
Journal of King Saud University – Computer and Information Sciences (2014) 26, 111–119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
A speedup technique for dynamic graphs using

partitioning strategy and multithreaded approach
R. Kalpana a,*, P. Thambidurai b
a Dept. of CSE, Pondicherry Engineering College, Puducherry, India
b Dept. of CSE, Perunthalaivar Kamarajar Institute of Engg. & Tech, Karaikal, Puducherry, India
Received 30 October 2012; revised 18 May 2013; accepted 22 June 2013
Available online 1 July 2013
*

E

Pe

13

ht
KEYWORDS

Dijkstra’s algorithm;

Speedup techniques;

Dynamic graphs;

Parallel programming
Corresponding author. Tel.

-mail address: rkalpana@pe

er review under responsibilit

Production an

19-1578 ª 2013 Production

tp://dx.doi.org/10.1016/j.jksu
: +91 41

c.edu (R

y of King

d hostin

and hosti

ci.2013.0
Abstract There are many pre-processing-based speedup techniques for shortest path problems that

are available in the literature. These techniques have an increased demand because of large datasets

in such applications such as roadmaps, web search engines and mobile data sets. Pre-processing for

the Time-Dependent Shortest Path Problem is still a demanding process that involves graph or net-

work partitioning strategy. Efficient pre-processing of graphs or networks reduces the shortest path

computation time while parallelizing the pre-processing phase improves the speedup of the system.

In this paper, a speedup technique called Recursive Spectral Bisection (RSB) combined with the

Elliptic Convolution of the shortest path method is proposed for dynamic Time-Dependent net-

works. The same method has been parallelized, and the results are tested on three types of graphs.

It is observed that the Time-Dependent RSB combined with the Elliptic Convolution of the shortest

path method has no update time, and the Query Performance Loss (QPL) is reduced in planar and

road networks compared to random networks. In road networks, the proposed method achieves an

average speedup in a QPL of 140. The use of the Parallel speedup technique results in an average

speedup in a QPL of more than 1 in the planar and road networks.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

The computation of shortest paths from a given source to a

specific destination has the largest scope in the present scenario
of real-world applications. The most famous applications are
route planning systems for cars, bikes and hikers and timetable
3 2655282.

. Kalpana).

Saud University.

g by Elsevier

ng by Elsevier B.V. on behalf of K

6.002
information systems for scheduled vehicles, such as trains and
buses. If such a system is realized as a central server, it must

answer a large number of customer queries in which the cus-
tomers ask for their best itineraries. Users of such a system
continuously enter requests for finding their ‘‘best’’ connec-

tions. In addition, similar queries appear as sub-problems in
line planning, timetable generation, tour planning, logistics,
and traffic simulations. The algorithmic core problem that
underlies the above scenario is a special case of the single-

source shortest path problem on a given directed graph with
non-negative edge lengths. The shortest path queries for such
applications were originally solved by Dijkstra, Bellman-Ford,

and Johnson. Dijkstra’s algorithm implemented with Fibo-
nacci heaps is still the fastest known algorithm for the general
ing Saud University.

https://core.ac.uk/display/82599947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rkalpana@pec.edu
http://dx.doi.org/10.1016/j.jksuci.2013.06.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.06.002

112 R. Kalpana, P. Thambidurai
case of arbitrary nonnegative edge lengths, taking
O(m + n logn) worst-case time. In real-world applications, a
layout of the graph is given as an input, and the specific graphs

to be considered are notably large. Moreover, the number of
queries to be processed within a short time is also notably
large. This problem motivates the use of speedup techniques

for shortest-path computations (Wagner and Willhalm, 2007).
The main focus of the speedup techniques is to reduce the

runtime of the on-line queries (Wagner and Willhalm, 2007).

