h i s m f :  X21C --~ _A. We want to show that f : / 21C --~ _A decom- 
poses into the direct sum of an isomorphism and a zero map. For this 
implies that Coim(.,_f) is projective, and hence that p d F  is at most 2. 

Since /21C is torsionless, .c21C = S 1 LI "'" ]_I S~ ]_I P, where the S i 
are simple nonprojective and P is projective. Write A = B ]_[ C H P, 
where B is semisimple with no projective summand, P is projective, 
and C has no projective or simple summand. Let  f ' :  S 1 I_I "'" I_I S~--+ 
B ]_[ C be such that f '  = f .  Let  p: B L[ C---~ C denote the natural 
projection, and for each S~, consider the induced map f~: S~--+ B ]_[ C 
and f~' =Pfi:  S¢--+ C. Write C = P/K, where P is the projective 
cover of C, and consider the following exact commutative diagram. 

Si 

0 ~ soc P C~ K - A ~  soc P g ~ P/K . ~ ,~ P/(K, soe P) ~ 0 
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Since C = P/K  has no simple summand,  f~'(Si)C r(P/K), hence 
hfi'(S') C r(P/(K, soc P)) = rP/(K, soc P). By our assumption, hfi'(S ) 
is zero, hence fi '(St) C g(soc P). Since soc P is semisimple, g: soc P 
g(soc P) splits. We can now conclude tha t f i ' :  S i -~ P /K  factors through 
P, so t ha t f t '  is zero. We can then assume tha t f i '  is zero. I t  now follows 
that f ' (S1 I I  "'" ]_I S~) C B. Since B is semisimple, f '  is the direct sum 
of an isomorphism and a zero map, hence so i s / '  = f .  This finishes the 
proof of (c) v-~ (a), and the proof of Theorem 10.1. 

We now show that if gl dim(D) ~< 1, then D belongs to the above 
class. More generally, we have the following. 

PROPOSITION 10.2. I f  gl dim(D) <~ n, then gl dim rood(D) ~< 3n --  1. 
Hence if D is stably equivalent to a dualizing R-variety D' with 
gl dim(D') <~ n, then gl dim rood(D) ~ 3n -- 1. 

Proof. Let  F be an indecomposable object in rood(D) and 
0 --+ A --+ B --+ C --~ 0 the minimal exact sequence associated with F, as 
described in Section 7. Then  we have seen that 

0 -+ F - +  Extci( ", A) --+ Extcl( ", B) --~ Extci( ., C) --+ Extc~ (-, A) --~ Extc2(. , B) 

--~ Extc2(', C) --~ "" -+ Extc*(', A) ~ Ext ~(', B) ~ EXtci(" , C) --> --- 

gives an injective resolution for F. Hence gl dim rood(D) ~ 3n --  1. 
The  rest of the proposition follows from this. 

COROLLARY 10.3. I f  gl dim rood(D) <~ 1, then gl dim mod(D) ~< 2. 
Hence if  D is stably equivalent to an hereditary dualizing R-variety, then 
gl dim rood(D) ~< 2. 

This  result naturally raises the question of whether D is stably 
equivalent to an hereditary dualizing R-variety if gl dim rood(D) ~< 2. 
While this is not true for arbitrary dualizing R-varieties D it is true for 
a class of dualizing R-varieties which includes D = rood(A) where A 
is an artin R-algebra. This  and related questions will be discussed in 
the next paper in this series [7]. 

As for when gl dim mod(D ) is exactly 2, we will have the answer 
once we have characterized what it means for gl dim mod(D) to be at 
most 1, which  we proceed to do next. 

THEOREM 10.4. The following are equivalent for a dualizing R-variety 
D = rood(C). 
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(a) gl dim rood(D) ~< 1. 
(b) Each indecomposable object in D is injective, projective or 

torsionless simple. 
(e) D has Loewy length at most 2, and each indecomposable object 

in D is simple, projective or injective. 

Proof. (a) implies (b). Assume gl dim m o d ( D ) ~  1. Let A be 
an indecomposable noninjective object. Since gl dim mod(D)~< 1, 
pd Extcl( ., A) ~< 1. 

