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I. INTRODUCTION 

The discrete Fourier transform is an important tool both in number 
theory and discrete signal processing. Although it can be introduced in 
several equivalent ways, depending upon the tradition of the field of study, 
we find it most convenient to regard it as an object of finite abelian group 
harmonic analysis. The discrete Fourier transform F(m) on m points will be 
given as a unitary operator on L'(Z/m). Let Z/m denote the integers 
mod m, and let L'(Z/m) be the space of complex-valued functions on the 
abelian group, Z/m. In Section II, exact definitions can be found. 

A classical number theory problem, related to quadratic reciprocity and 
first considered by Gauss, is the evaluation of the trace of F(m) and more 
generally, the description of the eigen-values and eigen-vectors of F(m). For 
a partial history of this problem see [l]. 

A primary concern of digital signal processing centers around computa- 
tion issues, the fast Fourier transform algorithms, beginning with [6] and the 
more recent Winograd-Fourier transform algorithms [9]. However, as was 
seen in [l] and [3], certain applied results can be developed from an abstract 
harmonic analysis point of view. Recent work by L. Auslander, E. Feig, and 
S. Winograd has extended the applicability of abstract techniques to both 
the understanding of old and the development of new tools for computing 
with the discrete Fourier transform. 

This work addresses itself to the problem of constructing an orthonormal 
basis of eigen-vectors for F(m). This problem has previously been consid- 
ered in [lo] and in the recent work of Dickinson and Steiglitz [7]. In the 
latter, applications of such a basis to signal processing are discussed. 

The method of attack proposed in this work is theoretical and has a 
number-theoretic flavor. Indeed, we will use the multiplicative characters 
mod m to generate eigen-vectors. (For the long history of this theory, which 
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touches upon Dirichlet L-series and cyclotomic field theory, the reader 
should consult [5]). To complete the picture, Fortran programs for imple- 
menting the results of this paper have been written and can be found in [2]. 

II. CHARACTER THEORY 

Denote by C” the multiplicative group of nonzero complex numbers, and 
by U, the subgroup of 6: X consisting of all m th roots of unity. A character 
of a finite abelian group A is a mapping x of A into 4=” satisfying 

x(a + b) = x(4x04 a,bEA. 

If m = O(A), the order of A, then x(A) c U, for every character x of A. 
For characters x, x’ of A, the mapping xx’ of A given by 

xx”(a) = xWx’(aL aEA, 

and the mapping x -* of A given by 

x-‘(a) = x(a)-’ =x(a), aEA 

are again characters of A. The set of all characters of A, under these 
operations, forms a group, denoted by ch(A’). The identity element of this 
group is the trivial character x0 defined by x0(a) = 1, for all a E A. We call 
ch(A) the dual of A. 

There are several elementary results from general character theory which 
will be required. Suppose A = A, @ A,, the direct sum of abelian groups 
A,, A,. Then, 

ch( A) s ch( A,) - ch( A*), (2.1) 

where the isomorphism is constructed as follows. Every a f A can be 
written uniquely a = (al, a2), where aI E A,, a2 E A,. Taking characters 
xl E ch(A,), xz E ch( AZ) the mapping 

x(4 = xlh)x2(aA a = (a,, a21 E A, 

is a character of A, and we can write x = (xi, x2), which defines the 
isomorphism (2.1). 

This result can be extended to any number of factors. Since any fmite 
abelian group A can be written as the direct sum of finite cyclic groups, 
A = @,!=ic/, it follows that ch( A) = IIj,,ch(~). 

The character group of a finite cyclic group C is simple to determine. 
Suppose m = O(C) and g generates C. Every character x of C is completely 
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determined by its value x(g) at g. Since x(g) E U,, we can describe the m 
distinct characters of C as follows: 

xi(g) = e2nij/m, 0 <j < m. 

The mapping jg + xj establishes an isomorphism between C and ch(C). 
In general, for any finite abelian group A, 

A = ch(A). (2.2) 

The following two formulas will be needed and will be asserted without 
proof. 

Consider a finite abelian group A of order h. Denote the identity element 
of A by 0 and the identity element of ch(A) by x0. 

For any character x of A, 

For any u E A, 

(2.4) 

For any positive integer m, denote the ring of integers mod m by Z(m) 
and its multiplicative group of units by U(m). Suppose 

I 

m = n ~71 
j=O 

is the prime decomposition of m into distinct primes pi, 0 5 j I 1, where we 
reserve p. for the even prime 2, whenever it occurs. 

By the Chinese remainder theorem, we have the short exact sequence of 
rings 

which leads to the isomorphism theorems 

Z(m) = jioZ( ~7) = ,fioch(Z(pT)) z ch(Z(m)) (2.5) 

I I 
U(m) s ,Do U( pj”/) s ,ooch( u( pp)) s ch(U(m)). (2.6) 
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The characters on Z(m) will be called additive characters mod m. Since 
Z(m) is a cyclic group of order m generated by 1, ch( Z(m)) is the cyclic 
group generated, for instance, by the additive character 9 defined by 

In general, U(m) is not a cyclic group. However, if p is an odd prime, 
U( p”) is a cyclic group of order cp( p”) = pa-‘( p - 1). U(2) and U(4) are 
also cyclic groups, but U(2”), a 2 3, is not cyclic, being the direct product 
of a group of order 2 and a cyclic group of order 2” - *. The characters on 
U(m) will be called multiplicative characters mod m. 

For an odd prime p, the discussion preceding (1.2) implies that ch( U( pa)) 
is the cyclic group of order +( p”) generated by the multiplicative character 
mod p”, x, given by 

x(a)=e , *~i(W(fO) 

where (Y is a generator of U( pa). 
Denote the set of all complex functions on a set S by L(S). A function 

f E L(Z) is said to have an integer m as a period if 

f(x + 4 = f(x) 

for all x E Z. Let L(m) denote the space of all functions on Z having m as 
a period. The set of all periods of a function f will be denoted by per( f ). It 
is clearly a subgroup of Z, and hence we can write 

per(f) = m(f). Z 

where m(f) is the smallest positive period of f, when per(f) is not the 
empty set. 