The speedup techniques for the Dijkstra’s algorithm can re-
duce the running time and often result in a sub-linear running
time. They crucially depend on the fact that the Dijkstra’s
algorithm is label setting and that it can be terminated when

the destination node is determined. Therefore, the algorithm
does not necessarily search the whole graph. Finding the short-
est path in a dynamic network is the hottest topic of interest

for real-time applications such as vehicle routing, route plan-
ning, web searching, and applications in which the edge weight
of the graph changes randomly based on the parameters that

are being considered. In dynamic road networks, there is al-
ways a need for such speedup techniques. In addition, dynamic
road networks are of interest from an industrial point of view,

and they are usually more accurate models than static net-
works. Many of these speedup techniques are built on Dijk-
stra’s algorithm and heuristically improve their performance
while maintaining their correctness, both in static and dynamic

environments.
The focus is now moving to provide such speedup tech-

niques for the Time-Dependent Shortest Path Problem

(TDSPP), which constitutes the SPP applied on a Time-Depen-
dent network. The Time-Dependent Shortest Path Problem
(TDSPP) is a dynamic graph problem that is NP-hard and

non-linear (Li et al., 2005).
In this paper, a new speedup technique is proposed that

uses a new partitioning strategy. In addition, this new speedup

technique will eliminate the update time and improve the
Query Performance Loss (QPL). A Recursive Spectral Bisec-
tion partitioning strategy is incorporated in a pre-processing
phase, and the Elliptic Convolution of the shortest path meth-

od is incorporated in the shortest path computation phase.
This new technique is parallelized using parallel programming
constructs, and a new speedup technique is proposed. The re-

sults of these new techniques are tested in random, planar and
road networks.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly explains the studies that are related to dynamic
graph speedup techniques. Section 3 describes the Time-
Dependent Shortest Path Problem and the techniques that
are used for the shortest path computation. Section 4 provides

a detailed experimental evaluation of the proposed new tech-
niques and analyzes the results. Section 5 discusses the con-
cluding remarks.

2. Related work

The arc-flag method is the most popular speedup technique in

dynamic environments (Berrettini et al., 2009; D’Angelo et al.,
2011, 2012). There are a number of improvements of the basic
variant of the arc-flag acceleration for point-to-point shortest

path computations on large graphs (Berrettini et al., 2009;
D’Angelo et al., 2011). In the case of a dynamic scenario,
the changes in arc weight and also the recomputation of the
pre-processing phase will be conducted.

There are voluminous contributions on Time-dependent

networks. Both FIFO and Non-FIFO Time-dependent short-
est problems (Ding et al., 2008) consider both directed and
undirected graphs. The computation effort is reduced using

an A* search in bidirectional core-based routing (Delling and
Nannicini, 2008) in Time-dependent dynamic environments.
The idea behind bidirectional core-based routing (Delling

and Nannicini, 2008) is to shrink the original graph to obtain
a new core graph with a smaller number of vertices. This ac-
tion reduces the search process because most of the time the
search is conducted on the core. Landmark-based routing

(Delling and Wagner, 2007) uses the minimum weight of each
edge to compute the distance labels, which calculates the esti-
mated departure time by altering the priority of a node. In

Core-ALT (Delling and Nannicini, 2008) routing, an initial
contraction step prior to ALT pre-processing must be per-
formed. Landmarks are then chosen from the core and stored

with a distance value. In geometric containers (Wagner and
Willhalm, 2003), the search space of the algorithm can be re-
duced by extracting geometric information from a given layout

of the graph and by encapsulating precomputed shortest-path
information in the geometric containers. In a Goal-directed
search, also called A* (Delling and Nannicini, 2008), the algo-
rithm pushes the search toward a target by adding a potential

to the priority of each node. The usage of Euclidean potentials
requires no pre-processing. For the use of an arc-flag approach
in a dynamic scenario, a new algorithm for update operations

that is subject to edge weight decrease operations (D’Angelo
et al., 2012) decreases the pre-processing time and the low con-
sumption of the space. A new data structure Road-sign (D’An-

gelo et al., 2011), which is used in the pre-processing phase of
the arc-flag approach, helps to update the edges effectively and
reduces the space consumption. The benefits of dynamic time-

dependent planning (Ehmke and Mattfeld, 2010), in contrast
to common static planning methods, are to achieve better
quality results in real-time applications. Traffic data of City
logistics show data allocation models that can be applied to

any real data sets. The recursive spectral bisection (Zhang
et al., 2010) technique is used as an iterative labeling algorithm
for network decomposition because this approach is usually

used to solve the problem in transportation applications. Here,
the network partitioning is made based on the domain, and
thus, there is no need to update the data structures.

