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Abstract

We describe an event-style (or poset) semantics for con!ict-free rewrite systems, including
term and graph rewriting (possibly with bound variables), the �-calculus, and other stable tran-
sition systems with a residual relation. Our interpretation is based on considering redex-families
as events. It treats permutation-equivalent reductions as representing the same concurrent com-
putation. Due to erasure of redexes, event structures are inadequate for such an interpretation.
We therefore extend the prime event structure model in two di2erent but equivalent ways: by
axiomatizing permutation-equivalence on 5nite con5gurations, and by axiomatizing the erasure
of events, for the con!ict-free case, and show that these extended models are equivalent to sta-
ble transition models with axiomatized residual and family relations. We then construct 5nitary
prime algebraic domains from the set of con5gurations in these extended models by de5ning
orderings relative to stable sets of ‘results’. All useful sets of results for which the normalization
(by neededness) theorem can be proved are stable. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The primary goal of this paper is to provide a fully adequate event-style concur-
rent semantics for orthogonal rewrite systems. Event structures, developed by Winskel,
Nielsen and Plotkin [32, 36–38], are a commonly accepted model of concurrency.
Con!ict-free prime event structures (PESs) are suCcient for our purposes. A (con!ict-
free) PES is simply a set of events partially ordered by a causal dependency relation
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(a poset) where an event can only dominate a 5nite number of events (the so-called ax-
iom of 6nite causes). The idea is to view a process as performing events (some atomic
tasks), and an event can occur, only once, after all events on which it depends. Causally
independent events are concurrent events and can be evaluated in parallel. Stages of
a computation are thus represented by con6gurations—left-closed event sets w.r.t. the
causal order, and the same con5guration represents all sequential computations execut-
ing events in that con5guration, ignoring the order in which the concurrent events occur.
In the theory of orthogonal rewrite systems, such as the �-calculus, there is the well

established concept of ‘redex-family’, due to LMevy [26, 27], which formalizes the idea of
the ‘same atomic task’. Therefore, it is natural to base our interpretation on considering
redex-families as events, and to interpret complete family-reductions (contracting entire
families as multi-steps) as con5gurations of the corresponding PES. This is also justi5ed
by the fact that reductions in optimal graph-implementations of orthogonal systems
correspond (up to book-keeping steps) to complete family-reductions in the original
system [1, 15, 23, 28]. 1

Recent advances in the abstract study of the syntax and operational semantics of
rewrite and transition systems [11, 12, 17, 18, 20, 29, 35] allow us to address the prob-
lem in an entirely abstract setting. Stable deterministic residual structures (SDRSs) and
Deterministic family structures (DFSs) model computation in orthogonal rewrite sys-
tems. DRSs are abstract rewrite systems with an axiomatized residual relation; DFSs
are DRSs where in addition the concept of redex-family is axiomatized. Stable DRSs
allow [11, 17] proofs of analogs of the normalization and standardization theorems
[3]. In DFSs one can further prove the Optimality Theorem and the Unique Families
Lemma [11]. The latter states that any family can be contracted at most once in a
complete family-reduction. It corresponds to the fact that any event may occur at most
once in the course of a computation, and is needed for the event structure interpretation
of SDRSs based on interpreting families as events.
Thus, we can start our interpretation by assuming that an orthogonal rewrite system

is given in the form of a DFS. Furthermore, it has been shown in [20] that any DFS
can be given an interpretation by a non-duplicating or aCne DFS with zig-zag as the
family relation (AZDFS), called the implementation of the original DFS: the reduction
steps in the implementation DFS correspond to complete family-reduction multi-steps
of the original DFS. Therefore, it is enough to concentrate on de5ning PES semantics
for AZDFSs.
To view a process as the domain of all its con5gurations, an adequacy requirement

is desirable. Namely, that runs of a 5nite con5guration (i.e., all its possible sequen-
tializations) should be in one-to-one correspondence with all 5nite reductions in the
equivalence class which the con5guration is supposed to represent. Because of the
huge importance of permutation or L9evy equivalence to the whole theory of (not only
orthogonal) rewrite systems [5, 14, 27], and to concurrency theory as well [35], we
want to be able to treat permutation-equivalent 5nite reductions as representing the

1 The book-keeping steps can be expensive in the case of �-calculus [2].
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same concurrent computation, as indeed permutation-equivalent 5nite reductions result
one from another by permuting concurrent consecutive steps. However, this is clearly
impossible in the present PES framework [37], as a 5nite con5guration in a PES has
only a 5nite number of runs while, a permutation-equivalence class of a 5nite reduction
may have an in5nite number of elements.
For example, consider the �-term t=Kx�, where K = �xy:x and �=(�x:x)�x:x.

Intuitively, all reductions of the form t �→ t �→· · · �→ t K→ x, or �mK in short, consisting
of a number of �-steps followed by a K-step, are ‘equal’, as the �-steps are performed
in an erased part of t (or in ‘garbage’). And indeed, permutation equivalence equates all
the above reductions. However, there is no means in PESs to equate the corresponding
con5gurations.
The same problem can also be observed from a di2erent angle. In order for an

equivalence relation to satisfy the adequacy requirement, the corresponding equivalence
classes of reductions must be partially ordered so as to form 5nitary prime algebraic
(or equivalently, distributive) complete lattices (see De5nition 55), since the domains
of con5gurations of PESs ordered by inclusion are such lattices [36, 37]. However, it is
well known that LMevy’s reduction space—permutation equivalence classes of co-initial
5nite reductions ordered by LMevy’s embedding relation ✂ (which generates permuta-
tion equivalence)—is not, in general, a lattice but only an upper semi-lattice, as the
greatest lower bound of two co-initial 5nite reductions w.r.t. ✂ need not exist [27]. 2

As a consequence, although the lattice properties can be restored by taking the ideal
completion [4], the resulting domain need not be 5nitary prime algebraic even when
the reduction relation is non-duplicating. For example, LMevy’s con5guration domain of
the K-� term above is not 5nitary as the K-step Kx� K→ x is a 5nitary element but it
dominates (w.r.t. ✂) an in5nite number of elements: reductions of the form �m.
Several authors have proposed di2erent ways to get round this problem. Laneve

[24] introduced distributive equivalence on �-reductions which only allows permutation
of steps that cannot erase or duplicate one another, and consequently all equivalent
sequences have the same length. Similarly, Corradini et al. [8] base their interpretation
on the equivalence relation generated by permutations of disjoint redexes only, in a
general categorical model of rewriting. Kennaway et al. [16] do work with permutation
equivalence for orthogonal term graph rewriting, but they only restrict themselves to
needed events of a normalizable term to cope with problems with erasure. As needed
redexes cannot be erased, all needed normalizing reductions are of the same length,
and on needed reductions, the permutation and distributive equivalences coincide (since
the system is non-duplicating). Clark and Kennaway [7] also work with permutation-
equivalence and allow for (5nitely) non-normalizable terms, but restrict themselves to
standard reductions, and their ordering on standard reductions is a strong restriction
of LMevy’s embedding relation. And 5nally, extending work of Boudol [5], MelliRes
[30] gives a construction of distributive domains from external reductions [14], in

2 Recursive Program Schemes are an exception [4].
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an axiomatic framework of rewriting. Other authors (e.g. [6, 34]) work with linear
rewrite=transition systems (no duplication, no erasure), and do not therefore encounter
the erasure problem.
In order to cope with the adequacy problem, we extend the PES model in two

di2erent but equivalent ways: by axiomatizing permutation-equivalence on event con-
5gurations, by directly constraining the class of all equivalence relations on con5gura-
tions; and by axiomatizing the inessentiality or erasure relation expressing redundancy
of an event for a con5guration. The latter extends by further axioms an incomplete
axiomatization of the inessentiality relation in [11]. In the resulting extended models,
deterministic permutation and erasure event structures, DPESs and DEESs, we can
identify 5nite con5gurations with di2erent numbers of events but still representing the
same permutation-equivalence class of 5nite reductions. We show that LMevy’s con5gu-
ration domain—appropriately ordered permutation-equivalence classes of 5nite con5gu-
rations in a DEES=DPES—is isomorphic to LMevy’s reduction space of the corresponding
AZDFS, and therefore DPESs=DEESs give a fully adequate semantics to AZDFSs.
As a consequence, LMevy’s con5guration domains in DEESs=DPESs need not be 5ni-

tary prime algebraic. However, having axiomatized the erasure relation and permutation
equivalence on event con5gurations, we can de5ne orderings on con5gurations re!ect-
ing the growth of information relative to stable sets of ‘results’, called stable orderings,
and thereby reconstruct 5nitary prime algebraic domains from con5guration domains
of DEESs=DPESs: The isomorphism between AZDFSs and DEESs=DPESs discussed
above induces a concept of stable sets of con5gurations in DEESs=DPESs, and the
theory of normalization by neededness relative to stable sets of terms in AZDFSs [11]
has its counterpart in DEESs=DPESs; and this relativized concept of neededness en-
ables us to show that the stable orderings on con5guration domains of DEESs=DPESs
do form 5nitary prime algebraic domains.
The paper is organized as follows. In Section 2, we review the existing theory of

DRSs and DFSs used in this paper. In Section 3 we introduce DPESs and DEESs
and establish their equivalence. In Section 4 we relate the latter event models with
aCne SDRSs (ASDRSs) and AZDFSs, showing the equivalence of the four models.
In Section 5, we de5ne LMevy’s con5guration domain in a DPES=DEES and show its
isomorphism with LMevy’s reduction space of the corresponding ASDRS. We study nor-
malization by neededness in DEESs in Section 6, and use it to construct 5nitary prime
algebraic domains from con5gurations in DEESs=DPESs in Section 7. Conclusions ap-
pear in Section 8.

2. Deterministic residual and family tructures

In this section, we recall some basic theory of deterministic residual and family
structures (DRSs and DFSs), developed in [11, 17, 18, 20]. DRSs and DFSs are ab-
stract reduction systems (ARSs) with an axiomatized notion of residual. In DFSs,
in addition, LMevy’s concept of redex-family is axiomatized. Related abstract residual
models are studied in [12, 13, 35, 29].
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Our de5nition of ARSs allows multiple transitions with the same source and target,
unlike Klop’s de5nition [22].

De�nition 1. An ARS is a triple A=(Ter;Red ;→) where Ter is a set of terms, ranged
over by t; s; o; e; Red is a set of redexes (or redex occurrences), ranged over by u; v; w;
and → :Red �→ (Ter×Ter) is a function such that for any t ∈Ter there is only a 5nite
set of u∈Red such that �→ (u)= (t; s), written t u→ s. This set will be known as the
redexes of term t, where u⊆ t denotes that u is a member of the redexes of t and U ⊆ t
denotes that U is a subset of the redexes. Note that → is a total function, so one can
identify u with the triple t u→ s. A reduction is a sequence t u1→ t2

u2→· · · . Reductions
are denoted by P;Q; N . We write P : t� s or t

P
� s if P denotes a reduction (sequence)

from t to s. If P is 5nite and its 5nal term coincides with the initial term of Q, then
P+Q denotes the concatenation of P and Q. Finally, u also denotes the reduction that
contracts u.

