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a b s t r a c t

Since it is well-known (De Marchi and Schaback (2001) [4]) that standard bases of
kernel translates are badly conditioned while the interpolation itself is not unstable in
function space, this paper surveys the choices of other bases. All data-dependent bases
turn out to be defined via a factorization of the kernel matrix defined by these data, and
a discussion of various matrix factorizations (e.g. Cholesky, QR, SVD) provides a variety
of different bases with different properties. Special attention is given to duality, stability,
orthogonality, adaptivity, and computational efficiency. The ‘‘Newton’’ basis arising from
a pivoted Cholesky factorization turns out to be stable and computationally cheap while
being orthonormal in the ‘‘native’’ Hilbert space of the kernel. Efficient adaptive algorithms
for calculating the Newton basis along the lines of orthogonal matching pursuit conclude
the paper.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and overview

Let Ω be a nonempty set, and let

K : Ω × Ω → R

be a positive definite symmetric kernel on Ω . This means that for all finite sets X := {x1, . . . , xN} ⊆ Ω the kernel matrix

A := (K(xj, xk))1≤j, k≤n (1)

is symmetric and positive definite. It is well-known (see the books [1–3] for a full account of this research area) that these
kernels are reproducing in a ‘‘native’’ Hilbert space K of functions on Ω in the sense

(f , K(x, ·))K = f (x) for all x ∈ Ω, f ∈ K. (2)

The functions K(x, ·) thus are the Riesz representers of the linear point evaluation functionals δx : f → f (x) in the dual K∗

of K , and the kernel can be expressed as

K(x, y) = (K(x, ·), K(y, ·))K = (δx, δy)K∗ for all x, y ∈ Ω. (3)

This paperwill be concernedwith suitable bases for subspaces ofK . Thesewill come in different forms, andwe shall explore
their variety and prove results about their connection.

In practice, users have a finite set X := {x1, . . . , xN} ⊆ Ω of centers or data locations and work in a subspace

KX := span {K(·, xj) : xj ∈ X} (4)
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spanned by the basis of (generalized) translates K(·, xj), 1 ≤ j ≤ N . Bases of KX will be called data-dependent in this
paper, and we shall consider a wide variety of these. It is well-known that the standard basis (4) of translates leads to ill-
conditioned kernel matrices (1), but results of [4] show that interpolants to data on X , when viewed as functions, are rather
stable. This leads us to consider different data-dependent bases and to compare them with respect to stability, recursive
computability, duality, and orthogonality properties. In Section 3 we shall consider general bases, while we shall specialize
to K-orthonormal and discretely orthonormal bases in Sections 6 and 7. Our goal is to sort all possible bases into certain
classes and to prove as much as we can about their properties and their relations.

But if no data set is specified, we should also consider ‘‘data-independent’’ bases. The most natural is the eigenfunction
basis coming from the Mercer theorem. We shall describe it in Section 2 and compare it later to data-dependent bases. Of
course, data-independent bases aremuchmore ‘‘natural’’ than data-dependent bases, and they provide intrinsic information
about the kernel. But when starting with a data-independent basis, problems may arise when working on a set X of centers
later, because the Mairhuber–Curtis theorem [5] shows that matrices of values of the basis on points of X have a data-
dependent rank, if one is in a truly multivariate and nontrivial situation. This is why we shall use the data-independent
eigenfunction basis only for theoretical comparisons.

We ignore bases that are constructed iteratively via Krylov subspace methods and using neighboring points. Such
algorithms can be very effective, in particular in cases where local Lagrangian basis functions decay exponentially, e.g. for
thin-plate splines. We refer the reader to [6,7] for details. Also, we neglect bases that come from special preconditioning
techniques. Instead, we mainly focus here on bases that can be derived by standard linear algebra operations on the usual
kernel matrix.

2. Data-independent bases

The natural basis for Hilbert spaces with reproducing kernels comes from

Theorem 2.1 (Mercer). Continuous positive definite kernels K on bounded domains Ω have an eigenfunction expansion

K(x, y) =

∞−
n=0

λnϕn(x)ϕn(y) for all x, y ∈ Ω

which is absolutely and uniformly convergent. Furthermore,

λnϕn(x) =

∫
Ω

K(x, y)ϕn(y)dy for all x ∈ Ω, n ≥ 0,

{ϕn}n orthonormal in K,

{ϕn}n orthogonal in L2(Ω),

‖ϕn‖
2
2 = λn → 0, n → ∞.

This basis directly describes the action of the kernel as an integral operator performing a generalized convolution. Inmany
cases, the eigenvalues decrease very rapidly toward zero, and this implies that there is a very good low-rank approximation
to the kernel. This observation has serious consequences for kernel-based algorithms, because one has to encounter rank loss
in linear systems that are based on values of K . The systems will show very bad condition, but on the other hand one knows
that the rank-reduced systemwill be very close to the exact system. Thus, inmany cases, linear systems arising from kernels
have bad condition, but they also have a low-rank subsystem that performs like the full system, i.e. allows to approximate
the right-hand side very much the same way as the full matrix does. This has been observed in many applications from
machine learning to PDE solving, and it cannot be eliminated by other choices of bases, only by proper regularization or by
adaptive techniques that find and use good subproblems. We shall come back to this issue later.