Currently, every real-world application runs on a multi-core
processor that has multiple cores that communicate via shared
memory. The multi-core processor model (Sibai, 2013) presents
the architecture of core processors and how data partitions are

made on core processors. The efficiency of the applications that
run on multi-core processors can be improved when the parallel
Gaussian elimination method is used.

3. Time-Dependent Shortest Path Problem

This section addresses the speedup techniques for shortest path

computations in a dynamic environment. The partitioning
techniques’ recursive spectral bisection method is considered
for better improvement in a time-dependent dynamic environ-

ment. This new RSB-based partitioning technique dominates
the existing arc-flag-based partitioning technique (Mohring

A speedup technique for dynamic graphs using partitioning strategy and multithreaded approach 113
et al., 2006) in its output parameter update time. The input
graph representation is of different types: random graphs, pla-
nar graphs, and road networks (which are considered to be dy-

namic in nature). Two types of threads are used to make the
graphs dynamic. These threads are the Flag Thread and the
Timer Thread. The Flag Thread checks whether the edge

weight has been changed or not. The Timer thread is used to
change the edge weight at a random time, to make the graph
dynamic.

This section addresses the modeling of TDSPP, TD-Com-
bined RSB and Elliptic Convolution of the shortest path meth-
od, Parallel TD-Combined RSB and Elliptic Convolution of
the shortest path method.

3.1. Modeling of Time Dependency

Time-dependent scenarios involve the update of edge weights

at certain intervals of time. This method should effectively ad-
dress the changes and adjust the data structure. Edge weights
must be changed at regular intervals of time. This change

can be accomplished by the use of timers. The timer runs in
a separate thread and ticks off and updates an edge (sets a
dirty bit). The thread associated with the Flag vector calcula-

tion notices that the dirty bit is set and recalculates appropriate
regions and resets the dirty bit of the graph.

Fig. 1 displays the code for the Flag Vector Calculation
Thread. This thread involves the use of a count variable,

which acts as the dirty bit to determine whether an edge
weight has changed or not. The designation count = 0 indi-
cates that no edges have been affected. Therefore, the thread

waits on count as long as it is less than one. When the count
exceeds one, then some of the edge weights have changed. A
sync variable is used that is an index of a shared array be-

tween the Flag Thread and the Timer Thread to determine
which edge has changed. After determining which edge has
changed, the region of its target vertex (variable r) is deter-

mined, and pre-processing is performed for that specific re-
gion r; then, the update time is recorded as the time taken
by the pre-processing step.

Fig. 2 involves the code for the Timer Thread. The Timer

Thread updates the weight of a random edge at repeated
Input : Grpah G, Edge array with cost, Edge array with flags
and Node array
Output : Regionwise updating of edges with an equivalent
assignment of flags
Begin
While (True)

Begin
While (Count<1)
Begin
Edge e = A.get((sync++)%100); //the edge that is updated by a
TimerThread is fetched //sync is a global variable for
synchronization
int r = coord[target(3)].region;
call assignFlags(G, cost, ea, coord,r); //assign flags run on the
region r
float updateTime = used_time(T);

count --; //job done for one change
cout << "Update Time : " << updateTime << "\n";
end
end

Figure 1 Pseudocode for the Flag Vector calculation thread.
intervals of time. The edge weight changed is reflected in the
sync variable. The count variable denotes the number of
edge-weight changes that have occurred. The Timer Thread

performs this operation at repeated intervals of time. This
interval is determined by the usleep() function, which makes
the thread idle for a specific amount of time. The above code

uses a 2-s timer, such as usleep (2000000).