De�nition 2 (Deterministic residual structure; Glauert and Khasidashvili [11]). A
deterministic residual structure (DRS) is a pair R=(A; =), where A is an ARS and=is
a residual relation on redexes relating redexes in the source and target term of every
reduction t u→ s∈A, such that for v⊆ t, the set v=u of residuals of v under u is a set
of redexes of s; a redex in s may be a residual of only one redex in t under u, and
u=u= ∅ . If v has more than one u-residual, then u duplicates v. If v=u= ∅ , then u
erases v. A redex of s which is not a residual of any v⊆ t under u is said to be u-new
or created by u. The set u=P of residuals of u under any 5nite reduction P is de5ned
by transitivity.

A development of U ⊆ t is a reduction P : t� that only contracts residuals of redexes
from U ; it is complete if it is 5nite and U=P=

⋃
u∈U u=P= ∅. Development of ∅ is

identi5ed with the empty reduction. U will also denote a complete development of
U ⊆ t. The residual relation satis5es the following two axioms:
[FD] (Finite developments [12]) All developments are terminating; all complete de-

velopments of U ⊆ t end at the same term; and residuals of a redex v⊆ t under all
complete developments of U are the same.
[weak acyclicity] [35] Let u; v⊆ t; u �= v, and u=v= ∅ . Then v=u �= ∅. 3
We call a DRS R stable (SDRS) if the following axiom is satis5ed:
[stability] If u; v⊆ t are di2erent redexes, t u→ e, t v→ s, and u creates a redex w⊆ e,

then the redexes in w=(v=u) are not u=v-residuals of redexes of s, i.e., they are created
along u=v.

3 This axiom is called [acyclicity] in [11], and is axiom (4) in [35].
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We call an SDRS non-duplicating or a<ne, ASDRS, if its residual relation is non-
duplicating. Note that, since the only observables of DRSs are redexes, duplicating
syntactic rewrite systems may still form ASDRSs. For example, the DRS corresponding
to innermost reductions in an orthogonal TRS is an ASDRS, although innermost redexes
may duplicate their arguments.
In a DRS R, the residual relation on redexes extends to all co-initial reductions

exactly as in syntactic orthogonal rewrite systems [14, 26, 27, 35]: (P1+P2)=Q=P1=Q+
P2=(Q=P1) and P=(Q1 + Q2)= (P=Q1)=Q2, and L9evy-equivalence or permutation-
equivalence is de5ned as the smallest relation on co-initial reductions satisfying: U +
V=U ≈V +U=V and Q≈Q′⇒P+Q+N ≈P+Q′ +N , where U and V are complete
developments of redex sets in the same term. Further, one de5nes P✂Q i2 P=Q= ∅,
and can show that P≈Q i2 P✂Q and Q✂P; and P✂Q i2 Q≈P + N for some N .
Intuitively, P✂Q expresses that Q does more work than P, and Q=P is the part of
Q that remains from it after P. Finally, one shows that for any co-initial reductions
P;Q; P �Q≈Q�P, where P �Q=P+Q=P, and is the greatest lower bound of P and
Q in the reduction space ordered by LMevy’s embedding relation ✂. The above relations
can equivalently be de5ned also using Klop’s method of commutative diagrams [21, 3].
Finally, we will need the following Cube Lemma: for any 5nite co-initial reductions
P;Q and N; N=(P �Q)=N=(Q�P).
The following two lemmas, established in [11, 17], are fundamental in proving prop-

erties in SDRSs. They extend [weak acyclicity] and [stability] axioms from one step
reductions to any co-initial external reductions, that is, reductions that do not contract
redexes having common residuals.

De�nition 3.
• Let u∈U ⊆ t and P : t� o. We call P external to U (resp. u) if P does not contract

residuals of redexes in U (resp. residuals of u).

• Let P : t0
Pi� ti

ui→ ti+1� tn and Q : t0 = s0
Qj
� sj

vj→ sj+1� sm. Let Ui; j = ui=(Qj=Pi) and
Vi; j = vj=(Pi=Qj) (see diagram). We call P external to Q if for any i; j; Ui; j ∩Vi; j = ∅.

Lemma 4 (Stability). Let P : t� s be external to Q : t� e; in a stable DRS; and let
P create redexes W ⊆ s. Then the residuals W=(Q=P) of redexes in W are created by
P=Q; and Q=P is external to W .
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Lemma 5 (Weak acyclicity). Let P;Q be co-initial 6nite reductions in a DRS; and
let P be external to Q. Then Q �≈P.

Next, we recall some de5nitions and results from [17] concerning standardization of
reductions in ASDRSs, used in this paper.

De�nition 6.
• Let P : t� o and u⊆ t, in a DRS. We call u erased in P or P-erased if u=P= ∅. We

say that P discards u if P is external to u and erases it.
• We call u P-needed if there is no Q≈P that is external to u, and call it

P-unneeded otherwise. We call u P-essential if there is no Q≈P that discards u,
and P-inessential otherwise.
We extend these concepts to reductions co-initial with those containing u as a redex
of one of its terms.

• Let Q : t� o; P : t
P′
� s� e, and u⊆ s. We say that u is Q-needed, or more precisely,

P′u is Q-needed, if u is Q=P′-needed. We call P Q-needed if every redex contracted
in P is. We call P self-needed if it is P-needed. The other concepts above are
extended in the same way.
Note that P-neededness, P-erasure, and P-essentiality do not depend on the choice

of a reduction in the class 〈P〉L of reductions LMevy-equivalent to P, since u=P= u=Q
when P≈Q, by the Cube Lemma. The discards concept however does depend on the
particular reduction in the permutation-equivalence class.

Lemma 7. Let P : s� t u→ e� o in an ASDRS:
(1) w∈ t is P-needed i= it is P-erased and P-essential.
(2) If P : t� s′ w→ o; then w∈ s′ is P-needed.
(3) If u creates v⊆ e and u is P-unneeded (resp. P-inessential); then so is v.
(4) If u �= v⊆ t; then v is P-needed (P-essential) i= v has a P-needed (P-essential)

residual in e.

Self-needed reductions play the role of standard reductions in SDRSs, and the fol-
lowing algorithm is a standardization procedure for reductions in ASDRSs. Let P : t� s.
The canonical standard variant of P; ST (P), is de5ned as follows: If P= ∅, then
ST (P)= ∅. Otherwise, let v⊆ t be such that it is P-needed and its residual is con-
tracted in P 5rst among P-needed residuals of P-needed redexes in t (existence of
such v follows from Lemma 7). Then ST (P)= v+ ST (P=v). We write Q∈ STV (P) if
Q∈ STA and Q≈P, where STA denotes the set of all standard reduction, and call Q
a standard variant of P. In particular, ST (P)∈ STV (P).

Theorem 8 (Standardization). For any 6nite reduction P in a stable non-duplicating
DRS; ST (P) is a standard reduction L9evy-equivalent to P.

It is shown in [18, 20] that all standard variants of a 5nite reduction P can be
constructed e2ectively.
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De�nition 9 (Deterministic family structure; Glauert and Khasidashvili [11]). A de-
terministic family structure (DFS) is a triple F=(R;�; ,→), where R is a DRS;
� is an equivalence relation on redexes with histories; and ,→ is the contribution
relation on co-initial families, de5ned as follows:
(1) For any co-initial 5nite reductions P and Q, a redex Qv in the 5nal term of Q (read

as v with history Q) is called a copy of a redex Pu if PEQ, i.e., P+Q=P≈Q, and
v is a Q=P-residual of u; the zig-zag relation �z is the symmetric and transitive
closure of the copy relation. The family relation � is an equivalence relation
among redexes with histories containing �z. A family is an equivalence class of
the family relation; families are ranged over by !;  ; : : : . Fam( ) denotes the
family of its argument.

(2) Further, � and ,→ satisfy the following axioms:
[initial] Let u; v⊆ t and u �= v, in R. Then Fam(∅tu) �=Fam(∅tv), where ∅t is the
empty reduction starting from t.
[contribution] ! ,→!′ i2 for any Pu∈!′; P contracts at least one redex in !.

[creation] Let e
P
� t u→ s, and let u create v⊆ s. Then Fam(Pu) ,→Fam((P + u)v).

[FFD] (Finite family developments) Any reduction that contracts redexes of a 5nite
number of families is terminating. 4

Note that [contribution] can be viewed as a de5nition of ,→ rather than as an axiom.
It is shown in [11] that every DFS is a stable DRS.
Convention: In this paper we only consider comma-DRSs and comma-DFSs. That

is, the term set of any DRS will be the reduction graph of a term, called the initial
term, i.e., the set of terms to which the initial term is reducible. The initial term will
often be denoted by t∅, by analogy with the initial state ∅ in an event structure. Further,
in DFSs, families will always be considered relative to t∅, i.e., all histories start with
t∅. Unless otherwise stated, by a reduction we mean a 6nite reduction. Reductions
starting from t∅ will also be called initial reductions.

De�nition 10.
• We call a DFS F a zig-zag DFS, ZDFS, if its family relation is the zig-zag �z.

ACne ZDFSs will be called AZDFSs.
• We call an aCne DFS separable if, for any redex Pv; v cannot create two di2erent
redexes in the same family. That is, if v creates w′; w′′ and w′ �=w′′, then Fam((P+
v)w′) �=Fam((P + v)w′′).

The following lemma from [18, 20] gives a useful characterization of E and ≈ in
ASDRSs via zig-zag classes. Below, FAM (P) (resp. SFAM (P)) denotes the set of
zig-zag classes whose member (resp. P-needed) redexes are contracted in P, in an
ASDRS.

4 This axiom is called [termination] in [11].
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Proposition 11. Let P and Q be initial reductions in an AZDFS. Then PEQ i=
∃Q′≈Q: FAM (P)⊆FAM (Q′); and P≈Q i= SFAM (P)= SFAM (Q). Further;
SFAM (P)=FAM (ST (P))=

⋂
N≈P FAM (N ). Consequently; if P;Q∈ STA; then P≈Q

i= FAM (P)=FAM (Q) (since in that case P= ST (P) and Q= ST (Q)).

The results of this paper are based on the following properties of ASDRSs, which
show that ASDRSs and AZDFSs are essentially the same transition models, and that
every zig-zag family has a unique (up to an equivalence on histories) minimal ele-
ment [18, 20].

Theorem 12 (ACne families). Let R be an ASDRS. Then FR =(R;�z ; ,→z) is an
a<ne zig-zag DFS; called the corresponding ZDFS of R. Further; FR is the only
separable DFS with R as the underlying SDRS; and in general; an a<ne DFS is
separable i= it is a zig-zag DFS.

Theorem 13 (ACne extraction). Every redex Pv in an ASDRS R has a zig-zag re-
lated redex P′v′ in canonical form; meaning that P′ ∈ STA; its last step creates v′; and
for any P′′v′′�z Pv; ∃N ′: P′′≈P′ + N ′ ∧ v′′ = v′=N . For any other canonical form
P∗v∗ of Pv; P′≈P∗ and v′ = v∗. Further; P′ contracts exactly one redex in every con-
tributor zig-zag family of Pv; in the corresponding AZDFS FR =(R;�z ; ,→z) of R.