The numerical calculation of approximations to the eigenfunction basis can be based on a sufficiently large point set
X = {x1, . . . , xN} which allows numerical integration∫

Ω

f (y)dy ≈

N−
j=1

wjf (xj)

for functions f ∈ K using certain positive weights w1, . . . , wN . Then the discretization of the eigenfunction equation

λnϕn(xk) =

∫
Ω

K(xk, y)ϕn(y)dy

leads to

λn
√

wkϕn(xk)  
v
(n)
k

≈

N−
j=1

√
wkK(xk, xj)

√
wj  

bjk

√
wjϕn(xj)  

v
(n)
j
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and which is an approximation to the discrete eigenvalue problem

λnv
(n)
k =

N−
j=1

bjkv
(n)
j , 1 ≤ k, n ≤ N (5)

involving a scaled version of the kernel matrix (1). The obtained values v
(n)
j lead to functions v(n)

∈ KX by solving the
interpolation problems

v(n)(xj) = v
(n)
j , 1 ≤ j, n ≤ N,

in the space KX , and we see that we have constructed a data-dependent basis as an approximation to a data-independent
basis. Thus this case falls into the next section, and we shall come back to it.

3. General data-dependent bases

From now on, we go back to the notation of the introduction and fix a set X = {x1, . . . , xN}, the kernel matrix
A = (K(xj, xk))1≤j, k≤N , and the space KX of (4), but dropping X in most of what follows. Any basis u1, . . . , uN of KX can be
arranged into a row vector

U(x) := (u1(x), . . . , uN(x)) ∈ RN ,

and it can be expressed by the basis T of translates

T (x) := (K(x, x1), . . . , K(x, xN))

by a coefficient or constructionmatrix CU via

U(x) = T (X) · CU ,

uk(x) =

N−
j=1

K(x, xj)cjk, 1 ≤ k ≤ N.
(6)

The set B of all possible data-dependent bases is the bijective image of the group GL(n, R) of all nonsingular real n × n
matrices under the map C → T (x) · C . This means that one has a composition ◦ of two bases U and V via

(U ◦ V )(x) := T (x) · CU · CV = T (x) · CU◦V

and thus one can define the inverse of a basis. This concept, but with a ‘‘coordinate space’’ being fixed instead of a fixed basis
T , was introduced and exploited by de Boor in [8]. Here, we just note that the full set of possible basesU can be parametrized
by arbitrary matrices CU ∈ GL(n, R). Thus we shall express formulas for features of bases U mainly in terms of CU , but there
are other parametrizations as well, as we shall see.

The evaluation operator E based on the set X will map functions f into columns

E(f ) := (f (x1), . . . , f (xN))T ∈ RN

of values on X , and rows of functions into matrices, such that

E(T ) = (K(xi, xj))1≤i, j≤N = A

is the kernel matrix. Similarly, for a general basis U we can form the valuematrix

VU := E(U) = (uj(xi))1≤i, j≤N .

A very similar way to use columns and rows, and the connection to duality we shall use later are nicely described already
in [8].

From the identity

VU = E(U) = E(T ) · CU = A · CU ,

we immediately get

Theorem 3.1. Any data-dependent basis U arises from a factorization

A = VU · C−1
U (7)

of the kernel matrix A into the value matrix VU = A · CU and the inverse construction matrix C−1
U of the basis.
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For the basis T of translates, the factorization in (7) is A = A · I , where we use I to stand for the N × N identity matrix.
Note that (7) also shows that we could as well parametrize the set of bases U via the value matrices VU , using CU = A−1

· VU
to come back to the parametrization via CU .

But for sorting out special classes of bases, we needmore. By a short calculation based on (6), the Gramian GU of a general
basis U comes out to be

GU := ((ui, uj)K)1≤i, j≤N = CT
U · A · CU . (8)

These are the K-inner products, but we also have discrete ℓ2(X) inner products forming a Gramian ΓU via

ΓU := ((ui, uj)ℓ2(X))1≤i, j≤N

=


N−

n=1

ui(xn)uj(xn)


1≤i, j≤N

= V T
U · VU

= CT
U · A2

· CU

using (7).