Let K(m) be the multiplicative subset of Z consisting of all u E Z such 
that (u, m), the greatest common divisor of u and m, equals one. Observe 
that 

K(m) + m = K(m), 

and we can generalize the notion of periodicity to functions on K(m), as 
follows. Take f E L( K( m)). Then, f has m as a period if 

f(u + 4 = f(u), u E K(m) 

We will denote the space of all functionsf E L( K(m)) having m as a period 
by UK(m), ml. 

Denote by p,,, the natural mapping of Z onto Z(m) and write p,(u) = 
u mod m. Take f E L(Z(m)). The function f. p, E L(Z) has m as a 
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period and thus lies in L(m). Indeed, the mapping 

f+f*P, 

induces an isomorphism from L( Z( m)) onto L(m). In all that follows we 
will identify L( Z(m)) and L(m), in this way, and write f. pm simply as f. In 
particular, 

ch(Z(m)) c L(m). 

The restriction of p,,, to K(m) maps K(m) onto U(m) and p,,, is multi- 
plicative. Thus, arguing as above, we can identify L( U( m)) and L( K( m), m). 
In particular 

ch(U(m)) c L(K(m), m). 

Moreover, if x E ch(U(m)) is viewed as a function in L(K(m), m), it 
satisfies the multiplicative condition 

x(4 = x(4x(4 u,uEK(m). 

Indeed, ch( U( m)) can be identified as the set of all functions on L( K( m), m) 
satisfying this multiplicative property. 

Finally, each f E L(K(m), m) can be extended to a function on Z, again 
denoted by f, by setting f equal to 0 outside of K(m). Thus, 

ch(U(m)) c L(m), 

and ch(U(m)) can be identified as the subset of all x E L(m) vanishing off 
of K(m) and satisfying the multiplicative condition on K(m). For the 
remainder of this section, we take m to be a power of a prime p. In 
Appendix A, the extension to arbitrary m wilI be considered. 

Let p be prime and consider 

L(P') =L(P% c 5 a. 

Clearly, 

ch(Z(p’)) = ch(Z(p”)), c I a. 

The characterization of ch(U( m)) as a subset of L(m), along with the 
observation that K(p) = K( p”), a 2 1, implies 

ch(u(zf)) = ch(U(p”)), c 2 a. 

The inclusion can also be defined as follows. The natural mapping of 
Z( p”) onto Z( p’), c I a, induces a short exact sequence 

1 + K, + u( p”) + U( p’) + 1, 
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where 

K, = {umodp”: u = lmodp’}. 

For each x E ch(U( p’)), x . 9, where n is the restriction of the natural 
mapping to U( pa), is a multiplicative character mod p”. The mapping 
x + x . n, determines the inclusion above. 

A p-primary character is a function x E L(Z) which, under the above 
identifications, is a multiplicative character mod p”, for some a 2 1. A 
p-primary character x is said to be definable mod p’ if x E ch(U( p’)), and 
is said to be primitive mod pb if m(x), the minimal period of x, ispb. If x is 
primitive mod pb, then x is definable mod p’ for all c 2 b. 

Let U, be the mth roots of unity. Then, if x is primitive mod pb, x 
defines, considered as an element in U( p”), c 2 b, a homomorphism ‘of 
U( p’) onto U,, m = <p(pb). It is easy to see that a x E ch(U(pf)) is 
definable mod p’ if and only if it factors through U( p’)), in the sense of the 
commutative diagram 

U(P”) + U(P’) 
1) 

\ 
L ’ m = +(P”). 

X 
u, 

Equivalently, x is definable mod p’ if and only if 

x(4 = 1, for all u = 1 mod p’. 

Supposep is an odd prime and (Y generates U( pb). Then, we can write the 
multiplicative characters mod pb as follows. For 0 < j < C#J( pb), define 

xi(a) = exp(2rii), m = +(p”), 

and extend xj to a multiplicative character mod pb. If xi is definable 
mod p’, c I b, then xi maps U(pb) into U,, m = $(p’) and it follows that 
P b- ’ divides j. Thus, xj is primitive mod pb if (j, p) = 1. There are 
pb- *(p - l)* primitive characters mod pb, since 

pb-yp - l)* = O(U(pb)) - o(u(pb-I)), 

where 0( ) denotes the number of elements of the set inside the brackets. 
The number of j’s satisfying 0 I j -C +( pb) and (j, p) = 1 is also pb-* 
(p - l)*. It follows that 

xj is a primitive character mod pb if and only if ( p, j) = 1. (2.7) 
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From (2.7) we have that x is primitive mod pb if and only if x maps 
U( pb) isomorphically onto U&hJ. Other consequences are that 

x j is definable mod p’ if and only if pb - ’ dividesj, and x j is 

primitive mod p’ if and only if ( pb, j) = pb- ‘. 
(2.8) 

A multiplicative character mod pb, x, will be called real if it takes on only 
real values. This is the case when x(a) = f 1. It follows that, except for the 
trivial character x0, there is a unique real multiplicative character mod p; 

namely xc, -1)/2. The character xCP _ 1),2 is called the Legendre symbol 
mod p. For b > 1, the primitive characters mod pb can never be real. 

Suppose nowp = 2. For b 2 3, U(2’) is not cyclic. The elements of U(2’) 
can be written uniquely as 

(-1)‘5”mod2’, 

where r = 0,l and 0 I s < 2b- 2. Hence U(2’) is the direct product of a 
cyclic group of order 2 and a cyclic group of order 2b - 2. 