3. Deterministic permutation and erasure event structures

In this section, we introduce deterministic permutation and erasure event structures,
DPESs and DEESs, which extend con!ict-free prime event structures by an axiomatized
permutation-equivalence and erasure relations, respectively, and establish an equiva-
lence between them.
The purpose of this extension is to capture directly the phenomenon of erasure in

event=poset models. The phenomenon is typical for languages based on rewrite sys-
tems, but is not con5ned to them. In higher-order process calculi (e.g. [33]) processes
(that can 5re events) can be passed around as messages and therefore erased. Event
structures are linear in nature and consequently the con5guration domains enjoy very
nice lattice properties; therefore event structures have been very successful in modelling
linear process calculi where no actions can be erased or duplicated (see e.g. [6, 37]),
such as CCS [31]. However, any attempt to adequately interpret higher-order process
languages in event structures would face the same erasure problems discussed in the
introduction. As in the case of reductions, the aim of axiomatizing permutation equiv-
alence on event con5gurations is to be able to equate con5gurations which represent
the same concurrent computation and di2er only by irrelevant or inessential events.
We believe that any equivalence relation on con5gurations fully capturing concurrency
should contain the permutation-equivalence.
A prime event structure (PES) [36] is a triple E=(E; Con;6), where E is a set of

events, ranged over by e; e1; : : :; the consistency predicate Con is a non-empty set of
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5nite subsets of E, denoted by X; Y; : : :; and the causal dependency relation 6 is a par-
tial order on E, such that {e}∈Con; Y⊆X ∈Con⇒Y ∈Con; X ∈Con∧∃e′ ∈X:e 6
e′⇒X∪{e}∈Con, and {e′ | e′ 6 e} is 5nite for any e∈E.
We only consider con?ict-free or deterministic PESs, where no event can prevent

others from occurring, and therefore the consistency predicate is the set of all 5nite
subsets of E and will be omitted. Finite con6gurations of E are 5nite left-closed subsets
+; �; : : : of E, i.e., subsets L5n = {+⊆5n E | e∈ +∧ e′¡e⇒ e′ ∈ +}. Except for Section 7,
we only consider 5nite con5gurations, and will omit ‘5nite’.
Below, for better readability, we write ++ e for +∪{e}, and write +− e for +\{e}.

Further, we de5ne �e�6= {e′ | e′ 6 e}; �e�¡ = {e′ | e′¡e}; �e�¿= {e′ | e ¿ e′} and
�e�¿= {e′ | e′¿e}.

De�nition 14. A deterministic permutation event structure (DPES) is a triple P=
(E;6;≈), where E=(E;6) is a con!ict-free PES and ≈⊆L5n(E)×L5n(E) is an
equivalence relation, called L9evy- or permutation-equivalence, satisfying the following
axioms, where +; �; .∈L5n(E):
[P0] ∀e∈E: �e�¡ �≈ �e�6;
[P1] +≈ �∧ +∩ �⊆ .⊆ +∪ �⇒ +≈ .;
[P2] +≈ �∧ ++ e; � + e∈L5n(E)⇒ ++ e≈ � + e;
[P3] +≈ +− e∧ e¡e′ ∧ ++ e′ ∈L5n(E)⇒ +≈ ++ e′;

DEESs extend deterministic computation structures [11] by further erasure axioms
to enable a fully adequate treatment of erasure.

De�nition 15. A deterministic erasure event structure (DEES) is a triple C=(E;6;✄),
where E=(E;6) is a con!ict-free PES and ✄⊆L5n(E)×E is inessentiality or era-
sure relation (read +✄ e as: ‘e is +-inessential’), satisfying the following axioms, where
+; �∈L5n(E):
[E0] ∀e∈E : ∅ � ✄ e;
[E1] +✄ e∧ +⊆ �∈L5n(E)⇒ �✄ e;
[E2] +✄ e′ ∧ +✄ e∧ +− e′ ∈L5n(E)⇒ +− e′ ✄ e;
[E3] +✄ e∧ e¡e′⇒ +✄ e′;
[E4] +∪ �e�¡ ✄ e⇒ +✄ e.

We may write +✄X if ∀e∈X : +✄ e. Sometimes we write L5n(P) for L5n(E) if
E is the domain of a DPES P, and similarly for L5n(C).
Before explaining the intuition behind the axioms, we 5rst de5ne translations between

DPESs and DEESs.

De�nition 16. For a DPES P=(E;6;≈), we de5ne an erasure relation ✄≈⊆L5n(E)
×E and the corresponding structure CP =(E;6;✄≈) as follows:
• +✄≈ e i2 +∪ �e�6≈ (+∪ �e�6)\�e�¿.
In particular, when e∈ + and +− e∈L5n(E),
• +✄≈ e i2 +≈ +− e.
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De�nition 17. For a DEESC=(E;6;✄), we de5ne an equivalence relation ≈✄⊆L5n(E)
×L5n(E) and the corresponding structure PC =(E;6;≈✄) as follows:

+≈✄ � i2 ST✄(+)= ST✄(�), where ST✄(+)= {e∈ + | + � ✄ e}. (The subscript ✄ in
ST✄(+) will often be omitted.) ST (+) will be called the standard variant of +.

By looking at a con5guration + as an initial reduction P+ 5ring redexes corresponding
to events in +, and by interpreting +✄ e as ‘Qv is P-inessential’, where Qv is a redex
representing v (so Q contracts redexes corresponding to events on which e causally
depends), it is not diCcult to understand the intuition behind the erasure axioms. For
example, [E0] says that an empty reduction cannot erase any redex, and [E1] says that
if Qv is P+-inessential and P+EP�, then Qv is P�-inessential as well. This intuition
will become more precise in the next section. Further, a close inspection of the above
de5nitions shows that the DPES axiom [P0] is a counterpart of the DEES axioms
[E0] and [E4], and similarly for [P3] and [E3]. The combination of [P1] and [P2]
have the same e2ect as that of [E1] and [E2]. Axiom [E4] does not have a ‘direct’
counterpart among DPES axioms, but it corresponds to the fact that, according to
De5nition 6, a redex with history Pv is Q-inessential i2 v is Q=P-inessential. Similarly,
[P0] corresponds to Lemma 7(2).
In order to establish equivalence of DEESs and DPESs, we need a few lemmas.

Lemma 18. Let +∈L5n(C); in a DEES C. Then ST (+)∈L5n(C). Further; ST (ST (+))
= ST (+); hence +≈✄ ST (+).

Proof. Let e∈ ST (+)∧ e′¡e. Then e∈ + and + � ✄ e, implying by [E3] that + � ✄ e′.
Since +∈L5n(C) and e′¡e; e′ ∈ +, implying e′ ∈ ST (+). Hence ST (+)∈L5n(C). If, on
the contrary, ST (ST (+)) �= ST (+), i.e., ∃e′′ ∈ ST (+): ST (+)✄ e′′, then +✄ e′′ by [E1],
contradicting e′′ ∈ ST (+). Now +≈✄ ST (+) follows immediately from De5nition 17.

Lemma 19. Let +∈L5n(C); in a DEES C. Then +✄ e i= ST (+)✄ e.

Proof. (⇒) Let += ST (+)∪{e1; : : : ; en}, where the enumeration e1; : : : ; en respects the
order on E, let +0 = +, and let +i+1 = +i + ei+1 (hence += +n). Denote e= e0. By the
de5nition of ST (+) and the assumption, we have +n ✄ ei for all i=0; 1; : : : ; n. By [E2],
we have from +n ✄ en and +n ✄ ei that +n−1 ✄ ei. Hence, again by [E2], +n−2 ✄ ei, and
so on. Finally, we get +0 ✄ ei for all i, and in particular, +0 ✄ e.
(⇐) By [E1].

Lemma 20. Let +; �∈L5n(E) and +⊆ �; in a DEES C. Then ST (+)= ST (�) i=
�✄ �\+.

Proof. (⇒) By De5nition 17, since �\+⊆ �\ST (+).
(⇐) Since �✄ �\+; ST (�)⊆ +. Let e′ ∈ ST (�). Then e′ ∈ � and � � ✄ e′, implying by

[E1] and +⊆ � that + � ✄ e′, i.e., e′ ∈ ST (+). Hence ST (�)⊆ ST (+). For the converse,
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take e′′ ∈ ST (+). Then e′′ ∈ + and + � ✄ e′′. Therefore, e′′ ∈ � and by [E1] ST (�) � ✄ e′′,
implying by Lemma 19 that � � ✄ e′′, i.e., e′′ ∈ ST (�). Hence ST (+)= ST (�).

Proposition 21. Let +; �; .∈L5n(C); in a DEES C; and let +∩ �⊆ .⊆ +∪ �. Then
ST (+)= ST (�)⇔ .✄ +∪ �\+∩ �. Consequently; +≈✄ � i= .✄ +∪ �\+∩ �.

Proof. (⇒) ST (+)= ST (�)⇒ ST (+)⊆+∩�, and by the de5nition of ST (+), Lemma 19,
and [E1], ST (+)= ST (�)⇒ ST (+)✄ �\+∪ +\�⇒ .✄ +∪ �\+∩ �.
(⇐) By [E1] and Lemma 20, +∩ �✄ +∪ �\+∩ �⇒ +✄ +\�∧ �✄ �\+⇒ ST (+)=

ST (+∩ �)= ST (�).

Theorem 22. For any DEES C=(E;6;✄); PC =(E;6;≈✄) is a DPES.

Proof. We need to show that ≈✄ satis5es the permutation axioms [P0]–[P3].
[P0] Let e∈E. Note that �e�6✄ e would imply by [E2] that �e�¡ ✄ e, implying ∅✄ e

by [E4], contradicting [E0]. Hence �e�6 � ✄ e, i.e., e∈ ST (�e�6), and therefore
ST (�e�6) �= ST (�e�¡). Thus �e�6 �≈✄ �e�¡ by De5nition 17.

[P1] Let +≈✄ �; +∩ �⊆ .⊆ +∪ �, and .∈L5n(E). By De5nition 17, ST (+)= ST (�),
hence ST (+)⊆ +∩ �⊆.. Further, ∀e∈+∪�\ST (+); +✄e or �✄e, hence ST (+)✄e
by Lemma 19. Hence ST (ST (+))= ST (.) by Proposition 21, and ST (+)= ST (.)
by Lemma 18, implying .≈✄ + by De5nition 17.

[P2] Let +≈✄ � and + + e; � + e∈L5n(E). By De5nition 17, ST (+)= ST (�).
Assume 5rst that ST (+)✄ e. Then + + e✄ e by [E1] and ST (+ + e)= ST (+)
by Proposition 21. Similarly, ST (�+ e)= ST (�). Hence, ST (++ e)= ST (�+ e),
implying by De5nition 17 that + + e≈✄ � + e. Now let ST (+) � ✄ e. Then, by
Lemma 19 and [E3], ∀e′ ∈ +\ST (+): e′ �¡e. Thus + + e∈L5n(E)⇒ ST (+) + e∈
L5n(E). By Lemma 19, ST (+) � ✄e implies + � ✄ e, thus e∈ ST (+) i2 e∈ +, and
therefore ++ e\(ST (+) + e)= +\ST (+). Hence ++ e✄ ++ e\(ST (+) + e) by [E1]
(as +✄ +\ST (+)), and we have by Proposition 21 that ST (++e)= ST (ST (+)+e),
thus ++e≈✄ ST (+)+e by De5nition 17. Similarly, �+e≈✄ ST (�)+e, implying
++ e≈✄ � + e (since ST (+)= ST (�)).