Since 0 --~ A d,  E(A) ~ E(A)/A --~ 0, where E(A) denotes the injec- 
tire envelope of A, is the minimal exact sequence associated with 
Extca( ., A), we know by Proposition 9.9 that f: A--+E(A)  factors 
through a projective object P. Since f is a monomorphism, we have a 
monomorphism from A to P, so that A is torsionless. By Theorem 10.1 
we conclude that A is projective or (torsionless) simple. 

(b) implies (c). Assume that every indecomposable object in D is 
injective, projective or torsionless simple: We want to show LL(D) ~< 2, 
that is raP = 0 for all indeeomposable projectives (see Section 3). 
Assume to the contrary that there is an indecomposable projective 
object P with LL(P) > 2. Then P' = P/raP is neither projective nor 
simple, hence by assumption P/r~P is injective. Since P/raP is indecom- 
posable injective, soc(P/raP) = rP/reP -- S is simple. Since S is clearly 
neither injective nor projective, S is torsionless simple by assumption. 
Because P/raP is injective, and S is torsionless, the inclusion map 
f:  S--+P/r~P factors through a projective object. Hence f factors 
through P, so that we have the following commutative diagram 

S g---~e 

1'/ 
P/raP 

where g: P---* P/r~P is the natural map. Now g(N)C rP. But rP  is 
indecomposable since rP/raP is simple, and rP  is not simple. Hence 
g(S) C raP. This implies that hg is zero, so that f is zero, a contradiction. 

(c) implies (a). Assume LL(D) ~< 2, and that each indecomposable 
object in D is simple, projective or injective. We want to show that 
gl d immod(D) is at most 1. Let F be an object in rood(D), and 
0 -~ A J-~ B --~ C --~ 0 the associated minimal exact sequence. Then 

• "" --+ Home(', _A) -("~) ) Homc(', _B) -* Home(', C) ---* F--~ 0 
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is a projective resolution for F, minimal in the first 2 terms, by Corol- 
lary 5.4. We want to show that (.,_f) is zero. Since 0 -~  A _~s B ~ C --* 0 
is minimal, A can not have any injective summands.  Hence we can write 
A = S I_I P, where S is semisimple with no projective summands and P 
is projective. Write B = T I_I Q1 ]_I Q2 I I  E, where T is semisimple 
with no projective summand,  O 1 is semisimple projective, O 2 projective 
with no simple summands and E is injective. Consider the induced 
map f ' :  S --* B. Assume first that pf':  S --~ T is not zero, where 
p: B ~ T is the natural projection. Then  the map f ' :  S---~ B would 
have an isomorphism as a summand, hence so would _f': _S-~ B_. But 
this contradicts the fact that the projective resolution for F is minimal 
in the first 2 terms. Hence we conclude that pf" is zero. This  implies 
that  i f (S)  C Q2 I_I E. Let now g: Q' --~ ~2 LI E be the projective cover 
of ~ I I  E. Since LL(D)~<  2, r~ '  is semi-simple, and so is g ( r Q ' ) =  
r(Q2 ILl E) = s o c ( ~  ILl E). Hence g: r~ '  ~ r(Q~ L[ E) splits, and since 
i f (S) C r(9 ~ ILl E), we conclude t h a t f ' :  S ~ ~ ILl E factors through ~ ' .  
This  shows that_f '  =_f  is zero, and we are done. 

Examples of D = mod A, where A is an artin algebra such that the 
conditions of Theorem 10.2 are satisfied are 

k[X]/(X ~) 
k 0 

where k is a field. 
In  connection with Theorem 10.2 it is interesting to observe the 

following. 

EXAMPLE 10.5. Let  

A =  k , 
k 

k a field. I t  is well known that A is Nakayama (generalized uniserial) and 
hereditary. The  indecomposable projective modules are given by the 
columns, 

P1 = , P2 = and P~ ~ , 

and each indecomposable module is a factor module of one of the P~. 
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We then observe that each indecomposable A-module is injective, 
projective or simple. Now Pa is simple, and L(P2) = 2, so any proper 
factor is simple. Further/ '1  is injective, hence so are all factor modules, 
since A is hereditary. 