Let x+, x _ be the characters on the subgroup { k l} of U(2’) defined by 
x+( - 1) = 1, x -( - 1) = - 1. On the subgroup (5”: 0 I s < 2b-2} of U(2b), 
the characters can be given according to the following scheme. For 0 I j < 
2b-2 set 9 

XjC5) = exp(2ni-&). 

The multiplicative characters mod2’ can now be given by the functions 
x+x,, x-xi, 0 s j -c 2b-2, where 

X+Xj((-1>‘5”) = Xjt5’> 

X-Xj((-l)‘5”) = X-(-1)rXj(5)“* 

Arguing as above, the primitive characters mod pb are given by x+x j, x _ x j, 
whereOIjs;2b-2andjisodd. 

Every multiplicative character mod U(2’) is real for b = 0,1,2,3. For 
b 2 4, there are no real primitive characters mod 2’. 

Let p be any prime and ‘k(pb) the set of primitive characters mod pb. 
The following result, while obvious, will have important consequences in the 
next section. 

LEMMA 2.1. f-Or a 2 2, 

ch(U(p”)) = ch(U(p)) u ‘I’($) u -0. u +(p”), 

where the factors of the union are pairwise disjoint. 
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If x is a multiplicative character mod p”, then X is again a multiplicative 
character mod p”. In particular, the set ‘k(pb) of primitive characters 
mod pb is mapped bijectively onto itself by the taking of conjugates. Thus, 
if p is an odd prime then we can write 

9(Pb) = %(Pb) u%(PbL 

where ‘k,( pb) 17 \k,o is empty if b 2 2 and 

\k, ( p) n \k, ( p ) = {real primitive character mod p } . 

For p = 2, and b 2 4, we have the decomposition 

\k(2b) = \k,(29 u‘k,, 

where the factors of the union are disjoint. The sets \k,( pb), ‘ko(2b) are not 
uniquely determined, but, in all that follows, we will assume that some fixed 
choice has been made. In Appendix A, we will consider in detail the analysis 
of the case b = 3. 

III. THE DISCRETE FOURIER TRANSFORM 

Denote by L’(m) the space L(m) along with the inner product defined 
by 

m-l 

Consider the basis ej, 0 I j < m, of L*(m) given by 

ej( u) = 
( 

1, u=jmodm 
0, otherwise ’ 

u E z, 

and the basis \kj, 0 2 j < m, of L*(m) given by 

qj( U) = e*ni(uj/m), u E z. 

It is easy to see that ei, 0 I j < m is an orthonormal basis and \ki, 
0 I j < m is an orthogonal basis, where 

Moreover, 

(ej,\k,) = exp(-2+(s)), 0 sj, k<m. (3.2) 
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The discrete Fourier transform of L’(m) is the linear mapping F(m) of 
L2( m) satisfying 

F(m)ej = m-‘/29j, OIjCm. (3.3) 

Because of (3.1), F(m) is a unitary operator and by (3.3), we have 

F(m)f= rne1l2 
a~u(U)~u 

(3.4) 

for any function f E L2( m). It follows from (3.2) that the matrix of F(m) 
relative to the basis ei, 0 I j < m, is given by 

m-"*[Wik]or;j,kimr 

where w = exp(2ai( jk/m)). 
There are several important, although easy to prove, properties of F(m) 

which we will list below for future reference. 

F(m)qj = m’/‘e,,, _ j 

F(m)‘e, = e,,,-j 

(3.6) 

(3.7) 
F(m)4 = I, the identity mapping on L2 ( m > 

F(m)-‘e, = m-“2\k,-j 

F(m)-‘f= rnd112 c f(o)\k,-,. (3.10) 
Osuim 

The analysis of F(m) lies at the heart of several important problems in 
both number theory and digital signal processing. Following Gauss, for 
x E ch(U( m)), set 

%(x3 ~1 = c x(u)%(u) = m’?F(m)x)(u). 
O~tJ-=rn 

We call G&q, U) the Gauss sum of x at u, and 

G,(x) = G,,,(xJ) 

the Gauss sum of x. Classically, such sums were introduced by Gauss 
to study reciprocity laws, and were further studied by Kronecker and 
Dirichlet, especially in connection with Dirichlet L-series and cyclotomic 
fields. For an account of recent activity in this direction see [5]. 

We will see how the theory of multiplicative characters mod m provides 
an orthonorrnal basis of L2(m) relative to which F(m) is diagonal. 
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Let p be a prime. 

LEMMA 3.1. For x E ch(U(p”)), 

FZ( P”)X = x(-1)x. 

Proof: By (3.7), (F2( p”)x)(u) = x(-u) = x(-1)x(u) from the multi- 
plicativity of x, and the lemma follows. 

This simple observation lies at the heart of our analysis of F(p”). 
Suppose x E U( p”), and V(x) is the subspace of L2( p”) spanned by x and 
F(p”)x. By Lemma 3.1, V(x) is invariant under the action of F(p”). If 
dim V(x) = 1, then x is an eigen-vector for F( p”). Otherwise, dim V(x) = 2, 
and relative to the basis x,F(p”)x, the matrix of the restriction F(p”) to 
V(x) has the form 

[f x(-J. (3.11) 

When x(-l) = 1, then 

x + F( P”)x, x - F(P‘?x (3.12) 

is a diagonalizing basis for the restriction of F( p”) to V(x), the eigenvalues 
being +l, -1, respectively. If x(-l) = -1, then 

x + iF(p”)x, x - iF(p)x, (3.13) 

is a diagonalizing basis, the eigenvalues being + i, - i, respectively. 
Supposing, further, that x and F( p”)x are orthogonal, then the vectors 

(3.12) and the vectors (3.13) are orthogonal. Also, their norms are all 
WG7T 

The primep will be taken odd in the following discussion. The even prime 
2 case will be considered in Appendix A. As a subset of L2( p), (2.3) implies 
that ch(U( p)) is orthogonal. Each function in ch(U(p)) vanishes at u = 
Omod p. It follows that the set 

{eel ” CW(P)) (3.14) 

is an orthogonal basis of L2( p). If x E ch(U( p)) x f x0, x0 the trivial 
character, then 

(F(P)x)@) = P-~‘~ c x(u) = 0. 
oso<p 

For u s Omod p, choose u-l such that uu-’ = 1 mod p. 
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(F(P)x)~) = p-l’* c x(u>+,b)~ 
OlOCP 

We can replace v by u -‘u and write 

(F(P)x)@) = p-l’* c XW’UN, - LW 
05iucp 

= P -“20~~<px(~-1~x(~)~,(1) 

= P-‘G,(x)X(~). 