[P3] Let +≈✄ +−e; e¡e′ and ++e′ ∈L5n(E) (hence e∈ +). By De5nition 17, ST (+)=
ST (+−e), implying +✄ e. Hence, by [E3], +✄ e′, implying by [E1] that ++e′ ✄ e′.
Hence, by Proposition 21, ST (++ e′)= ST (+), thus ++ e′≈✄ + by De5nition 17.

Theorem 23. For any DPES P=(E;6;≈); CP =(E;6;✄≈) is a DEES.

Proof. We need to show that ✄≈ satis5es the erasure axioms [E0]–[E4].
[E0] By De5nition 16 and [P0].
[E3] Let +✄≈ e and e¡e′. We want to show that +✄≈ e′. We can assume that

@e′′: e¡e′′¡e′. Assume 5rst that e; e′ ∈ + (hence +∪ �e�6= +∪ �e′�6= +). By
De5nition 16, +✄≈ e⇒ +≈ +\�e�¿. But +\�e�¿⊆ +\�e′�¿⊆ +, implying by [P1]
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that +≈ +\�e′�¿, i.e., by De5nition 16, +✄≈ e′. Now let e∈ + and e′ =∈ +. Let
.= +\�e�¿. By De5nition 16, +✄≈ e i2 .✄≈ e i2 .≈ .−e. Further, .∪ �e′�6= .
+ e′ and .∪ �e′�6\�e′�¿= .. By [P3], .≈ . + e′, implying .✄≈ e′ and equiva-
lently +✄≈ e′ by De5nition 16. Finally, let e; e′ =∈+. Take �=+∪�e�6. Then, by
De5nition 16, +✄≈ e i2 �✄≈ e and +✄≈ e′ i2 �✄≈ e′, and we have e∈ � and
e′ =∈ � like in the previous case, and [E3] follows.

[E1] Let +✄≈ e∧ +⊆ �∈L5n(E). We can assume that �= ++e′ and e′ =∈ +. If e¿ e′,
then ++e′ ∪ �e�6= +∪ �e�6 and ++e′ ∪ �e�6\�e�¿= +∪ �e�6\�e�¿, thus +✄≈ e
i2 ++e′✄≈ e by De5nition 16. If e �¡e′ and e′ �¡e, then ++e′∪�e�6=+∪�e�6+e′

and ++e′ ∪ �e�6\�e�¿= +∪ �e�6\�e�¿+e′, and ++e′ ✄≈ e follows from +✄≈ e
by [P2] and De5nition 16. Finally, if e¡e′, then + + e′ ∈L5n(E)⇒ e∈ +. By
[E3] which we have already proven above for ✄≈; +✄≈ e⇒ +✄≈ e′; thus by
De5nition 16 we have from +✄≈ e that += +∪ �e�6≈ +∪ �e�6\�e�¿, and we
have from +✄≈ e′ that +≈ + + e′. Hence + + e′ ∪ �e�6\�e�¿≈ (since e¡e′)
≈ +∪ �e�6\�e�¿≈ +≈ ++ e′ = ++ e′ ∪ �e�6, which means by De5nition 16 that
++ e′ ✄ e.

[E2] We can assume that e′ ∈ +. Let +✄≈ e′; +✄≈ e and +− e′ ∈L5n(E). By
De5nition 16, +✄≈ e⇒ +∪ �e�6≈ +∪ �e�6\�e�¿ and +✄≈ e′⇒ +≈ + − e′, im-
plying by repeated application of [P2] that +∪ �e�6≈ +− e′ ∪ �e�6. It is easy to
check that (+∪ �e�6\�e�¿)∩ (+−e′ ∪ �e�6)= (+∪ �e�6)∩ (+−e′ ∪ �e�6)\�e�¿=
+ − e′ ∪ �e�6\�e�¿ implying by [P1] that + − e′ ∪ �e�6≈ + − e′ ∪ �e�6\�e�¿.
Hence, +− e′ ✄≈ e by De5nition 16.

[E4] We need to show that +∪ �e�¡ ✄≈ e⇒ +✄≈ e. Indeed, by De5nition 16, +∪ �e�¡
✄ e i2 (+∪ �e�¡)∪ �e�6\�e�¿≈ (+∪ �e�¡)∪ �e�6⇔ +∪ �e�6\�e�¿≈ +∪ �e�6
i2 +✄≈ e.

Lemma 24. Let P=(E;6;≈) be a DPES; and let +∈L5n(E). Then +≈ ST✄≈ (+).

Proof. By Theorem 23 and Lemma 18, ST✄≈ (+) is a con5guration. Let +\ST✄≈ (+)=
{e1; : : : ; en}. By De5nition 16, +✄≈ ei⇒ +≈ +\�ei�¿. Clearly,

⋂n
i=1 +\�ei�¿⊆

ST✄≈ (+)⊆ +, implying by [P1] and +≈ +\�ei�¿ that + ≈ ST✄≈ (+).

The next proposition gives a characterization of ≈ via ✄≈, needed for establishing
an isomorphism between DPESs and DEESs.

Proposition 25. In a DPES P=(E;6;≈); + ≈ � i= ST✄≈ (+)= ST✄≈ (�).

Proof. (⇐) Immediate from Lemma 24.
(⇒) By Lemma 24, + ≈ ST✄≈ (+) ≈ ST✄≈ (�). Suppose on the contrary that ST✄≈ (+)

�= ST✄≈ (�), say ∃e∈ ST✄≈ (+)\(ST✄≈ (+)∩ ST✄≈ (�)). By [P1], ST✄≈ (+) ≈ ST✄≈ (+)∩
ST✄≈ (�). Further, ST✄≈ (+)∩ ST✄≈ (�)⊆ +\�e�¿⊆ + (since ST✄≈ (+)∩ ST✄≈ (�) is left-
closed), hence again by [P1] +∪ �e�6\�e�¿= +\�e�¿≈ += +∪ �e�6, implying by
De5nition 16 that +✄≈ e, contradicting e∈ ST✄≈ (+).
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Theorem 26 (Equivalence of DPESs and DEESs). (1) For any DEES C=(E;6;✄);
CPC

=C.
(2) For any DPES P=(E;6;≈); PCP

=P.

Proof. Note that the translations of DEESs into DPES and vice versa does not e2ect
the sets of events and the causality relation. Thus CPC

=(E;6;✄≈✄
) and PCP

=(E;6;
≈✄≈ ). We need to show that (1) ✄=✄≈✄

and (2) ≈ = ≈✄≈ .
(1) We need to prove that +✄ e in C i2 +✄≈✄

e in CPC
. By [E4], [E1] and [E3],

+✄ e i2 +∪ �e�6✄ e i2 +∪ �e�6✄ �e�¿. By Proposition 21, the latter holds i2
ST✄(+∪ �e�6)= ST✄(+∪ �e�6\�e�¿), which, by De5nition 17 means that +∪
�e�6 ≈✄ +∪ �e�6\�e�¿, meaning +✄≈✄

e by De5nition 16.
(2) We need to prove that + ≈ � in P i2 +≈✄≈ � in PCP

. By Proposition 25 and
De5nition 17, + ≈ � i2 ST✄≈ (+)= ST✄≈ (�) i2 +≈✄≈ �.

From now on, we will merge DEESs C=(E;6;✄) and DPESs P=(E;6;≈) into
one model (E;6;✄;≈), where (E;6) is a prime event structure, the erasure relation
✄ satis5es axioms [E0]–[E4], and ≈ =≈✄. The obtained results allow us to assume
that the permutation-equivalence ≈ satis5es axioms [P0]–[P3], and that ✄=✄≈. We
call such models again DEESs, and denote by C.

4. Relating con(ict-free stable transition and event models

We now de5ne translations between AZDFSs and DEESs and show that they com-
mute, implying equivalence of the two computational models.

4.1. Translation of ASDRSs and AZDFSs into DEESs

De�nition 27. With an ASDRS R and its corresponding AZDFS F=FR =
(R;�z ; ,→z), we associate the DEES CR =CF =(EF;6;✄;≈), where
• EF =FAM (F), the set of all families of F;
• !¡ i2 ! ,→z  ;
• + ≈ � i2 ∀!∈ +∪ �\+∩ �, ∃P : t∅� s :FAM (P)⊆ +∩ � and P discards a canonical
element of ! (see Theorem 13);

• +✄! i2 ∃P : t∅� s :FAM (P)⊆ + and P discards a canonical element of !.

We need to check that CF in the above de5nition is indeed a DEES. We need a
number of technical lemmas to achieve this.

Lemma 28. Let Q : t� s; v⊆ t; Q′ ∈ STV (Q); and let v be Q-inessential; in an AS-
DRS. Then Q′ discards v.

Proof. Since v is Q-inessential, v=Q= ∅ and v is Q-unneeded. Since Q′ is Q-needed,
it is external to v by Lemma 7(4), and v=Q′ = v=Q= ∅, i.e., Q′ discards v.
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Lemma 29. Let Q : t� s be standard and let t u→ o; in an ASDRS. Then Q=u is
standard.

Proof. By induction on the length of Q. Let Q′ =Q=u. Suppose on the contrary that
Q′ is not standard and let w′ be the last Q′-unneeded step in Q′, say Q′ =Q′

1+w′+Q′
2,

and let Q=Q1 + w + Q2, where w′ =w=u′ and u′ = u=Q1 (see the 5gure).

By Lemma 7(2), w′ is not the last step of Q′. So let Q2 = v + Q3 and Q′
2 = v′ + Q′

3.
By the choice of w′, v′ is Q′-needed, and w′ does not create v′ by Lemma 7(3). Since
w + Q2 is self-needed and w′ + Q′

2 is not, u′ �= ∅. Hence, by [stability], w does not
create v. Thus w′ and v′, as well as w and v, can be permuted in w′ + v′ + Q′

3 and
w + v + Q3, respectively, yielding v′∗ + w′∗ + Q′

3 and v∗ + w∗ + Q3 (see the 5gure
below). Then by Lemma 7(4), w∗ +Q3 is self-needed and w′∗ +Q′

3 is not self-needed
(and therefore u′′ = u′=v∗ �= ∅), contradicting the induction assumption.

Lemma 30. Let Q : t� s; P : t� o; v⊆ o; Q′ ∈ STV (Q); and let Pv be Q-inessential;
in an ASDRS. Then Q′ discards Pv.

Proof. By Lemma 29, Q′=P ∈ STV (Q=P). And since v is Q=P-inessential, Q′=P discards
v by Lemma 28.

Lemma 31. Let P : t� s; Q : t
Q′
� o u→ e v→ s′; let Q′u be P-inessential; and let u create

v; in an ASDRS. Then (Q′ + u)v is P-inessential too.