4. Interpolation, functionals, and duality

Interpolants sf ∈ KX to values E(f ) of some function f can be written as

sf (x) = T (x)α

with a coefficient vector α ∈ RN satisfying the linear system

Aα = E(f ). (9)

This is well-known, but also follows immediately from

E(sf ) = E(T )α = Aα = E(f )

using our notation. For general bases, the interpolant takes the form

sf (x) := T (x) · A−1
· E(f )

= U(x) · C−1
U · A−1

· E(f )  
=:ΛU (f )

=

N−
j=1

uj(x)λj(f ) (10)

with a column vector

ΛU(f ) := (λ1(f ), . . . , λN(f ))T = C−1
U · A−1

· E(f )

of values of linear functionals. The corresponding functionalsλ1, . . . , λN are from the span of the point evaluation functionals
δx1 , . . . , δxN , and they can be composed from them via

ΛU(f ) = C−1
U · A−1  

=:∆U

·E(f ) = ∆U · E(f )

as a matrix operation with

∆U = C−1
U · A−1

= V−1
U .

We have chosen the notation ∆U here, because the action of the matrix is like forming divided differences from function
values. For the basis T of translates, we have ∆T = V−1

T = A−1. Note that we could parametrize bases U also via ∆U .
The evaluation of an interpolant sf at some point x via (10) can be unstable, if either the uj(x) or the λj(f ) or both are large,

canceling finally when forming the result sf (x). This regularly occurs for the basis T of translates, because the coefficient
vector A−1E(f ) tends to have huge absolute values of opposite sign. A measure for the stability of the evaluation of sf (x)
thus is the Hölder–Minkowski bound

|sf (x)| ≤ ‖U(x)‖p ‖ΛU(f )‖q for all f ∈ K, x ∈ Ω (11)

with 1/p + 1/q = 1. We shall have to look at both factors in what follows.
In [4], there is an analysis of the stability of the Lagrange basis along this line, proving that the right-hand side is well-

behaved. This implies that interpolation is not unstable in function space, though the calculation of coefficients in the basis
of translates is unstable. Consequently, we have to look for other bases which allow good bounds in (11).

The linear functionals in ΛU are in some sense dual to the basis U , but we define duality slightly differently.
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Definition 4.1. The dual basis to a basis U is the basis U∗ of the Riesz representers of the functionals of ΛU .

Given some basis U , we now have to find the value matrix VU∗ and the construction matrix CU∗ of the dual basis U∗.

Theorem 4.1. The dual basis U∗ to a data-dependent basis U satisfies

VU∗ = (CT
U )−1,

CU∗ = (V T
U )−1,

U∗∗
= U,

A = VU · V T
U∗ ,

K(xj, xk) =

N−
m=1

um(xk)u∗

m(xj), 1 ≤ j, k ≤ N,

(uj, u∗

k)K = δjk, 1 ≤ j, k ≤ N.

Proof. The dual basis functions u∗

j are defined by

λj(f ) = (u∗

j , f )K , for all f ∈ K, 1 ≤ j ≤ N. (12)

Thus

u∗

j (x) = (u∗

j , K(x, ·))K = λj(K(x, ·)), 1 ≤ j ≤ N, for all x ∈ Ω,

U∗(x) = ΛT
U(K(x, ·))

= C−1
U · A−1

· E(K(x, ·))T

= V−1
U · E(K(x, ·))T

= T (x)(V−1
U )T

for all x ∈ Ω proves CU∗ = (V T
U )−1 via (6). Then (7) yields

VU∗ = A · CU∗

= A · (V T
U )−1

= A · ((A · CU)T )−1

= (CT
U )−1,

and the next three relations are easy consequences. Finally,

(uj, u∗

k)K = λk(uj)

= eTkΛU(uj)

= eTk∆U · E(uj)

= eTk∆U · E(Uej)

= eTk∆U · E(U)ej
= eTkC

−1
U A−1VUej

= eTk ej, 1 ≤ j, k ≤ N

proves the last assertion and shows that the functionals of ΛU always are a biorthogonal basis with respect to U . �

The transition from a basis U to its dual follows a simple rule-of-thumb. Starting with (7), we take the transpose and
re-interpret this in the sense of Theorem 3.1 as the product of a dual value matrix times the inverse of a dual construction
matrix:

A = VU · C−1
U

= AT
= (C−1

U )T · V T
U

= VU∗ · C−1
U∗ .

For later use in stability considerations along the lines of (11), we use (10) to get

‖sf ‖2
K = ΛT (f )GUΛ(f )

with the K-Gramian GU . By standard eigenvalue manipulations and the inequality ‖sf ‖K ≤ ‖f ‖K , this implies
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Theorem 4.2. For all f ∈ K and all data-dependent bases U,

‖Λ(f )‖2
2 ≤ ‖f ‖2

Kρ(G−1
U )

with ρ being the spectral radius.

Note that this bound is particularly bad for the basis T of translates with GT = A.

5. Lagrange basis and power function

We now look at the standard Lagrange basis Lwhose elements are data-dependent and satisfy

Lj(xk) = δjk, 1 ≤ j ≤ k.

Clearly, VL = I = ΓL and by (7) we get CL = A−1. The K-Gramian is GL = A−1 by (8). By Theorem 4.1 or by the above
rule-of-thumb in the form

A = A · I = VT · C−1
T = AT

= I · AT
= VT∗ · C−1

T∗

we get

Theorem 5.1. The Lagrange basis L and the basis T of translates are a dual pair. �

Another way to see this duality is by noting that the functionals λj(f ) = δxj(f ) of the Lagrange basis are the Riesz
representers of the kernel translates K(·, xj).