The following lemma has been proved. 

LEMMA 3.2. For x E ch(U( p)), x # x0 

F( P>X = P-“*G,(x)% 

The primitive characters mod p are simply the nontrivial multiplicative 
characters mod p. Recall \k,( p) denotes a set of primitive characters mod p 
such that 

WP) = WP) u qo(P)Y 

where the Legendre symbol mod p, denoted by xr, is the common character to 
both terms of the union. 

To each x E \k,( p), let V(x) denote the subspace spanned by x, F( p)x. 
The following is now obvious. 

LEMMA 3.3. For x E \k,(p), 

(i) If x = xr, then V(x) is l-dimensional, invariant under the action of 
F(p), and the matrix of F(p), restricted to V(x), is given by 

P-“*[G,(x,)]. 

(ii) If x # xr, then V(x) is 2-dimensional, invariant under the action of 
F(p), x, F( p)x is an orthogonal basis of V(x), and the matrix of F( p)jV(‘(x) 
relative to the basis x, F( p )x is given by 

Moreouer, 

v= @CV(x), x running ouer \ko( p) 

is an orthogonal direct sum. 
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It follows that the functions 

(P - W”*xr;(p - I)-“*x,(P - I)-“*F(P)x, x,+x E %,(p), 

(3.15) 

determine an orthonormal basis for V, and that the matrix of F(p)lV 
relative to this basis (3.15) is given by 

M(P) = P-“‘*[c,(x,)] @CM(x), x~~ngover~o(p),xf~o. 

(3.16) 

The functions e,, (p - 1) -l/*x0 complete (3.15) to an orthonormal basis, 
denoted by p. Direct evaluation gives the next lemma. 

LEMMA 3.4. F(p)e, = p-‘/*e, + p-‘/*(p - 1)‘i2(p - 1)-‘/*x0 

F( p)(( p - l)-“*x0) = p-l/*( p - l)l’*e, - p-l/*( p - 1)-1’2xo. 

Lemmas 3.4 and 3.5 imply our first main result. 

THEOREM 3.5. The matrix of F(p) relative to the orthonormal basis /I is 
given by 

1 
P 

-l/2 

[ 
(p - l)i/* 

(P - V2 @ M(p) 

-1 1 (3.17) 

The problem of finding an orthonormal basis diagonalizing F(p) is 
equivalent to the finding of unitary matrices X, X(x) such that 

X 
[ 

1 (P - 1Y2 x-’ 

(p - 1)“’ -1 1 ’ 
and 

x(XMX)x(X)-l~ xr f x E tk,(P)? 

are diagonal. 
By (3.12) and (3.13) we already have that 

x(x)=&[: -:I9 x(-l)=L 

x(x) = +[ f -:I, x(-l) = -1. 
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A straightforward verification shows we can take 

x- p,4 
l/2 

(p1’2 - 1) 

[ 

(P1’2 + 1) 
l/2 

- ($12 - 1)1/2 1 ($/2 + ql/2 . 

The case m = 2 is described in Appendix A. We will now consider the 
prime power case. In the following discussion, we take m = p”, p an odd 
prime and a 2 2. However, everything that is said holds, without change, 
for the case m = 2’, b 2 4. The cases m = 22 and m = 23, described in 
Appendix A, are special in that all multiplicative characters mod22 and 
mod 23 are real and in particular, this is true for primitive characters mod 22 
and mod23. 

The case m = p”, a 2 2, will now be considered. By Lemma 2.1, we can 
write 

ch(U(p”)) = ch(U(p)) u \k(p2) u e-e u \k(p”). (3.18) 

We will study the action of F(p”) on each of the terms of the union in 
(3.18). It is convenient to begin with the following definition: 

For c I a and f E L2( p’), let rC( f) be the function in L2( p”) defined by 

7q(f)(u) = (;(“)9 ~t;e~;=yo’ u<pc, 0 I24 <pa. (3.19) 
, 

The mapping 

7rc: L2( p”) + L2( p”), a > c, 

is clearly an isometry, and rra = I, the identity mapping. Take 

x E ch(Qf)) 

and consider 

BydefinitionIr,(x)vanishesoffofthesetu = up”-cmodp”and(u,p)= 1. 
Thus, if b < c I a, then 

nb(xl) . “,(x2) = o 

whenever x1 E ch(U(pb)) and xz E ch(U( p’)). It follows from this discus- 
sion, along with (2.3), that the subset of L2( p”), 

{e 03 x0, dxo)) ls~<aw( P’) u Ir,(W PC>)) u WP”), (3.20) 
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is orthogonal. The reason for writing (3.20) in this way will soon become 
apparent. 

THEOREM 3.6. For y, E ch(U( pa)), if x is primitive mod p”, then 

F(P’)x = P(~-~‘)‘~%(x)%(x), m = p’, (3.21) 

where on the right-hand side, we are considering x E L( p’). 

Proof. Consider 

(F(p”)x)(u) = p-“i2 C x(w)e2”i(UW/Pn), o I u < pa, 
O<w<p” 

and write w = r + sp’, 0 I r < p’, 0 2 s < p” - ‘. Since x is periodic mod pc, 
we have 

For the sum on the right vanishes unless u = up”- ‘, 0 I u -C p’, in which 
case it equals p” - ‘. 