Proof. Let P′ = ST (P), P′′ =P′=Q′, and P∗ =P′′=u. By Lemma 30, P′′ discards u. So
let w be the step of P′′ that discards a residual u′ of u, and let v′ be the corresponding
residual of v along P∗, see the 5gure. If v′ �= ∅, then v′=(w=u′)= ∅ by [stability] (since
u′=w= ∅). So, in any case, v=P∗ = ∅. By the Stability Lemma, P∗ is external to v (since
P′′ is external to u). Hence P∗ discards v, i.e., v is P-inessential.
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Lemma 32. Let P : t∅� s; ! be a family in an AZDFS F; let Qv;Q′v′ ∈!; and let
Qv be canonical. If Qv is P-inessential; then so is Q′v′. Further; if Q′EP; then the
converse is also true.

Proof. By the ACne Extraction Theorem, there is Q′′ such that Q′≈Q + Q′′ and
v′ = v=Q′′. If Qv is P-inessential, then ST (P)=Q discards v by Lemma 30, and ST (P)=Q′

discards v′ by the Cube Lemma. Conversely, if Q′EP, then Q′′=(P=Q)= ∅, and
v′=(P=Q′)= v=(P=Q)= ∅ again by the Cube Lemma, thus Qv is P-inessential.

Lemma 33. Let t∅
Q
� s

u
� s′; and t∅

P
� o

v
� o′; and Qu�z Pv; in an AZDFS F. Then

v=((Q + u)=P)= ∅.

Proof. If v′ = v=(Q=P)= ∅, then we are done. Otherwise, by the ACne Extraction The-
orem, there are Nw�z Qu and reductions N ′ and N ′′ such that Q≈N+N ′, P≈N+N ′′,
u=w=N ′ and v=w=N ′′. Further, N ′ + P=Q≈N ′′+Q=P, and by the Cube Lemma,
v′ =w=(N ′ + P=Q). But u is the only N ′-residual of w, thus v′ = u=(P=Q), implying
v=((Q + u)=P)= ∅.

Lemma 34. Let P ∈ STA; FAM (P)=F1 ∪F2; F1 ∩F2 = ∅ and ∀!∈F2;∀ ∈F1 :
! =,→  ; in an AZDFS F. Then ∃Q∈ STV (P): Q=Q1 +Q2 ∧FAM (Qi)=Fi; i=1; 2.

Proof. Let u be the latest step in P such that !=Fam(u)∈F2 and it has a next step
v with  =Fam(v)∈F1. Then ! =,→  by the hypothesis, and u does not create v by
[creation]. Hence u and v can be permuted, yielding another standard reduction by
Lemma 7(4). The resulting reduction can be transformed similarly until all steps in F2
are pushed to the end. The transformation terminates as it does not change the length
of the reduction.

Theorem 35. For any AZDFS F; CF is a DEES.

Proof. We need to show that CF =(EF; ,→;✄;≈) satis5es the erasure axioms [E0]–
[E4], and that ≈=≈✄.
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[E0] Immediate from De5nitions 6 and 27.
[E1] Again from De5nitions 6 and 27.
[E2] Let +✄!, +✄!′, and let + − !∈L5n(E). Then there are P and P′ such that

FAM (P); FAM (P′)⊆ +, a canonical element Qv of ! is P-inessential, and a canon-
ical element Q′v′ of !′ is P′-inessential. Let P∗ =P �P′. Then FAM (P∗)⊆ + and
both Qv and Q′v′ are P∗-inessential. By Lemma 32, all members of ! and !′

are P∗-inessential. Since ST (P∗) is P∗-essential, it does not contract members of
! and !′. Hence FAM (ST (P∗))⊆ +− !′, and +− !′ ✄! by De5nition 27.

[E3] Let +✄! and ! ,→!′. It is enough to consider the case when � ∃!′′: ! ,→!′′

,→!′. By Lemma 34 and the ACne Extraction Theorem, there is a canonical
P′v′ ∈!′ such that P′ =P+ v, v creates v′, and Pv∈!. Further, by De5nition 27,
∃Q: FAM (Q)⊆ + which discards a canonical element of !. Hence, by Lemmas
32–30, ST (Q) discards P′v′, i.e., +✄!′.

[E4] Let +∪ �!�¡✄!. By De5nition 27, there is a Q such that FAM (Q)⊆ +∪ �!�¡
and Q discards a canonical element Pv of !. By Proposition 11 and Lemma 30,
Q can be chosen standard. Let F2 =FAM (Q)∩ (�!�¡\+) and F1 =FAM (Q)\F2.
Since +∈L5n(E), ∀!∈F2;  ∈F1 :! =,→  . Hence, by Lemma 34, ∃Q′ ∈ STV (Q):
Q′=Q1 +Q2 ∧FAM (Qi)=Fi. By Lemma 30, Q′ discards Pv, and by Lemma 33,
Q′=P=Q1=P, since �!�¡ =FAM (P). Hence Q1 discards Pv and FAM (Q1)⊆ +,
i.e., +✄!.

It remains to show that ≈=≈✄. Indeed, by De5nition 27, +≈ � i2 +∩ �✄ +∪
�\+∩ �, and by Proposition 21, the latter holds i2 +≈✄ �.

4.2. Translation of DEESs into ASDRSs and AZDFSs

The following translation of DEESs into ASDRSs uses a techniques resembling the
representation of events in a PES as prime intervals of its con5guration domain, used
for construction of PESs from stable families of con5gurations in [37].

De�nition 36. With a DEES C=(E;6;✄;≈) we associate an ASDRS RC as follows:
• The terms of RC are LMevy-equivalence classes 〈+〉L; 〈�〉L; : : : of con5gurations of C.
• The reduction relation of RC consists of sets of pairs u=(〈+〉L e), where +; ++ e ∈

L5n(E) and + �≈ ++ e. Pairs u=(〈+〉L; e) such that + ≈ ++ e are identi5ed with the
empty redex ∅=(〈+〉L; ∅) in 〈+〉L. A non-empty redex (〈+〉L; e) will also be called
an e-redex.

• The residual relation is de5ned as follows: if u=(〈+〉L; e) and v=(〈+〉L; e′), then
u=v=(〈++ e′〉L; e). (Thus u=v= ∅ i2 ++ e′≈ ++ e′ + e.)

Next we show that the de5nition above is correct.

Theorem 37. Let C=(E;6;✄;≈) be a DEES. Then RC is an ASDRS.

Proof. For any step v : 〈+〉L (〈+〉L; e)→ 〈+ + e〉L in RC, and any redex u=(〈+〉L; e′) in
〈+〉L, u=v is either a (non-empty) redex in 〈+ + e〉L, or u=v= ∅. Also, for any other
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redex w=(〈+〉L; e′′) in 〈+〉L such that w=v �= ∅, w=v=(〈++e〉L; e′′) �=(〈++e〉L; e′)= u=v,
i.e., no redex in 〈+ + e〉L is a residual of more than one redex in 〈+〉L. Further,
v=v=(〈+ + e〉L; e)= ∅. So to show that RC is an ASDRS, it remains to show [FD],
[weak acyclicity], and [stability].
[FD] Let U be a set of redexes in 〈+〉L, let e0; : : : ; el−1 be an enumeration of U ,
and let +n = + + e0 + · · · + en−1 (0 6 n 6 l). Then a complete development of

U has a form P : 〈+0〉L
(〈+0〉L; e0 )→ 〈+1〉L

(〈+1〉L; e1 )→ · · ·→〈+k〉L, where for any m= k; : : : ; l −
1; (〈+0〉L; em)=P= ∅, that is, 〈+k〉L = 〈+k + em〉L. We show by induction on j= l − k
that +k ≈ +k + ek + · · ·+ el−1. The case j=1 (i.e., +k ≈ +k + ek) is immediate. By the
induction assumption, +k ≈ +l−2≈ +l−2 + el−2≈ +l−2 + el−1. By [P2], +l−2 + el−2 +
el−1≈ +l−2 + el−1. Hence, +k ≈ +l−2 + el−2 + el−1 = +l. Thus every complete develop-
ment of U ends at 〈+k〉L = 〈+l〉L. Further, for any u=(〈+〉L; e), u=P=(〈+k〉L; e), i.e.,
u=U does not depend on the particular complete development of U , hence [FD]
holds.
[weak acyclicity] Let u=(〈+〉L; e); v=(〈+〉L; e′), e �= e′, and suppose u=v= v=u
= ∅. That is, ++ e+ e′≈ ++ e≈ ++ e′. Then, by [P1], ++ e≈ ++ e′≈ +, i.e, u= v= ∅.
[stability] Suppose on the contrary that RC is not stable. Then there are u �= v, w, w′ and
w′′ such that w and w′ are created by u and v respectively, and w′′ =w=v′ =w′=u′ �= ∅,
where u′ = u=v and v′ = v=u. That is, there are u=(〈+〉L; e), v=(〈+〉L; e′), w=(〈+ +
e〉L; e′′), w′ =(〈+ + e′〉L; e′′), and w′′ =(〈+ + e + e′〉L; e′′) such that 〈+〉L; 〈+ + e〉L and
〈+ + e + e′′〉L are di2erent; so are 〈+〉L; 〈+ + e′〉L and 〈+ + e′ + e′′〉L; and 〈+ + e +
e′〉L �= 〈+ + e + e′ + e′′〉L (see the diagram). Further, (〈+〉L; e′′) is not a redex since w
is a created redex. Hence either ++ e′′ =∈L5n(C), or ++ e′′ ∈L5n(C) and + ≈ ++ e′′;
but the latter would imply by [P2] that ++ e+ e′′ ≈ ++ e, contradicting the fact that
w is a non-empty redex. Thus ++ e+ e′′ and ++ e′ + e′′ are both con5gurations, but
their intersection + + e′′ is not—a contradiction, since the intersection of left-closed
subsets remains left-closed.

The theorem is now proved.

Clearly, an initial reduction in an ASDRS RC can be represented as a left-closed
enumeration e1; : : : ; ek of a con5guration + where no event ei in the sequence is vacuous,
i.e., ∀i: {e1; : : : ; ei−1} � ✄ ei; the event ei represents the non-empty redex ({e1; : : : ; ei−1};
ei). We call such a sequence also an initial reduction or an +-reduction in the DEES
C, written [+]. Thus we have the following lemma:
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Lemma 38. Let C be a DEES; and let RC be its corresponding ASDRS. Then there
is a 1–1 correspondence between initial reductions in C and RC.

Note that, unlike PESs, not every con5guration in a DEES has a reduction. For
example, consider the DEES consisting of four events {e1; e2; e′1; e′2}, ordered as fol-
lows: e1¡e′1 and e2¡e′2, and let ✄ be given by: +✄ e′1 i2 e2 ∈ +, and +✄ e′2 i2
e1 ∈ +. Then {e1; e2; e′1; e′2} is a con5guration, but any of its left-closed enumera-
tions, such as e1; e2; e′1; e

′
2, ends either with e′1 or with e′2, and we have {e1; e2; e′2}✄ e′1

and {e1; e2; e′1}✄ e′2. This is not surprising as the vacuous events in left-closed se-
quences correspond to empty reductions in the corresponding ASDRS, performed in
the ‘garbage’ (erased redexes). However, we have the following lemma:

Lemma 39. Let + ∈L5n(E); in a DEES. Then any left-closed enumeration of ST (+)
is a reduction.