Before we turn to other cases, we still have to introduce the power function and to express it for general bases. The
pointwise error functional

f → δx(f ) − sf (x) = δx(f ) −

N−
j=1

Lj(x)δxj(f )

has the norm

P(x) =

δx −

N−
j=1

Lj(x)δxj


which is called the power function of the interpolation process. By definition, it allows pointwise error bounds

|f (x) − sf (x)| ≤ P(x)‖f ‖K for all x ∈ Ω, f ∈ K.

By well-known optimality arguments [2], it satisfies

P2(x) = min
a∈RN

δx −

N−
j=1

ajδxj


2

and thus is independent of the basis, the optimal coefficients a∗

j (x) being given by the Lagrange basis functions Lj(x). Using
this optimality, the formula (3) and some standard algebraicmanipulationswithin our formalism, we can express it in terms
of a general basis as

P2(x) = K(x, x) − 2
N−
j=1

K(x, xj)Lj(x) +

N−
j,k=1

K(xk, xj)Lj(x)Lk(x)

= K(x, x) −

N−
j=1

K(x, xj)Lj(x)

= K(x, x) − T (x) · LT (x)
= K(x, x) − T (x) · A−1

· T T (x)
= K(x, x) − U(x) · C−1

U · A−1
· (C−1

U )T · UT (x)

= K(x, x) − U(x) · G−1
U · UT (x). (13)

Due to positive definiteness of the K-Gramian GU , this yields bounds

0 ≤ U(x) · G−1
U · UT (x) = K(x, x) − P2(x) ≤ K(x, x)

for the pointwise behavior of the general basis U . By standard eigenvalue bounds, this implies a bound that is useful for (11).
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Theorem 5.2. For arbitrary data-dependent bases U, we have

‖U(x)‖2
2 ≤ K(x, x)ρ(GU) for all x ∈ Ω

with the spectral radius ρ(GU) of the K-Gramian. Furthermore, the stability bound (11) for p = q = 2 is

|sf (x)|2 ≤ ‖U(x)‖2
2‖ΛU(f )‖2

2 ≤ ‖f ‖2
KK(x, x)cond2(GU) (14)

for all f ∈ K, x ∈ Ω , where cond2(GU) is the condition number of the K-Gramian with respect to the Euclidean norm. �

Note how the first part of (14) shows the nice factorization into a basis-dependent term and an f -dependent term.

6. K-orthonormal bases

From (14) we see that we should look for bases U with GU = I , i.e. for K-orthonormal bases.

Theorem 6.1. Each data-dependent K-orthonormal basis U arises from a decomposition

A = BT
· B with B = C−1

U , VU = BT
= (C−1

U )T . (15)

Among all data-dependent bases, the K-orthonormal bases are exactly those which are self-dual.

Proof. Clearly, GU = CT
U · A · CU = I is equivalent to A = (C−1

U )TC−1
U , proving the first assertion. By Theorem 4.1, all

K-orthonormal bases are self-dual. Conversely, if U is a self-dual basis, then

V−1
U = CT

U ,

A = VU · (V−1
U )T ,

and the second assertion follows from the first. �

There are two important special cases.
The Cholesky decomposition A = L · LT with a nonsingular lower triangular matrix L leads to the Newton basis N treated

in [9] with a different normalization. It can be recursively calculated and has the property Nj(xk) = 0, 1 ≤ k < j ≤ N like
the basis of functions

Nj(x) =

∏
1≤k<j

(x − xk), 1 ≤ j ≤ N

in Newton’s formula for polynomial interpolation.
The other case is induced by singular value decomposition (SVD) in the form A = Q T

· Σ2
· Q with an orthogonal matrix

Q and a diagonal matrix Σ having the eigenvalues of A on its diagonal. This SVD basis S satisfies

B = Σ · Q , CS = Q T
· Σ−1, VS = Q T

· Σ .

Before we analyze these special cases further, we prove slightly more than we had for Theorem 5.2.

Theorem 6.2. For all K-orthonormal bases U, the value of ‖U(x)‖2 for fixed x ∈ Ω is the same and bounded above by K(x, x)
independent of the placement and number of data points. Dually, the value of ‖Λ(f )‖2 for fixed f ∈ K is the same for all
K-orthonormal bases and bounded above by ‖f ‖K independent of the placement and number of data points.

Proof. Eq. (13) yields

N−
j=1

u2
j (x) = ‖U(x)‖2

2 = K(x, x) − P2(x) ≤ K(x, x) for all x ∈ Ω,

and this proves the first assertion, because the power function is basis-independent. Writing an interpolant sf in the form
(10) is an orthonormal representation. Thus, being basis-independent as well,

‖sf ‖2
K =

N−
j=1

λ2
j (f ) ≤ ‖f ‖2

K (16)

proves the second. �
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This shows that K-orthonormal bases will lead to stable results in function space even for nearly-coalescing data points,
provided that the data come from a function in the native space. The functionals act like divided differences and have norm
1 in the dual of the native space, irrespective of the placement of data points.