Suppose u = up” - ‘, 0 I u < p’. Then, 

(F( pa)x)( up”-C) = p(“-2C)/2 c X(r)e2”i(ar/Pc), 
Osr<pC 

and we are left with the need to compute 

c X(r)e2”‘wP=), 0 2 v < PC, 
Osrcp’ 

where x is a primitive character mod p’. It is well known, and for complete- 
ness we will prove below, that this sum equals G&)X(V) from which the 
theorem follows. 

If (u, p) = 1, we can argue as in Lemma 3.2 to prove the result for such 
v’s. Assume, now, that v = v’p, 0 I v’ < pc-‘. We show that 

Suppose S # 0. We will show that if 6 # 0 and w = 1 mod pcel, then 
x(w) = 1. This would imply x is definable mod pCW1, a contradiction. 
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Choose w - ’ so that w - ’ w = 1 mod p’. Then, since x is multiplicative, 

Zni(wu’r/p’-‘) = C x( w -lr)e2ai(u’r/pc-*) = x ( w)6. 

O<r-CpC 

Thus x(w) = 1, if 6 # 0. The theorem is proved. 
Theorem 3.6 implies that the set of functions 

x~(P”)x (3.22) 

as x runs, in some order, over the set u l<c<a*,,(pc) u q&p”) is an 
orthogonal basis of a ( p” - pa - 2 - 2)-dimensional subspace in L( p”). Let 
V(x) be the subspace spanned by x, F(p”)x. Summarizing, we have the 
following. 

THEOREM 3.7. The matrix of F( p’)lV(x) relutiue to the orthogonal basis 
x, F( p”)x is given by 

Moreover, 

V=C@ v(x), x as in (3.22), 

is an orthogonal direct sum and dim V = p” - p” - 2 - 2. 
The matrix of F( p”)(Y relative to the orthonormal basis 

+(P”)-1’2xY dP”) -1’2F(~a)~, 

x as in (3.22) is given by 

@ W(x). 
X 

(3.23) 

The construction of an orthonormal basis of Y diagonalizing F( p”)JV 
proceeds exactly as before in the discussion of statements (3.12) and (3.31). 

Consider the trivial character x0 and F( p”)xO, and let W be their linear 
span. The next lemma immediately follows from a direct calculation. 

LEMMA 3.8. F(p”)xO = ~(~-~)/~((p - l)e, - q(x,,)). 
It follows that the set of functions 

G(P”)-1’2x9 (PCP”) -1’2F( p”)x (3.24) 

as x runs, in some order, over the set ch(U( p” -I)) U ‘k,( p”) is an orthonor- 
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mal basis of W $ I/ and that relative to the basis, the matrix of F( p”) 1W @ V 
is given by 

(3.25) 

x as in (3.24). 

THEOREM 3.9. Let 

+#d P’)-~‘*(x + F( ~“1x1, x(-l) = 1 

u(x) = 
+#4 P’)-~‘*(x + iF( P”)x), x(-l) = -1 

/ 

$c( p‘T1’*(x - F(P”)x), x(-l) = 1 

w(x) = 
+( p‘T1’*(x - iF( P”)x), x(-l) = -1. 

Then, the set of functions 

u(x), w(x)9 (3.26) 

where x runs as in (3.24), is an orthonormal basis of W @ V diagonalizing the 
restriction of F( p” ) to W $ V. 

Observe that dim( W $ V) = p” - p”- *. We still need to complete the 
basis given either by (3.24) or (3.26) to an orthonormal basis of L*(p’). 
Specifically, we will establish a procedure for doing so. Consider the subsets 
E(u), 0 I u c pa-* defined by 

E(u) = (up + up+ 0 I u < p}. 

Let f, E I!,( p”) be defined by 

fX4 = ( 
1, WEE(U) 
0, weE(u)’ 

0 < w c p”. 

The following result is an immediate consequence of this definition. 

LEMMA 3.10. The set of functions 

f U) 0 I u <pa-*, (3.27) 

is an orthogonal subset of L( p”), and span a p” - ’ dimensional subspace Y. 
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Moreover, we have the orthogonal direct sum 

L2(p”) = Y e(wcr3 0 

THEOREM 3.11. Y is invariant under the action of F( p”) and relative to the 
basis (3.27) of Y, the matrix of F( p”) IY is given by 

p -(a - a/2 [ 
e2ni(uo/P”-2) 1 o<u,u<p’-*’ 

In other words, F( p”)JY = F( pue2). 

Proof. Take 0 I u < pup2 and 0 I w -C p”. Then, by definition, 

(F( p”( f,)( w) = p-a/2 c e2ri((@P+vP”-‘)/P”)w 
osw<p 

= P 
- a/2e2ni(uw/p”-‘) 

c * 
e2ni(ow/p) 

osu<p 

If (w, p) = 1, then the sum on the right vanishes. Suppose w E E(r) and 
we write w = rp + 2p”-‘, 0 < r < pap2, 0 I s -C p. Then, 

(F( p~)fu)(rp + spa-l) = pl-“/2e2ni(ur/Pa’-2), 

which implies the theorem. 
As an example, consider the case a = 2. Adjoiningp-’ times the function 

e, + rl(xo) to be orthonormal set (3.24) gives an orthonormal basis of 
L2( p2) relative to which the matrix of F( p2) has the form 

PI @ CM(X)* 
X 

Theorem 3.11 sets up a procedure for the complete analysis of F( p”). We 
will describe the underlying algebra in more detail. 

If T c S, then L(T) can be considered as a subspace of L(S) by 
extending each function on T to all of S, the extension taking the value 0 off 
of T. In particular, 

L2( pZ/p”Z) c L2( p”). 

The natural mapping 

pz/paz + pz/pa-‘z S z( pa-‘) 

induces, by composition, a mapping 

L2( pa-‘) --$ L2( pZ/p”Z), 
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and hence, a monomorphism 

t”(p”-2) --) P(p”). 