Proof. Let e0; : : : ; en be a left-closed enumeration of ST (+). If there was an i such that
e0; : : : ; ei−1 ✄ ei, then +✄ ei by [E1], contradicting ei ∈ ST (+).

De�nition 40. With a DEES C=(E;6;✄;≈), we associate a DFS FC =(RC; �C;
,→C) as follows:
• RC is the DRSs de5ned in De5nition 36.
• ∀e∈E, we de5ne the �C-family !e corresponding to e, or the e-family, as the set

of all e-redexes ([+]; e). That is, ([+]; e)�C ([�]; e′) i2 e= e′.
• De5ne ,→C by: !e ,→C !e′ i2 e¡e′.

Theorem 41. Let C=(E;6;✄;≈) be a DEES; let FC =(RC; �C; ,→C); and let FRC

=(RC; �z ,→z). Then FC =FRC
; hence FC is an AZDFS.

Proof. We need to show that (a) �z =�C and (b) ,→z = ,→C.
(a) By De5nition 36, ([+]; e)�z ([�]; e′)⇒ e= e′, implying �z ⊆�C. For the con-

verse, consider two redexes ([+]; e)�C ([�]; e). Then ([+∩ �]; e) is also a redex
since +∩ �+ e= ++ e∩ �+ e∈L5n(E), and ([+]; e) and ([�]; e) are its residuals.
(Note that (〈+∩ �〉L; e) �= ∅ since (〈+∩ �〉L; e)= ∅⇒ (〈+〉L; e)= ∅ by [P2].) Hence
([+]; e)�z ([�]; e).

(b) In order to show that !e ,→C !e′ ⇔!e ,→z !e′ , we need to show that e¡e′ i2
e∈ [.] for any ([.]; e′)∈!e′ (by (a), !e; !e′ are families both w.r.t. �C and �z).
SuCciency is immediate since .+e′ is left closed. For the converse, we have from
Theorem 13 that ([�e′�¡]; e′) is a canonical element of !e′ (when !e′ is considered
as a �z-family), hence e¡e′.

4.3. Equivalence of the transition and event models

We now establish an equivalence between DEESs and AZDFSs, implying together
with the results of previous sections equivalence of the considered four transition and
event models—ASDRSs, AZDFSs, DEESs and DPESs.
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Let R be a DRS. Let us de5ne the reduction tree of R to be a tree whose nodes
are labelled with terms in R, whose root is labelled with t∅, the initial term of R,
and whose arcs correspond to redexes in R. Thus, sons of a node are target terms of
redexes whose source term is the label of that node. (Reduction trees are considered
up to the order of arcs coming out of a node: the order in which the arcs are drown
is irrelevant.) Note that di2erent nodes can be labelled with the same term, so even
if R has cycles, its reduction tree is a tree. Thus, the branches of the reduction tree
of R are in 1–1 correspondence with initial reductions in R. We call two such trees
isomorphic if the trees obtained by removing all labels are identical. Hence, we can
de5ne two DRSs to be isomorphic if there is an isomorphism between their reduction
trees preserving the residual relation. An isomorphism between two DFSs must further
preserve the family and contribution relations.

Lemma 42. Let F be an AZDFS and let CF be its corresponding DEES.
(1) For any initial reduction [+] = e0; e1; : : : ; en in CF there is a unique initial re-

duction g([+])=P : t∅ = t0
u0→ t1

u1→ · · · un−1→ tn in F such that Fam(Piui)= ei; where
Pi : t∅ = t0

u0→ t1
u1→ · · · ui−1→ ti. (Thus FAM (P)= +:)

(2) Let P : t∅ = t0
uo→ t1

u1→ · · · un−1→ tn in F; and let ei =!i =Fam(Piui); where Pi : t∅
= t0

u0→ t1
u1→ · · · ui−1→ ti. Then f(P)= e0; e1; : : : ; en is a reduction in CF.

(3) The translation functions g and f between reductions in F and CF commute:
for any initial reduction P in F; g(f(P))=P; and for any reduction [+] in CF;
f(g([+]))= [+].

Proof. (1) By de5nition of a reduction in a DEES, e0; e1; : : : ; en is left-closed, and
{e0; : : : ; ej−1} � ✄ ej for any j=0; : : : ; n. Take for u0 the redex in t∅ such that Fam(∅u0)
= e0; existence of such a redex is immediate from the de5nition of CF, and uniqueness
follows from [initial]. Suppose u1; : : : ; ui−1 are already de5ned so that Fam(Pkuk)= ek
for all 16k¡i. We need to show that ∃ui ∈ ti such that Fam(Piui)= ei; uniqueness of
such a redex follows from the separability of F (see Theorem 12) and from the fact
that in separable AZDFSs, a term may contain at most one redex of a given family (see
Lemma 6:1 in [18], or Lemma 5:2 in [20]). Let Nivi be a canonical element of ei which
exists by the ACne Extraction Theorem. By the same theorem, Ni contracts exactly one
redex in every contributor family of ei (and does not contract any other redex). Thus,
by [contribution], FAM (Ni)⊆FAM (Pi), and Ni ✂Pi by Proposition 11. Now we can
take ui = vi=(Pi=Ni). If on the contrary ui = ∅, then Pi would discard Nivi (since Pi=Ni

is external to vi as Fam(Nivi) =∈FAM (Pi)), and we would have by De5nition 27 that
{e0; : : : ; ei−1}✄ ei, contradicting the assumption. Thus a reduction P as above exists,
and is unique.
(2) We need to show that f(P)= e0; e1; : : : ; en is left-closed and does not contain

vacuous events (by De5nition 27, !i = ei are events in CF). By [contribution], Pi

contracts at least one redex in every contributor family of !i, hence f(P) is left-closed.
If on the contrary say !j is vacuous, i.e., {!0; : : : ; !j−1}✄!j, then by De5nition 27
there is an initial reduction Q such that FAM (Q)⊆{!0; : : : ; !j−1} and Q discards a
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canonical element Njvj of !j. By Proposition 11, Nj; Q✂Pj, and by De5nition 6,
Pj erases Njvj, i.e., vj=(Pj=Nj)= ∅. Hence uj=((Nj + vj)=Pj)= uj=∅= uj, contradicting
Lemma 33 (since Njvj �z Pjuj).
(3) Immediate from the constructions in (1) and (2).

Theorem 43 (Equivalence of AZDFSs and DEESs). (1) For any DEES C;C and CFC

are isomorphic.
(2) For any AZDFS F; F and FCF are isomorphic.

Proof. (1) Let C=(E;6;✄;≈) and C′ =CFC
=(E′;6′;✄′;≈′). By De5nitions 40

and 27, E′ = {!e | e∈E}, where !e is the e-family of FC. We show that f : e �→!e is
an isomorphism between C and C′. Since f clearly an isomorphism between E and
E′, and since C′ is a DEES by Theorems 35 and 41, we need to show that (a) e6e′

i2 !e6′!e′ ; and (b) +≈ � i2 !+≈′ !�, where !+ = {!e | e∈ +} and !� = {!e | e∈ �}.
(a) Immediate from De5nitions 40 and 27.
(b) By De5nition 27, !+≈′ !� i2 ∀e∈ +∪ �\+∩ �, there is a reduction [.] in FC such

that FAM ([.])⊆!+ ∩!� and [.] discards a canonical element [�e�¡]e of !e (see
Theorem 13). By De5nitions 6 and 36, the latter means that e =∈ .; .⊆ +∩ �, and
.∪ �e�¡≈ .∪ �e�6, thus by De5nition 16, and Lemmas 39 and 19 we need to
prove that +≈ � i2 ∃ standard .: .⊆ +∩ �∧ .✄ +∪ �\+∩ �. But this is immediate
from Proposition 21 (since ≈=≈✄) and Lemma 19.

(2) By Theorems 41 and 35, FCF is an AZDFS, hence it is enough to show that
the underlying ASDRSs R and RCF of F and FCF are isomorphic. This follows
immediately from Lemmas 42 and 38.

5. L*evy’s con�guration domains

Next, we de5ne LMevy’s con5guration domains in DEESs and show that they are
isomorphic to LMevy’s reduction spaces in corresponding ASDRSs.

De�nition 44. (1) Let C be a DEES. L9evy’s con6guration domain L✂

5n (C)= (L≈
5n (C);

✂), where L≈
5n (C)=L5n(C)=≈ = {〈+〉L | +∈L5n(C)} and ✂ is a partial order de5ned

by 〈+〉L ✂ 〈�〉L i2 ∃�′ ∈ 〈�〉L: +⊆ �′.
(2) Let R be an ASDRS, and let L5n(R) be the set of initial reductions in R. L9evy’s

reduction space L✂

5n (R)= (L≈
5n (R);✂), where L≈

5n (R)=L5n(R)=≈ = {〈P〉L |P ∈
L5n(R)}, and 〈P〉L ✂ 〈Q〉L i2 P✂Q.

Note that if 〈+〉L ✂ 〈�〉L, +≈ +′ and �≈ �′, then 〈+′〉L ✂ 〈�′〉L, implying that
De5nition 44(1) is correct: Indeed, 〈+〉L ✂ 〈�〉L i2 ∃�′′≈�: +⊆ �′′, and by Proposi-
tion 21 and [E1], +≈ +′⇒ +✄ (+′\+)⇒ �′′ ✄ (+′\+)⇒ �′≈ �≈ �′′≈ �′′ ∪ (+′\+)=
�′′∪ +′, thus 〈+′〉L ✂ 〈�′〉L.
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Lemma 45. Let P be an initial reduction in an AZDFS F. Then; in the corresponding
DEES CF; FAM (ST (P))= ST (FAM (P)).

Proof. First note that, by [contribution] and the de5nition of 6 (De5nition 27), for
any initial reduction Q, FAM (Q) is indeed a con5guration.
(⊆) Let !∈FAM (ST (P)). By Proposition 11, !∈ SFAM (P), i.e., there is P′v′ ∈! that

is contracted in P and is P-needed, thus is P-essential. Let P∗v∗ be a canonical
element of !. Then it is P-essential by Lemma 32. For any initial reduction Q
with FAM (Q)⊆FAM (P), Q✂P by Proposition 11, thus P∗v∗ is Q-essential too.
Hence Q does not discard P∗v∗, implying by De5nition 27 that FAM (P) � ✄!,
i.e., !∈ ST (FAM (P)).

(⊇) Let !∈ ST (FAM (P)). Then !∈FAM (P) and FAM (P) � ✄!, which by
De5nition 27 means that there is no initial Q with FAM (Q)⊆FAM (P) such
that Q discards a canonical element P∗v∗ of !. In particular, ST (P) does not
discard P∗v∗, and by Lemmas 32 and 7(1), the redex P′v′ ∈! contracted in P is
P-needed, i.e., !∈ SFAM (P); thus !∈FAM (ST (P)) by Proposition 11.

Lemma 46. Let Q; Q′ be initial reductions in an AZDFS F. Then Q≈Q′ in F i=
FAM (Q)≈FAM (Q′) in the corresponding DEES CF =(EF;6;✄;≈).