From Theorem 5.2 we get the bound

|sf (x)|2 ≤ K(x, x)‖f ‖2
K for all f ∈ K, x ∈ Ω (17)

for allK-orthonormal bases U , implying that the evaluation of the interpolant is stable provided that the uj(x) and λj(f ) can
be evaluated stably. The basic equations for these are

U(x) = T (x)B−1 for all x ∈ Ω, ΛU(f ) = (B−1)TE(f ) for all f ∈ K,

and we see that in both cases the matrix B−1 is involved, or a system with coefficient matrix B has to be solved. For the
condition of Bwe have.

Theorem 6.3. The general solution B of (15) is always of the form B = Q1ΣQ with an orthogonal matrix Q1, when A = Q TΣ2Q
is an SVD of A. Thus the spectrum of A is factored by (15), and the spectral condition of B is the square root of the spectral condition
of A.

Proof. From A = Q TΣ2Q = BTB we get I = Σ−1QBTBQ TΣ−1. Thus Q1 := BQ TΣ−1 is orthogonal and B = Q1ΣQ . The
matrix B has an SVD with singular values being the square roots of those of A. �

Thus all K-orthonormal bases divide the ill-conditioning of A fairly between the function and the functional part. Later,
we shall consider special adaptive algorithms for the Newton case.

7. Discretely orthonormal bases

Theorem 7.1. Each data-dependent discretely orthonormal basis arises from a decomposition

A = Q · B

with Q = VU orthogonal and B = C−1
U = Q T

· A.

Proof. By the formula ΓU = CT
U · AT

· A · CU for the discrete Gramian ΓU , and setting Q := A · CU , we see that ΓU = I is
equivalent to orthogonality of Q . �

Again, we have two special cases. A standard QR decomposition A = QR into an orthogonal matrix Q and an upper
triangularmatrix Rwill lead to a basis we shall denote byOwith CO = R−1, VO = Q . This is nothing else than Gram–Schmidt
orthonormalization of the values of the translate basis T on X . The second case comes from rescaling an SVD basis. In fact,
any SVD A = Q TΣ2Q can be split into A = Q · B with B = Σ2Q . This makes the value matrix orthonormal, while the ill-
conditioning is completely shifted into the construction matrix. Thus, if scaling is ignored, all SVD bases are both discretely
and K-orthogonal. The converse is also true:

Theorem 7.2. All data-dependent bases which are discretely and K-orthogonal are scaled SVD bases.

Proof. Any such basis U can be rescaled to beK-orthonormal. We then have A = BT
·Bwith B = C−1

U and ΓU = CT
U ·A2CU =

D2 with a nonsingular diagonal matrix D. This implies I = D−1CT
UA

TACUD−1 and that

Q := A · CU · D−1
= BT

· B · CU · D−1
= (C−1

U )T · D−1

is orthogonal. But then

A · Q = A · A · CU · D−1

= (C−1
U )TD−1

= Q · D2

leads to the SVD of A = Q · D2
· Q T with B = C−1

U = D · Q T . �

For any discretely orthonormal basis U , the K-Gramian is

GU = CT
U · A · CU = Q T

· A−1
· A · A−1

· Q = Q T
· A−1

· Q

and thus spectrally equivalent to A−1. In view of Theorem 5.2, this is comparable to the Lagrange and the translates basis.

Theorem 7.3. The duals of the discretely orthonormal bases arise from decompositions

A = B · Q

with Q orthogonal.
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Proof. Following our rule-of-thumb for a discretely orthonormal basis U , we get

A = Q · B = AT
= BT

· Q T
= VU∗ · C−1

U∗ , VU∗ = BT , CU∗ = Q . �

These bases have orthogonal construction matrices instead of orthogonal value matrices. Again, a scaled SVD basis is a
special case, and also the transpose A = RT

· Q T of a QR decomposition A = Q · R. The K-Gramians of these bases are of the
form Q · A · Q T , and thus again spectrally equivalent to the translate and Lagrange bases, as far as the spectral condition is
concerned.

8. SVD bases

Though their computation is rather involved, the SVD bases have some nice properties, as we have seen in the previous
sections, in particular in Theorem 7.2. Going back to Section 2 and using an integration formula with well-distributed points
and equal weights wk = w > 0, we see that the discretized solution v

(n)
j , 1 ≤ j, n ≤ N of the eigenvalue problem (5)

is related to the eigenvalue problem of A itself, and thus is a scaled SVD basis. Thus we can expect that SVD bases for large
and well-placed data point sets are approximations of the data-independent eigenfunction basis. For kernels with rapidly
decaying eigenvalues, one has to expect numerical rank loss in the kernel matrix A, but the SVD is the best known way to
control this.