The image of this last isomorphism, L*( p”), is the space Y of Theorem 
3.11, which can now be interpreted as the commutativity of the diagram 

P( pa-‘) --, L2(P”) 
F(p-*) J 4 F(P“). 

P( pa-*) --) L2(P”) 

For odd LZ, the complete procedure for analysing F( p”) can be described by 
the commuting diagram 

L*(P) + qpy + 0.. + qpq 

J F(P) J F( P’) J F(P”). 

L*(P) + P(p3) + *.. + P(pa) 

In Appendix C we will explicitly write down the orthonormal matrix 
diagonalizing F( p ). 

APPENDIX A 

In this appendix, we will consider the analysis of F(m) for those m not 
covered in Section III. 

First let m = 2&. If b 2 4 then, as we have said, the results of Section III 
hold exactly as given for m = 2b. It remains to consider the cases m = 2’ 
where b = 1,2,3. 

For m = 2, we can take e,, e, = x0 as an orthogonal basis of L*(2), and 
relative to this basis the matrix of F(2) is given by 

$: -:- [ 1 
This matrix is orthogonal and it is easy to find an orthonormal basis 
diagonalizing F(2). 

For m = 4, O(U(4)) = 2, and the multiplicative characters mod4 are 
given by 

x0(3) = 1, 

x1(3) = -1, 

where 3 generates U(4). It is easy to see that 
F(4)xo = e. - e,, 

F(4)x1 = ix13 
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and that 

xoT(xo), xl, f 

define an orthogonal basis of L*(4), where 

f(u) = ( 1, ueven 
0, uodd 

and relative to this basis the matrix of F(4) is given by 

[ I ; ; e[i] @[l]. 

Again, an orthonormal diagonalizing basis can be easily found. 
Suppose, now, m = 23 = 8. Then, U(8) = 4 and the multiplicative char- 

acter mods are given by 

x0(-1) = x0(5) = 1 

x1(-1) = 1 = -x1(5) 

x*c-1) = -1 = x2(5) 

x3(-1) = -1 = -x3(5), 

where - 1,5 generate U(8). It is easy to see that 

F(xd = -$% - e4) 

F(X1) = Xl 

F(x2) = ix2 

F(x3) = -$e, - 4, 

and hence the set of vectors 

x03(x0), xl> x29 x3Ttx3) 

are orthogonal. Let f, g E L*(S) be defined by 

i 

1, u = Omod4 
d4 = 0, uodd . 

-1, u = 2mod4 
Then, F(8)f = (fi/2)(f + g) and F(8)g = (fi/2)(f - g). The functions 

xo,F(xo), xl, x2, x39F(x3)7 fv g 
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determine an orthogonal basis for L’(8) relative to which the matrix of F(8) 
is given by 

[y ;] WI WI +[; -;I e$[: -:I. 

Observe that xi, x2 are primitive characters mod 8, but since they take on 
only real values they are eigenvectors and do not determine 2 X 2 blocks as 
is the case when m = pa, p odd prime, or m = 2’, b 2 4. Otherwise, this 
case is similar to the discussion of Section III. 

Suppose, now, that 

m= n mj, 
lsj<r 

where mj = pi”‘, pj, 1 I j < r, and distinct primes and aj > 1. To analyze 
F(m) we will use the tensor product. By (2.5), 

‘trn) z l~~JI<rz(mjl- 

Let 4 E L2( mj), 1 < j < r, and define f E L2( m) by setting 

fW = l~<r~wY 24 E z. 

The mapping 

(flY,f,) -f 

is bilinear in each variable, and hence x extends to a linear homeomorphism 

fl @ 8.6 + f 

of @ isU<,L2(mj) into L2( m). It is easy to show that this mapping is a 
linear isomorphism, and we have 

Set Mj = m/mj, 1 < j < r. Then since the Mj’s are pair-wise relatively 
prime there exists integers cj, 1 I j I r such that 

c cjh$= 1. 
lljsr 

THEOREM A.l. For f a Bjfi, 4 E L2(mj), 1 Ii 5 r, 
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Proof; Observe that as u runs over Z(m), the r-tuple (u, . . . , u) runs over 
njZ( mj), and 

v = &Mjcj. 
i 

Thus, 

(F(m)f)(u) = m-l/’ c fi(u)e2ni(u”/m) 
OSUCtPl, 

= mp112y o,F+m fi(u)e2”i(u”c~/m~) 

= 7 (F(mjlf,)(ui,). 

which proves the theorem. 
For each j, 1 s j I m, let 

fj,k,, 0 s kj < mj (A-1) 

denote an orthonormal basis of L2(mj) diagonalizing F(mj). Set 

fk= @fi,k,’ k = (kl,...,k,). 
j 

THEOREM A.2. The set of functions 

(fk, k E Ilz(mj)) 
j 

dejnes an orthonormal basis of L*( m) diagonalizing F(m). 

Proof. It is a standard result that this set of functions forms a basis of 
L*(m). Consider ( fk, fkr), which by definition is given by 

This result easily implies that the set of functions fk is an orthonormal basis. 
Applying Theorem A.1 gives 

F(m)f, = afky 
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where a 
of F(m), 

= II,a,, k, and F(mj)h, ki = aj, ,&, k,. Thus, the fk are eigenvectors 
and the theorem is proved. 

Summarizing, we apply the results of Section III to find orthonormal 
basis diagonalizing F( p”), p a prime, and apply Theorem A.2 to extend this 
result to arbitrary F(m). 

We have defined the notion of primitive for p-primary characters only. 
However (see [4]), this notion can be defined for arbitrary m. We will use 
the tensor product to do so and indicate how the theory of multiplicative 
characters mod m could be directly applied to the analysis of F(m). 