Proof. (⇒) By De5nition 27, we need to show that ∀!∈FAM (Q)∪FAM (Q′)\
FAM (Q)∩FAM (Q′), an initial reduction P with FAM (P)⊆FAM (Q)∩FAM (Q′) dis-
cards a canonical element Nv of !. Take P= ST (Q). By Proposition 11, FAM (P)⊆
FAM (Q)∩FAM (Q′). Let Q∗v∗ be an element of ! contracted in Q. Since by Proposi-
tion 11 ! =∈FAM (P)= SFAM (Q), Q∗v∗ is Q-unneeded, hence Q-inessential by
Lemma 7 (1). Hence, by Lemma 30, P discards Q∗v∗. By the ACne Extraction
Theorem, ∃N ′: N + N ′≈Q∗ and v∗ = v=N ′. Since Q∗6Q≈P, N ′=(P=N )= ∅, hence
v=(P=N )= v∗=(P=Q∗)= ∅ by the Cube Lemma. Since ! =∈FAM (P), P=N is external to
v, thus P discards Nv.
(⇐) By Proposition 25, FAM (Q)≈FAM (Q′) implies that ST (FAM (Q))= ST (FAM

(Q′)); hence, by Lemma 45, FAM (ST (Q))=FAM (ST (Q′)), implying by
Proposition 11 that Q≈Q′.

Lemma 47. Let F be an AZDFS; let e0; e1; : : : ; en be a left-closed enumeration of
+∈L5n(CF); and let ei0 ; : : : ; eim be obtained from e0; e1; : : : ; en by eliminating all vacu-
ous events; i.e.; ej ∈{ei0 ; : : : ; eim} i= {e0; : : : ; ej−1} � ✄ ej. Then ei0 ; : : : ; eim is a reduction
in CF and {ei0 ; : : : ; eim}≈{e0; : : : ; en}.

Proof. If there were l; k such that el¡eik (hence l¡ik) and l �= i0; : : : ; ik−1, then
{e0; : : : ; el−1}✄ el, {e0; : : : ; eik−1} � ✄ eik , and by [E1], {e0; : : : ; eik−1}✄ el, contradicting
[E3]. Hence ei0 ; : : : ; eim is left-closed. Since {e0; : : : ; eik−1} � ✄ eik , {ei0 ; : : : ; eik−1} � ✄ eik by
[E1], thus ei0 ; : : : ; eim is a reduction in CF. Finally, {ei0 ; : : : ; eim}≈{e0; : : : ; en} follows
from Proposition 21.
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Proposition 48. Let P;Q be initial reductions in an ASDRS R. Then 〈P〉L ✂ 〈Q〉L i=
〈FAM (P)〉L ✂ 〈FAM (Q)〉L in CR.

Proof. (⇒) By Proposition 11, 〈P〉L ✂ 〈Q〉L i2 ∃Q′≈Q:FAM (P)⊆FAM(Q′), which
by De5nition 44 holds i2 〈FAM (P)〉L ✂ 〈FAM (Q′)〉L in CR. But Q≈Q′ implies
FAM(P)≈FAM(Q′) in CR by Lemma 46, and therefore 〈FAM (P)〉L ✂ 〈FAM (Q)〉L
in CR.

(⇐) By De5nition 44, ∃+: +≈FAM (Q)∧FAM (P)⊆ +; thus by Lemma 47 ∃[�]:
FAM (P)⊆ �⊆ +∧ �≈ + (assuming that say e0; e1; : : : ; en is an enumeration of + whose
initial part is an enumeration of FAM (P), we can take ei0 ; : : : ; eim as in Lemma 47
for [�]). By Lemma 42, there is a Q′ such that FAM (Q′)= � and P is an initial part
of Q′. By Lemma 47, Q≈Q′, hence P✂Q, therefore 〈P〉L ✂ 〈Q〉L.

Theorem 49. Let R be an ASDRS and let C=CR be its corresponding DEES. Then
f : 〈P〉L �→ 〈FAM (P)〉L is the isomorphism between L✂

5n (R) and L✂

5n (C); with the
inverse f−1 : 〈+〉L �→ 〈[ST (+)]〉L. Moreover; reductions in 〈P〉L and 〈FAM (P)〉L are in
one-to-one correspondence.

Proof. By Lemmas 46 and 39 and Proposition 25, f and f−1 are well de5ned. The
rest is immediate from Lemma 42 and Proposition 48.

A similar statement is valid when C is an arbitrary DEES and R=RC: We only
need to replace FAM (P) in the de5nition of f with EVN (P), where EVN (P) is the
set of events 5red in P.

6. Preservation of neededness and stability by the translations

This section develops a normalization-by-neededness theory for DEESs, and relates it
with that in aCne SDRSs, establishing a relationship between the concepts of stability
intrinsic to the above models, and between neededness and stability in each model.
In order to extend the theory of Relative Normalization [9–11] from SDRSs to

DEESs, we can restrict ourselves to ASDRSs of the form RC, where C is a DEES: by
Theorem 49, such ASDRSs contain anisomorphic copy of any ASDRS.

De�nition 50 (Glauert et al. [9]). Let S be a set of terms in a DRS R.
(1) We call a redex u⊆ t S-needed if t =∈S and at least one residual of u is contracted

in any reduction from t to a term in S; we and call u S-unneeded otherwise.
(2) We call S stable 5 if:

(a) S is closed under reduction; and
(b) S is closed under unneeded expansion:

for any e u→ o such that e =∈S and o∈S, u is S-needed.

5 Our de5nition follows [9] rather than [10, 11]; in the latter papers, the de5nition of stability of sets
allows a slightly weaker condition than closure under reduction.
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All interesting sets of ‘5nite results’, such as of normal forms, head-normal forms,
weak-head-normal forms, etc., are stable [10]. It has been shown in [11] (a corollary
of the so-called Relative Normalization theorem) that, for any stable set S of terms in
an ASDRS R and any S-normalizable term t =∈S, t contains at least one S-needed
redex, and repeated contraction of S-needed redexes is S-normalizing, which justi5es
the concept of stable sets.
Our translation of AZDFSs into DEESs suggests the following de5nition of relative

neededness and stability in DEESs.

De�nition 51. Let S′ be a set of con5gurations in a DEES C=(E;6;✄;≈).
(1) We call e∈E S′-needed, written NES′(e) if, for any +∈S′, e∈ +, and call it

S′-unneeded otherwise.
(2) We call S′ stable if:

(a) S′ is closed under inclusion.
(b) S′ is closed under unneeded expansion:

++ e∈S′ ∧ + =∈S′⇒NES′(e); and
(c) S′ is closed under permutation equivalence.

Note that the relative neededness concept already makes sense for PESs.
The next theorem gives two equivalent de5nitions of stability in DEESs, more in

the spirit of the de5nition of stability in PESs [37], and more convenient to generalize
to the case of in5nite con5gurations.

Theorem 52. Equivalent de6nitions of stability of sets of 6nite con6gurations in a
DEES can be obtained from De6nition 51 by replacing condition (b) with either of
the following two conditions (b′) or (b′′):
(b′) S′ is closed under intersection.
(b′′) S′ is has a unique ⊆-minimal element +S′ .

Proof. We show that (i) (b)⇒ (b′); (ii) (b′)⇒ (b′′) and (iii) (a); (b′′)⇒ (b).
(i) Let +; �∈S′, and suppose on the contrary that +∩ � =∈S′. Further, let e1; : : : ; em;

: : : ; en be a left-closed enumeration of + such that e1; : : : ; em is a left-closed enu-
meration of +∩ � (such an enumeration exists since +∩ � is left-closed). Then
there is m6j¡n such that {e1; : : : ; ej} =∈S′ and {e1; : : : ; ej+1}∈S′. By (b); ej+1

is S′-needed, which is not possible since ej+1 =∈ �∈S′.
(ii) If S′ does not have a unique ⊆-minimal element, then it has at least two di2er-

ent ⊆-minimal elements + and � (i.e., � ∃.⊂ +: .∈S′, and similarly for �). By
(b′); +∩ �∈S′. But +∩ �⊂ +, contradicting the minimality of +.

(iii) Let +; e be such that + =∈S′ ∧ + + e∈S′. By (a) and (b′′), this means that
+S′ �⊆ +∧ +S′ ⊆ + + e. Hence e∈ +S′ , and therefore ∀5∈S′: e∈ 5 (since +S′ ⊆ 5
by (b′′)).

The proof of the following proposition is routine, and therefore omitted.
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Proposition 53. Let S′ be a set of con6gurations; in a DEES C; closed under permu-
tation equivalence; and let S be the set of corresponding terms in the corresponding
ASDRS RC (which are L9evy-equivalence classes of con6gurations in C). Then S′ is
stable in C i= S is stable in RC. Further; if S′ is stable; an event e is S′-needed
in C i= any e-redex is S-needed in RC.

We conclude this section with a theorem expressing the relationship between con-
cepts of stability and neededness in DEESs, analogous to the Relative Normalization
Theorem for ASDRSs [11]:

Theorem 54. Let S′ be a stable set of con6gurations in a DEES C. Then a repeated
execution of S′-needed events in any con6guration + =∈S′; possibly interleaved by
6nite sequences of S′-unneeded steps; eventually yields a con6guration in S′.

Proof. Immediate from closure of S′ under inclusion (since S′ consists of 5nite
con5gurations, hence there are only a 5nite number of S′-needed events).

7. Relativized information domains

In this section, we introduce orderings on con5gurations relativized w.r.t. stable sets
of results, in a DEES C, and show that they form 5nitary prime algebraic complete
lattices. Unlike the previous sections, we will now allow for in5nite con5gurations—
(countably) in5nite left-closed sets of events in C. The set of 5nite and in5nite con-
5gurations in C will be denoted by L(C).
We start by some preliminary lattice theoretic de5nitions; we follow [37].

De�nition 55.
• A complete lattice is a partial order L=(L; ) which has least upper bounds (joins

orsuprema) �X and greatest lower bounds (meets or in5ma) !X of arbitrary subsets
X ⊆L. We write x�y and x!y for the join and meet, respectively, of two elements
x; y∈L.

• A directed subset of a partial order L is a subset Y ⊆L with the property that for
any 5nite set X ⊆Y there is an element y∈Y such that ∀x∈X:x y.

• A 6nite element of a complete lattice is an element z with the property that, for all
directed subsets Y , if z ⊔

Y , then there is some y∈Y for which z y.
• A complete lattice L is algebraic if for any element d∈L the set {x d | x is

finite} is directed and has least upper bound d.
• A complete prime of a complete lattice L is an element p∈L such that p ⋃

X
⇒∃x∈X:p x for any subset X ⊆L. L is prime algebraic if, for all x∈L, x=
⊔{p x |p is a complete prime}.

• An algebraic lattice is 6nitary i2 every 5nite element dominates only a 5nite number
of elements, i.e., {x | x d} is 5nite for every 5nite element d.

• A complete lattice L is distributive if x! (y� z)= (x!y)� (x! z), for all elements
x; y; z ∈L.
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Theorem 56 (Winskel [37]). Let L be a 6nitary algebraic lattice. Then L is prime
algebraic i= it is distributive.