Since L L ( A ) =  3, this example shows that L L ( D ) ~  2 is not a 
consequence of each indecomposable object being simple, projective 
or injective. And it also shows that each indecomposable object being 
projective, injective or torsionless simple is not a consequence of each 
indecomposable object being projective, injective or simple. 

Before we go on to the case gl dim mod(D) = 0, we make the fol- 
lowing definition. A dualizing R-variety D = mod(C) is said to be 
generalized uniserial, or Nakayama, if for each indecomposable object M 
which is either projective or injective, the submodules in D are totally 
ordered with respect to inclusion. For a Nakayama artin algebra A it 
is well known that for each indecomposable object M in mod(A), the 
subobjects of M are totally ordered by inclusion. It is also well known 
that each indecomposable A-module is the factor of an indecomposable 
projective A-module. We further have 

PROPOSITION 10.6. D = mod(C) is Nakayama if and only if for each 
C in C, mod V(C) is Nakayama. 

Proof. Since we have a duality between mod(C) and mod(C°P), and 
between mod V(C) and mod V(C°p), it is sufficient to consider only 
indecomposable projective objects. Let C' be an indecomposable object 
in C. (., C') does not have a unique composition series as an object 
of D = mod C if and only if there are maps f :  (-, Ca) ~ (-, C') and 
g: (., C2)--+(. , C') such that I m f  and I m g  are noncomparable sub- 
objects of (., C'). If( . ,  C') has 2 subobjects, neither of which is contained 
in the other, (., C') also does in mod V(C), where C = C' [ I  Ca LI C2. 

If conversely there is a C, where for some C' in V(C), (', C') has 
2 noncomparable subobjects, we have f and g as above with C 1 and C~ 
in V(C), and I m f  and I m g  noncomparable subobjects of (-, C'). Then 
clearly the subobjects of (., C') in mod(C) are not totally ordered by 
inclusion. This completes the proof of the proposition. 

We are now ready to prove 

THEOREM 10.7. gl dim rood(D) = 0 ~f and only if D is Nahayama 
and LL(D) ~ 2. 

Proof. Assume first that D = mod(C) is Nakayama and LL(D) ~< 2, 
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and let M be an indecomposable object in D. Let (., C1) ~ (,, C2) 
M--> 0 be a minimal projective presentation for M. f is then an inde- 
composable map. Let C = C 1 L[ C2, and consider mod V(C). Consider 
the exact sequence (., C1)--+t (., Cz)--+ N---~ 0 in rood V(C). Here N 
is indecomposable sincefis. By Proposition 10.6, End(C) °v is a Nakayama 
artin algebra. Hence the indecomposable objects in mod(V(C)) are 
factors of indecomposable projectives. Therefore the projective cover 
of N, (', C2) is indecomposable in mod(V(C)), hence in D. Therefore 
we have established that any indecomposable object M in D is a factor 
of an indecomposable projective object. Since LL(D)~< 2 it follows 
that each indecomposable nonprojective object in D is simple. This 
finishes the proof that gl dim rood(D) is zero. 

Assume now gl dim rood(D) ---- 0. Then LL(D) ~ 2 by Theorem 10.4. 
Let 0 --+ A --+ B g-~ C --~ 0 be a minimal exact sequence in D. Because 
Coker(-,g) is projective and injective in rood(D), we conclude by 
Proposition 9.1 that B is both projective and injective. If P is an indecom- 
posable projective object which is not simple, it follows that P is injective, 
since 0--~ rP---~P-+ P/rP--~ 0 is then a minimal exact sequence. 
Hence rP is simple. Similarly, if E = E(S) is an indecomposable non- 
simple injective object, 0 ~ S --~ E(S) -+ E(S) /S  --+ 0 is a minimal 
exact sequence. Hence E(S) is projective, so that E(S)/S is simple, and 
we conclude that D is Nakayama. 
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