As asserted in (2.1) 

ch(U(m)) = nch(U(mj)). 
i 

We will consider this isomorphism in greater detail. Suppose x is a multi- 
plicative character mod m. Then, we will find x j z ch( V( mj)) such that 

Take u E K( mj) = { u E Z: (u, mj) = l}. The Chinese remainder theo- 
rem implies that there exists uj E Z such that 

i 

2.4 

‘j= 1 

mod mj 

modm,, k#j,lsk<r. 

Then 

Define x j E ch( U( mj)) by 

Xjt”) = Xjt”j) = Xt”j)9 1Ijlr. 

It easily follows that 

Xt”) = IlXj(“)9 t.4 E K(m), 

and hence 

A multiplicative character x mod m will be called primitive if writing 
x = ajxj we have that each xj is primitive mod mj. Applying Theorem A.2 
we have the next result. 



78 R. TOLIMIERI 

THEOREM A.3. Let x P Bjjxj E ch(U(m)). Then, 

F(m)X = (vXj( M,)) 7 F(mj)Xj. 

Thus, the results of Section III concerning the action of F(mj), mj = pp 
on multiplicative characters mod mj can be directly extended to results 
about F(m) acting on multiplicative characters mod m. 

APPENDIX B 

In this appendix, we will collect some elementary number theoretic results 
which are almost immediate consequences of the theory developed in the 
main body of this work. 

The first such results come about by applying Theorem 3.6, along with the 
fact that F( p”) is a unitary operator. 

LEMMA B.l. Let x be a primitive character mod m, m = p”. 

1. IG,,,(x)l = ml/* 

2. G,(X) = x(-W,(x) . 
Proof. By Theorem 3.6, 

F(m)x = m -“‘G,(x)~. 

Since F(m) is 

(x7 x> = (F(m)x,F(m)x) = m-11Gm(x)12(X, X), 

which proves 1. 
To prove 2, we apply Lemma 3.1. Thus, 

F(m)*x = x(-1)x = m-1/2G,(x)F(m)X = m-‘G,(x)G,,,(~)x, 

for which it follows that 

x(-l) = m-lGm(x)%(X). 

Multiplying both sides by G,,,(x) and using 1, gives result 2. 
The next result depends upon Theorem 3.11 and (3.25). 

LEMMA B.2. 

tr(F(P”)) = ( ;;(F(p)), ; zt 
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Proof. For a r 2, we can write 

F(P”) g f’( P”-‘) @ CM(x), 
X 

and since tr( M(X)) = 0, the lemma follows. 
We can, also, write 

tr(F(p”)) = tr(F(pae2)), a 2 2. 

The same argument, using (3.24) and 

det M(x) = -x(-l), 

will give results on det F( P”). First, a few simple calculations will be listed. 
Let m = p”. 

6) x&(m))x(-l) = (3 
(ii) xpqox(-l) = 

i 

p = lmod4 
p = 3mod4 

(iii) a > 1. 

Observe that ch(U(m))U\k,(p”) has pam2((p - 1) + (p - lj2/2 ele- 
ments, which is even when CI > 1. 

LEMMA B.3. 

detF( p) = 
i 

(-1) (P+1)‘4tr(F(p)) p = 3mod4 

(- 1)(P-1)‘4tr(F( p)) p = 1 mod4. 

LEMMA B.4. 

detF(p”) = detF(puw2), a> 1. 

Proot By F( p”) G F( pa- *) @ CM(x), it follows that det F( p”) = 
det F( p” - *). l-l det M(X), and from Il det M(X) = 1 by (1) and (III) the 
lemma follows. 

Lemma B.3 is an important step in Schur’s evaluation of tr F( p), for once 
we know (nontrivially) that 

&F(p) = jP(P-1)/2, 
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we have 

R. TOLIMIERI 

trF(p) = 1, p=l 
. 
1, p=3 

mod 4 
mod4’ 

Using the tensor product observations of Appendix A, we could extend 
these results to the arbitrary m case. 

APPENDIX C 

The matrix of the discrete Fourier transform F(m), relative to the basis 
ej,O<j<m,isgivenby 

F(m) = m -1/2[Wik]O<jj,k<m, 

where w = exp(2si(l/m)). In the appendix, we will explicitly write down 
an orthonormal matrix X(m) diagonal&g F(m), i.e., Z(m)F(m)Z(m) -’ 
is a diagonal matrix, in case m = p, an odd prime or m = 2’. 

When m = p, an odd prime, we begin by choosing a generator (Y of U(p), 
the multiplicative group of units of Z/p. Any function on h/p can be 
viewed as a p-tuple of complex numbers, taken as a column, 

F= (F(O),F(l),...,F(p - l))‘, 

and we will do so in what follows. Thus, the matrix p describing the change 
of basis from the basis ej, 0 I j -C p to the basish, 0 I j < p, where 

f. = eo9 fi = eaJ-l, lSj<p, 

is given by 

P = [fOfP..fp-I]. 

Recall that the matrix of F(p) relative to the basis fi, 0 I j -C p is given by 
PF(p)P-‘. 

The multiplicative characters mod p have a simple description in terms of 
the basisfi; 0 I j < p. Let xi, 0 I j -C p - 1, be the multiplicative character 
mod p defined by setting 

xj(a) = exp 2ar ( .&)=wj, 
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where w = exp(2ai(l/( p - 1))). A straightforward calculation shows 

p-2 

xj = c Wkifk+l, Olj<p-1. 
k=O 

Thus, the matrix describing the change of basis from fi, 0 I j < p to the 
basis 

eoh - 1) -1’2xo,(p - l)-l’*xl,...,(p - l)-“*xp~, (C.1) 

is given by 

F*(p - 1) = ’ 1 F(P-~)] * 

Consider, the rearrangement of the basis (C.l), 

eo9b - 1) +*x0, (p - l)-l’*xr, (p - l)-“‘xj,( p - l)+*xpP1- j, 

F-2) 

where 1 2 j < r, r = (p - 1)/2. Let Q be the matrix describing the change 
of basis from (C.l) to (C.2). Then, 

Q = [eoe,e,+,e,e,-,...e,-,e,_(,_g]. 