In theory, the SVD basis S based on an SVD A = Q T
· Σ2

· Q is given by S(x) = T (x) · Q T
· Σ−1, while the value

matrix is VS = Q T
· Σ . If singular values σ 2

j are sorted to decrease with increasing j, the columns of the value matrix
have decreasing norms ‖VUej‖2 = σj for increasing j. The usual Tychonov regularization will replace small σj < ϵ by zero,
thus making the basis shorter. In that case, the numerical result of the reconstruction of f from given data E(f ) will be a
non-interpolatory projection of f into the span of the selected SVD basis functions, and if these are corresponding to the
eigenfunctions with large eigenvalues, the result will be an accurate and stable reproduction of the projection of f into the
span of these eigenfunctions. If, however, f has a large projection onto higher eigenfunctions, this will lead to unavoidable
errors, but these often look like noise, while the numerical solution looks smooth. This makes the SVD useful for a lot of
applicationswhere deterministicworst-case error boundsmake no sense, and in particularwhere the data are noisy anyway
and exact interpolation is not desirable.

9. Newton basis

This basis was already treated in [9], but with a different normalization that concealed its K-orthonormality somewhat.
Theorem 6.2 and the stability bound (17) are not in [9], but proved here for general K-orthonormal bases.

A Cholesky decomposition A = L · LT with a nonsingular lower triangular matrix L leads to the Newton basis N with
N(x) = T (x) · CN = T (x) · (LT )−1 and VN = L. In practice, the Cholesky decomposition would be pivoted, but we shall
describe another adaptive algorithm below.

The construction of the Newton basis is recursive like the Cholesky algorithm, and this means that the first n basis
functions N1, . . . ,Nn need not be recalculated when going over from n to n + 1. This has some remarkable consequences
which were not noted in [9]. In particular, we can interpret (13) in the form

n−
j=1

N2
j (x) = K(x, x) − P2

n (x), (18)

recursively, if we denote the power function on the n points of Xn := {x1, . . . , xn} by Pn. Thus

Theorem 9.1.

N2
n (x) = P2

n−1(x) − P2
n (x) ≤ P2

n−1(x). (19)

If xn is chosen recursively as

xn := arg max P2
n−1(·),

then

N2
n (x) ≤ N2

n (xn) for all x ∈ Ω,

i.e. the basis has no parasitic maxima.

Proof. The first statement follows from (18), and the second from N2
n (x) ≤ P2

n−1(x) ≤ P2
n−1(xn) = N2

n (xn) because of
Pn(xn) = 0. �
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This argument was already used in [4] for the Lagrange basis. If x1, . . . , xn are fixed, the functions Ln and Nn differ only
by a normalization factor, but Ln will change when we go over to n + 1.

In (18), one can take the limit n → ∞ without problems, and it was proven in [4] that
∞−
j=1

N2
j (x) = K(x, x)

if the points x1, x2, . . . get dense in a bounded domain Ω ⊂ Rd. On such a domain, and for a continuous kernel K , we also
get

n−
j=1

‖Nj‖
2
L2(Ω) ≤

∫
Ω

K(x, x)dx

by integration of (18), for n → ∞, and for the craziest possible point distributions. Together with (19), this shows that
the Newton basis does not seriously degenerate when points get close. This is in line with the nondegeneracy of the data
provided by (16), if the data come from a function f in the native space.

By construction, the functions N1, . . . ,Nn are an orthonormal basis for the span of the translates K(·, x1), . . . , K(·, xn).
Thus the action of the reproducing kernel K on that space is given by

Kn(x, y) =

n−
j=1

Nj(x)Nj(y)

and the action of the kernel K on the orthogonal complement

{f ∈ K : f (xj) = 0, 1 ≤ j ≤ n}

is given by the kernel K(x, y) − Kn(x, y). In [10], the latter was called the power kernel and represented differently,
without using the Newton basis. If the points x1, x2, . . . are dense in a bounded domain Ω , this argument proves the series
representation

K(x, y) =

∞−
j=1

Nj(x)Nj(y) (20)

of the kernel. From Section 2 we know that there may be a good low-rank approximation to the kernel, and thus we have
to anticipate that, for a special ordering of the points, convergence of the series may be rapid and connected to the decay of
the eigenvalues of the kernel. This means that one should consider adaptive point selections that make the series converge
fast. This will be the topic of the next section.

10. Adaptive calculation of Newton bases

We first consider the case where we want to find a good basis for all possible interpolation problems, i.e. we do not care
for single data and focus on point selection instead. Let Ω ⊂ Rd be a bounded domain with a continuous positive definite
kernel K on it. For applications, users will take a large finite subset X = {x1, . . . , xN} ⊂ Ω but avoid to form the huge
N × N kernel matrix A for all points of X . Instead, one can use a column-based version of a pivoted Cholesky decomposition
which performs m steps of computational complexity O(Nm) to stop at rank m. Its overall complexity thus is O(Nm2), and
it requires a total storage of O(mN). It builds the first m columns of the value matrix VN and thus the first m Newton basis
functions on the full set X .