We now extend some of the previously introduced concepts from 5nite to in5nite
con5gurations. The concepts of an +-reduction and a S′-needed event generalize im-
mediately.

De�nition 57. Let C=(E;✂;✄;≈) be a DEES.
(1) Let +∈L(C). Then +✄ e i2 ∃�⊆5n + : �✄ e.
(2) Let +; �∈L(C). Then +≈ � i2 +✄ �\+∧ �✄ +\�.
(3) We call S′⊆L(C) stable if it is closed under ⊆, has a unique ⊆-minimal element

+S′ , and is closed under permutation equivalence.

It is easy to check that De5nitions 57(1) and (2) do not con!ict with the de5-
nitions of the corresponding concepts for 5nite con5gurations. Further, it is an easy
consequence of De5nition 57(1) and [E1] that:

Lemma 58. Let +✄ e and +⊆ �∈L(C). Then �✄ e.

We call a reduction in a DEES S′-needed-fair, or simply S′-fair, if it 5res at
least all S′-needed events. S′-fair con5gurations are de5ned similarly.

Theorem 59. Let S′ be a stable set of con6gurations in a DEES C. Then its
⊆-minimal element +S′ consists of all S′-needed events of C. Consequently; S′

consists of all S′-fair con6gurations; and any S′-fair reduction generates a con6g-
uration in C.

Proof. Since +S′ ∈S′, all S′-needed events of C are in +S′ . If on the contrary +S′

contains an S′-unneeded event e, then ∃�∈S′: e =∈ �, hence �* +S′ , contradicting
the minimality of +S′ . The rest is immediate.

For example, 5ring all events at any state, or all S′-needed events, in parallel yields
an S′-fair reduction since any 5nite con5guration not yet in S′ can 5re at least one
S′-needed event.
Note that the set of all fair con6gurations—con5gurations +∈C such that ∀e∈C: e

=∈ +⇒ +✄ e—need not be stable for every DEES C. The reason is that, unlike the 5nite
case, a con5guration + need not be equivalent to its standard variant ST✄(+)= {e∈ + | +
� ✄ e}. Indeed, consider the DEES corresponding to the ASDRS from [17] demonstrat-
ing the failure of the in5nitary standardization theorem: there are in5nitely many events
e0; e′1; e1; e

′
2; e2; : : : ; the causal dependency is the transitive re!exive closure of depen-

dencies ei¡ei+1; e′i+1 (i=0; 1; : : :), and the erasure relation is de5ned by +✄ e′j i2 e′k ∈ +
for some k¿j, k =2; 3; : : : . Then any fair con5guration consists of all non-erasable
events ei, and at least one in5nite sequence of erasable events e′il , and it is immediate
that the set of all fair con5gurations does not have the ⊆-minimal element. Note that
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for any fair con5guration + in that DEES, ST (+) consists of all non-erasable events ei,
and + �≈ ST (+) since ST (+) � ✄ e′k for any k. Thus ST (+)= ST (�) does not imply + ≈ �
as ST (ST (+))= ST (+). However, the converse is always true:

Lemma 60. Let +; �∈L(C). Then + ≈ � implies ST (+)= ST (�).

Proof. By De5nition 57(2) +✄ �\+∩ � and �✄ +\+∩ �. Hence ST (+); ST (�)⊆ +∩ �.
Suppose on the contrary that ∃e∈ ST (+)\ST (�). Then + � ✄ e and �✄ e, i.e., ∃�0⊆5n�:
�0 ✄ e, implying by Lemma 58 that +∩ � � ✄ e and �′ = �0 ∩ (+∩ �) � ✄ e. Therefore, by
Proposition 21, ∃e′ ∈ �0\�′: �′ � ✄ e′. Thus + � ✄ e′ by Lemma 58 (since �′⊆+∩ �⊆+)
and e′ ∈ �\+∩ �, contradicting +✄ �\+∩ �.

De�nition 61. Let +; �∈L(C), and let S′ be a stable set of con5gurations in C. We
de5ne +✂S′ � if [+]S′ ⊆ [�]S′ , where [+]S′ denotes the set of S′-needed events of
+. We write +≈S′ � i2 +✂S′ � and �✂S′ +, i.e., [+]S′ = [�]S′ . We call ✂S′ a sta-
ble embedding or S′-embedding, and call ≈S′ a stable equivalence or S′-equivalence.
〈+〉S′ will denote the ≈S′ -equivalence class of +. We write 〈+〉S′ ✂S′ 〈�〉S′ if +✂S′ �.
Finally, we de5ne L≈S′ (C)=L(C)=≈S′ = {〈+〉S′ | +∈L(C)} and L✂S′ (C)=
(L≈S′ (C);✂S′).

Note that ≈S′ does not satisfy [P0], although it does satisfy the other permutation
axioms [P1]–[P3]. This means that for permutation equivalence ‘progress in any direc-
tion’ is equally important, while for a stable equivalence ≈S′ only ‘progress towards
S′’ matters. Actually, P is a special case of ≈S′ : the two coincide when C is a PES
and S′ is the set of all events.

De�nition 62. Let S′ be a stable set of con5gurations in a DEES C. The meet and
join operations �S′ ;!S′ on L✂S′ (C) are de5ned by
• +�S′ �= [+]S′ ∪ [�]S′ and 〈+〉S′ �S′ 〈�〉S′ = 〈+�S′ �〉S′ ;
• +!S′ �= [+]S′ ∩ [�]S′ and 〈+〉S′ !S′ 〈�〉S′ = 〈+!S′ �〉S′ .

It is immediate from the de5nition of ≈S′ that the above de5nition is correct.

Lemma 63. Let �✄ e; in a DEES C. Then �≈ �\�e�¿.

Proof. If � is 5nite, then the lemma follows from Proposition 21. Otherwise, we have
from De5nition 57(1) and (2) and [E3] that �✄ e⇒∃�0⊆5n � : �0 ✄ e⇒ �0 ✄ �e�¿
⇒ � ✄ �e�¿⇒� ≈ �\�e�¿.

Lemma 64. Let S′ be a stable set of con6gurations in a DEES C; and let e be
S′-needed. Then e is non-erasable: ∀+∈L(C): + � ✄ e.

Proof. Suppose on the contrary that ∃+∈L(C): +✄e. We can assume that +∈L5n(C).
By [E3] and [E2], +\�e�¿✄ e. But since e is S′-needed, +\�e�¿ =∈S′. Hence �= +S′

∪ (+\�e�¿)∈S′ by closure of S′ under inclusion. But �✄ e by Lemma 58, and
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�≈ �\�e�¿ by Lemma 63. Thus, by closure of S′ under permutation equivalence,
�\�e�¿ ∈S′, and e =∈ �\�e�¿, contradicting S′-neededness of e.

The following proposition shows that ≈⊆≈S′ , which agrees with our intuition
that a concurrent semantics must not discriminate between permutation equivalent
con5gurations=reductions.

Proposition 65. Let +; � be con6gurations in a DEES C; and let S′ be a stable set
of con6gurations in C. Then + ≈ � implies +≈S′ �.

Proof. By De5nition 57(1), +✄ �\+ and �✄ +\�. Hence, by Lemma 64, [+]S′ ; [�]S′ ⊆
+∩ �, and by Theorem 59, [+]S′ = +∩ +S′ =(+∩ �)∩ +S′ = �∩ +S′ = [�]S′ .

Theorem 66. Let S′ be a stable set of con6gurations in a DEES C. Then L✂S′ (C)=
(L≈S′ (C);✂S′) is a 6nitary prime algebraic complete lattice.

Proof. Immediate from De5nition 62 and Theorem 59, since the set of subsets of any
non-empty set (in our case, +S′) ordered by the subset relation is a 5nitary prime
algebraic complete lattice with intersection and union as meet and join operations [37].

In an ASDRS R, stability of a set S of initial (5nite or in5nite) reductions can
be de5ned via stability of the corresponding set S′ of con5gurations in CR. For any
initial reductions P;Q, and any stable set of reductions S, in an ASDRS R, we can
de5ne P✂S Q i2 FAMS(P)✂S′ FAMS(Q) in CR, where FAMS(P) denotes the set
of S-needed families contracted in P (and hence coincides with the set of S′-needed
events in the con5guration corresponding to P). Further, we de5ne P≈S Q i2 P✂S Q
and Q✂S P. We call ✂S and ≈S a stable embedding or S-embedding and a stable
equivalence or S-equivalence, respectively. 〈P〉S denotes the ≈S-equivalence class of
P. We write 〈P〉S ✂S 〈Q〉S if P✂S Q. Now, if L(R) is the set of (5nite or in5nite)
initial reductions in R, we can de5ne L≈S(R)=L(R)=≈S

= {〈P〉S |P ∈L(R)} and
L✂S (R)= (L≈S(R);✂S).

Lemma 67. Let +∈L(C). Then [+]S′ ∈L(C). Moreover; [+]S′ is standard; and any
of its left-closed enumerations is a reduction.

Proof. Let e; e′ ∈ +, let e¡e′ and let e′ be S′-needed. We need to show that e is
S′-needed too. By Theorem 59, e′ ∈ +S′ ∈L(C), implying that e∈ +S′ . Thus [+]S′ ∈
L(C) ([+]S′ is left-closed). The rest is immediate from Lemma 64.

Theorem 68. Let R be an ASDRS and let C=CR be its corresponding DEES.
Further; let S′ be a set of con6gurations in C; and let S be the set of corre-
sponding reductions in R. Then f : 〈P〉S→〈FAM(P)〉S′ is an isomorphism between
L✂S (R) and L✂S′ (C); with the inverse f−1 : 〈+〉S′ →〈[[+]S′ ]〉S .
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Proof. By Lemma 67, [[+]S′ ] and hence f−1 are well de5ned. The rest is immediate
from the de5nitions above.

Hence we can de5ne on L✂S (R) that 〈P〉S �S 〈Q〉S =f−1(f(〈P〉S)�S′f(〈Q〉S))
and 〈P〉S !S 〈Q〉S =f−1(f(〈P〉S)!S′f(〈Q〉S)), and we get from Theorem 66 that
L✂S (R) with �S′ and !S′ as join and meet is a 5nitary prime algebraic domain.
It is not diCcult to de5ne stability of a set of reductions S, as well as the relations
✂S; �S and !S, on (corresponding equivalence classes of) reductions in R directly.

8. Conclusions

We have established an equivalence between deterministic stable operational (AS-
DRS) and domain-theoretic (DEES) models of computation, and based on this, con-
structed a fully adequate event style concurrent semantics for orthogonal rewrite
systems. The correspondence between Event Structures and other models of concur-
rency, as well as with denotational semantics, are well studied [37, 38], and we hope
that our results contribute to better understanding of the relationship between opera-
tional and denotational semantics of sequential and concurrent languages.
We think that our axiomatization of permutation equivalence is interesting on its

own right from the poset=lattice theoretic point of view. De5nitions of permutation
equivalence without using a residual calculus have been studied before [25], but they
still use the syntax of the rewrite system essentially (axioms depend on the syntax).
Although we have restricted attention to orthogonal rewriting, it would be interesting

to extend our axiomatization to partial orders with con!icts, to enable modelling of
non-deterministic calculi as well.
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