Recall that F(p)xj = p - ‘/*G( x .)xP _ j _ 1, and consider the basis J 

eoh - 1) -1’2x0,(p - l)-“*x,,(p - I)-“*x,,(p - l)-“*F(p)x,, 

(C.3) 

where 1 I j < r. The matrix 

describes the change of basis in going from (C.2) to (C.3). 
Let 

Y(p) = PF”( p - 1)QR. 
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Clearly, Y(p) describes the change of basis from the basis ei, 0 5 j < p, to 
the basis (C.3). By Theorem 3.5, the matrix 

is given by 

p-l$p ;l)l,2 lp 1:‘” j @P-1/2G(X,) *;$M((-‘)‘), 

where M(( - l)i) = 

Let 

sincexj(-1) = (-l)j. 

Xtp) = 2-l/2p-i/4 
(PI/2 + 1)1’2 ( pl/2 - l)l/2 

( pl/2 - q’/’ 
I 

_ ( p1/2 + I)‘/” I ’ 

x(1) = 2-1’2 ; _; , 
[ I 

x(1) = 2-1’2 
I-: -3 

and 

r-l 

NP> = X(P) ml @ c x(c-l>j). 
j=l 

Then, by the comments following Theorem 3.5, the matrix 

Z(P) = U(P) * Y(P) 

is orthonormal and diagonalizes F(p). 
We will now study the case when m = 2’. The cases b = 1,2,3, which we 

studied in Appendix A, can be done directly and we will simply write down 
the orthonormal matrix diagonalizing J(2)b). They are as follows 

z(2) = s 
[ 

_;+ 1 a-1-1 1 
I 

) ,y = p/y2 - 2-1/y/2 

0 1 01 

Z(8) = (x(1) $ [l] e[l] @ X(-l) 8 Z(2)) - Y(8), 
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where 

Y(8) = 

-0 10 0 0 01 1 
10 11 100 0 
0 0 0 0 0 i 1 -1 
1 0 -1 1 -1 0 0 0 
0 -1 0 0 0 01 1 
1 0 -1 -1 1 0 0 0 
0 0 0 0 0 -i 1 -1 

-1 0 1 -1 -1 0 0 0, 

Consider, now, m = 2’, b > 3. Let 

fi = e2j, OIjCy=n,, 

g2j = e5jT Osj-cy=n,, 

g2j = e-5JV Osj<y. 

Then, the functions 

define a basis of L2(m), which we will also denote by hi, 0 I j -c m. The 
matrix P describing the change of basis from ej, 0 s j < m to the basis 
(C.4) is given by 

P= [h,h,...h,-,]. 

We will write the multiplicative characters mod m in the following way. 
Let vi, 0 I j < n, = m/2 be the multiplicative character mod m determined 
by the conditions 

v2j(5) = vzj+J5) = wj 

v2j(-l) = 1 and v2j+l(-1) = -l, 

where 0 I j < n2 = m/4. Then, 

n,+n,-2 

v2j = jF, wi(hj + hj+l) 

n,+n,-2 

‘2j+l = jFr, wi(hj + hj+l)e 
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q.= F(2) Q 

on, on, Di = q. j ’ [ 1 
where On, is the rr-tuple of zeroes. 

Order the subset of multiplicative characters mod m according to the 
following scheme 

‘2j’ v2j+l’ (c-5) 

where j runs first over the odd integers from 1 to m/8 - 1 and then over the 
even integers from 0 to m/4 - 2, inclusively. The matrix describing the 
ordered set of functions in terms of the basic (C.4) is given by 

[ DID,... Dm,8-1DOD2...Dm/4-2]. 

The matrix of F(m) relative to basis (3.4) is given by PF(m)P -l. Thus, 
the matrix describing the ordered set of functions beginning with (C.5) and 
followed by the ordered set 

(m)v2j,F(m)U2j+l, (C-6) 

the j’s ordered as before, is given by 

9 = [ DPJ(m)P-‘D]. 

Let fu E L2( m) be defined by 

fu = e2u + e2u+n*3 0 I u c n2, 

and consider the set of functions 

“1 -1/2v2j, n;‘/2v2j+l 

Nl-1/2F(m)v2j, n;‘/2F(m)v2j. cc.71 

fo9 fi? . . ..fn*-1. 

By (3.24) and Lemma 3.10, (C.7) is an orthonormal basis of L2(m). The 
matrix describing the basis in terms of the basis ej, 0 I j < m, is given by 

[~~fofi...f”*-I]. 
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Writing (C.7), in the order given below, 

% -1’2v2j, II, 1’2F( m) vzj, n1 -1’2v2j+ 1) n, 1’2F(m)v2j+lfo, fl ?Yf**-l, 

(C.8) 

we have an orthonormal basis, relative to which the matrix of F(m) has the 
form 

3n*- 1 

c @ M((-1)‘) @ J(n,). (C.9) 
j=O 

The matrix describing (C.8) in terms of (C.7) is given by 

Q 0 [ 1 0 In, = Q#T 
where 

Q=[ e0enplen,+l...en,-le2~~-l I 
I 

n3 = (3/8)m 

and I,,, is the n2 X n2 identity matrix. 
Let 

Y(m) = [PaQfofvf.,-11. 

Then 

Y(m)J(m)Y(m)-’ 

is given by (C.9). Thus, 

3n*- 1 

Z(m) = C 63 X((-1)j) @Z(n,) 
j=O 

is an orthonormal matrix diagonalizing .I( m). 

Note added in proof. A related paper, “On the &en-vectors of Schur’s Matrix” by P. 
Morton, J. of Number Theory, 12 (1980), 122-127, has recently come to the author’s attention. 
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