Though it is well-known how to perform a pivoted column-based Cholesky decomposition, we describe the algorithm
here because we want to make use of the kernel background and to end up with functions, not just with matrices. Having
(18) in mind, we start the algorithm by choosing x1 by permutation of points as

x1 = arg max {K(x, x) : x ∈ X}.

Since we always assume the kernel to be easily evaluated, this will use O(N) operations, and we store the vector

z := (K(x1, x1), . . . , K(xN , xN))T

for later use. The first Newton basis function then is

N1(x) :=
K(x, x1)

√
K(x1, x1)

(21)

due to (3), and we evaluate it on X , giving us the first column v1 of the value matrix VN . Another N-vector w should store
the values N2

1 (xj), 1 ≤ j ≤ N . In the following, we denote the Newton basis functions by N1,N2, . . . , while their values on
X are columns v1, v2, . . . of the value matrix VN .
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Assume now that we have fixed the firstm points and the firstm columns of VN , forming an N ×mmatrix Vm. The vector
w should contain the values

wj =

m−
k=1

N2
k (xj), 1 ≤ j ≤ N.

For points xj ∈ X , the power function Pm is

P2
m(xj) = K(xj, xj) −

m−
k=1

N2
k (xj) = zj − wj, 1 ≤ j ≤ N,

and we find its maximum and assume that it is attained at xm+1. Note that the firstm components of z − w should be zero,
giving us some check for roundoff.

The algorithm stops if this maximum is smaller than a tolerance ϵ2. In that case, Pm(x) ≤ ϵ holds on all of X , and all
functions f in KX can be replaced by their interpolants sf in x1, . . . , xm with errors

|f (x) − sf (x)| ≤ ϵ‖f ‖K for all x ∈ X .

Thus, using more than ourm well-selected points of X is useless if we can tolerate the above error.
If we decide to continue, we now generate the column Aem+1 of A consisting of values K(xm+1, xj), 1 ≤ j ≤ N and form

the vector u := Aem+1 − Vm · (V T
mem+1) at cost O(Nm). This contains the values on X of the function

u(x) := K(x, xm+1) −

m−
j=1

Nj(x)Nj(xm+1), (22)

and this function satisfies

(u,Nk)K = Nk(xm+1) −

m−
j=1

Nj(xm+1)(Nj,Nk)K = 0, 1 ≤ k ≤ N.

Since the span of N1, . . . ,Nm coincides with the span of K(·, x1), . . . , K(·, xm), we also have uj = u(xj) = 0, 1 ≤ j ≤ m,
giving us another check on roundoff.

We then define

Nm+1(x) :=
u(x)
‖u‖K

and use ‖u‖2
K = zm+1 −wm+1 = P2

m(xm+1) for this. To prove this identity, we employ orthonormality of the Nj in (22) to get

m−
j=1

N2
j (xm+1) = ‖u − K(·, xm+1)‖

2
K

= ‖u‖2
K − 2(u, K(·, xm+1))K + K(xm+1, xm+1)

= ‖u‖2
K − 2u(xm+1) + K(xm+1, xm+1)

= wm+1 = ‖u‖2
K − 2um+1 + zm+1

and insert um+1 = zm+1 − wm+1. We update w and add the vector u/‖u‖K as a new column to Nm to finish stepm + 1.
This algorithm provides the first m Newton basis functions on N points at cost O(Nm2). It is particularly useful if the

kernel has a good low-rank approximation and if the user wants results on a large but fixed point set X .
If data E(f ) of a function f are given on X , one might simply set up the overdetermined system

Vmc = E(f )

and solve it in the least-squares sense for a coefficient vector c ∈ Rm. Another possibility is to take only the first m rows of
this system, thus getting away with an interpolant on x1, . . . , xm. This system is triangular, can be solved at cost O(m2) and
usually is quite sufficient, because the main algorithm usually is stopped when the power function is very small on all of X .

If we denote the top m × m part of Vm by Lm, we get the values of the Lagrange basis for nodes x1, . . . , xm on all of X as
the matrix Vm · L−1

m . The ‘‘divided differences’’ for the Newton basis N1, . . . ,Nm are obtainable as L−1
m Em(f ), if we take the

firstm components of E(f ) as Em(f ).
For use with meshless methods, whose bases should be expressed ‘‘entirely in terms of nodes’’ [11], we suggest not to

use the Lagrange basis based on function values in x1, . . . , xm, but rather the Newton basis, the ‘‘divided differences’’ being
the parametrization instead of the function values at those nodes. If a result is expressed as a coefficient vector c ∈ Rm in
this parametrization, the resulting values at all nodes of X are given by Vm · c.
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If the values of the Newton basis are needed at other points, or if derivatives are to be calculated, we can use the standard
equation (6) and insert VU = C−1

U for a K-orthonormal basis U . Then we get the linear system

VN · NT (x) = T (x)T

for the Newton basis. If the basis is shortened tom functions, this system is shortened to bem×m, and then it has the lower
triangular coefficient matrix Lm we had before. If linear maps L like derivatives have to be evaluated, we use the system

VN · L(NT (·)) = L(T (·)T )

in shortened form. These evaluations are of complexity O(m2) each, which is compatible with the complexity O(Nm2) we
already had for getting values on N points.

If we are given a specific vector E(f ) of data on a point set X , there are fully data-dependent adaptive techniques for
approximation of f . A particularly simple one is based on a pivoted QR decomposition and can be viewed as an instance of
orthogonal matching pursuit [12] in the column space of the kernel matrix. Starting theoretically from a huge linear system
(9) based on N points, the basic idea is to project the right-hand side into the column space and to select those columns that
allow to reproduce the right-hand side with good accuracy. In principle, this could be done by applying a column-pivoted
QR algorithm to the system

−E(f ) A
1 0T


1
α


=


0
1


making sure that the first column is used first. Here, we used boldface to distinguish between vectors and scalars. In addition,
the QR algorithm should not start from full matrices, but rather work on columns only. Again, this is well-known from
numerical linear algebra, but we want to describe a different algorithm that performs data-dependent orthogonal matching
pursuit in the Hilbert space K and uses the Newton basis.

Let X be a large set of N points x1, . . . , xN , and assume the data vector E(f ) = (f (x1), . . . , f (xN))T to be given from a
function f ∈ K we do not know explicitly, but which we want to approximate. By (2), we know that the data have the
semantics

f (xj) = (f , K(·, xj))K , 1 ≤ j ≤ N

thoughwe do not know f . Selecting x1 to be the point where the data vector E(f ) attains its maximum absolute valuemeans
that we have selected the kernel translate that will approximate f best inK . We now proceed like in the previous algorithm,
forming the first Newton basis function N1 := K(·, x1)/

√
K(x1, x1). But then we replace the data of f by the data of the error

f1 := f − (f ,N1)KN1 of its best approximation by multiples of N1 or K(·, x1) in K . For this, we only need

(f ,N1)K = f (x1)/

K(x1, x1).

Then we proceed by choosing x2 as the point where f1 attains its maximum absolute value.
This algorithm constructs a Newton basis, but with a different, now f -dependent selection of points. In the notation of

the above algorithm, let us assume that we already have Vm and need

fm := f −

m−
j=1

(f ,Nj)KNj = fm−1 − (f ,Nm)KNm (23)

on the full set X . To perform this recursively, we look at stepm + 1 and use (22) to get

(f , u)K = f (xm+1) −

m−
j=1

(f ,Nj)KNj(xm+1)

and, with proper normalization,

(f ,Nm+1)K = (f , u)K/‖u‖K

with ‖u‖2
K = zm=1 − wm+1 as shown before. Thus we have a recursion for these inner products, and inserting them into

(23) allows us to find xm+1 as the point where fm attains its maximal absolute value.
This algorithm is orthogonal matching pursuit in K , and it should be terminated when |(f ,Nm+1)K | is sufficiently small.

By orthogonality to the span of K(·, xj) for 1 ≤ j ≤ m, the result is the interpolant to f on x1, . . . , xm. It should finally be
noted that the method is a reformulation of the greedy method of [13] in terms of the Newton basis.
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Fig. 1. Selected points and power function decay for the Gaussian.

Fig. 2. Selected points and power function decay for an inverse multiquadric.

Fig. 3. Newton basis function v25 for the Gaussian.

11. Numerical examples

We consider the domain Ω defined by the unit disk with the third quadrant cut away. We select a large set X of points
on a fine grid on [−1, 1]2 that fall into Ω . Then we run the adaptive algorithm of Section 10 to generate a selection of well-
distributed points. For the Gaussian at scale 2, Fig. 1 shows the first 30 selected points and the decay of the maximum of the
power function for that case. For 100 points and inverse multiquadrics of the radial form

φ(r) = (1 + r2/8)−2,

similar plots are in Fig. 2. The Newton basis function v25 for the Gaussian at scale 2 is in Fig. 3.
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Fig. 4. Data-dependent greedy point selection.

We now turn to the f -dependent point selection strategy. Fig. 4 shows the results for the function f (x, y) := exp(|x −

y|) − 1 on the same domain. One can see the accumulation of selected points close to the derivative discontinuity at x = y.
MATLAB programs are available via the homepage of the second author.

12. Conclusion and outlook

We now have a thorough account of the possibilities to construct bases of data-dependent subspaces of reproducing
kernel Hilbert spaces. However, there are many open problems concerning connections between these bases and to the
eigenfunction basis. The Newton basis seems to be a particularly good choice, since it is K-orthonormal, allows stable
evaluation in the sense of (11) and can be calculated recursively and adaptively. Depending on point selections, convergence
rates of series like (18) and (20) should be investigated further.
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