3.2. The Time-Dependent RSB and Elliptic Convolution of
shortest path method for the shortest path computation

Many pre-processing techniques involve a large amount of
computation whose results must be stored in a specific data

structure for efficient point-to-point queries. However, each
of these techniques involves computation on the order of
hours. This approach is not suitable for networks in which
the edge weights change with time. Hence, a new method is

proposed to reduce the pre-processing effort and the search
space and yet is feasible in addressing dynamic scenarios.
The graph is partitioned using Recursive Spectral Bisection

in the pre-processing phase, and later, an ellipse is constructed
where the shortest path computation is performed.

3.2.1. Pre-processing phase

Pre-processing of the graph is performed using the Recursive
Spectral Bisection Method. This method is a graph-partition-
ing strategy that is based on the degrees of the vertices. The

partitions produced by the method are logical partitions. Every
partition comprises vertices that have nearly the same degree.
The shortest path routing is achieved by correcting the dis-

tance label of the boundary vertices of the partitions. The steps
involved in the graph partitioning are given by the following:

Steps:

1. Construction of the Laplacian Matrix of the given graph

1i;j ¼
þ1; edge ði; jÞ
�degreeðiÞ if i ¼ j

0 otherwise

8><
>:

ð1Þ
Input: edge array and size of the array
Output: Updates the weight of a random edge at repeated
intervals of time.
Begin
number = A number from 5 to 10 is randomly chosen using
function rand_int()
e= an edge
while (true)
Begin
usleep(2000000); //2 second timer, that makes the thread idle for
an amount of time.
For the number of edges to change do
Begin
 j = rand_int(0,size-1); // size is the size of the edge array
e = E.get(j); // get an edge from edge array
cost[e] += rand_int(-20,20); //update cost of the edge
 A.set((sync++)%100,e); //update edges
count++; //number of edges that needs to be addressed is one
more
end

Figure 2 Pseudocode for the Timer Thread.

Figure 5 Curved line distance d.

114 R. Kalpana, P. Thambidurai
1. Finding the Second Eigen-Vector of the Laplacian Matrix

(the Fiedler Vector)
2. Sorting the Fiedler Vector
3. Bisecting the graph using the Sorted Fiedler Vector

3.2.2. Shortest path computation phase

Second, the method suggested involves the construction of

ellipses on the fly for a given (s, t) pair of vertices with the size
of the ellipse sufficient to enclose the shortest path between (s,
t).

Assuming a graph with vertices plotted according to

Euclidean Distances, going with an ellipse is justified as
follows:

1) The shortest path distance in the graph will be at least
the Euclidean distance between the pair of vertices, as
in Fig. 3.

2) The locus of points for which the sum of the distances
from point P on the ellipse to s and to t is a constant
for an ellipse.

3) Therefore, the shortest path would involve vertices
within an elliptical boundary, such as in Fig. 4.

Steps:

1. Translating latitudes and longitudes into algebraic co-
ordinates

To construct an ellipse, its algebraic equation must be for-
mulated. To formulate the algebraic equation, latitudes and

longitudes must be translated into (x, y) co-ordinates.
This arrangement occurs because the (x, y) co-ordinates are

planar while the latitude and longitude co-ordinates represent

a curved surface. To be able to accomplish this task, the curved
surface must be flattened into a planar surface. This goal is
accomplished as follows:

1. Assume that there is a curved line (s, t) with its latitude co-
ordinates L(s) and L(t). The Haversine formula gives the
curved line a distance from s to t. Let this distance be d,

as in Fig. 5.
Figure 3 Euclidean distance between s and t.

Actual Shortest Path

Figure 4 Shortest path within an elliptic boundary.
2. Next, fix s as the origin, i.e., the Algebraic Co-ordinate of s

is 0
3. Then, the Algebraic Co-ordinate of t will be d. Thus, the

coordinates are

4. X(s) = 0 and X(t) = d, as in Fig. 6.

The above procedure is also repeated for the longitude co-
ordinates, and therefore, an XY plane can be established.

1. Setting up the equation of the ellipse

The equation of an ellipse with its center at the origin and
the foci on the X-axis, as in Fig. 7, is given by

X2

a2
þ Y2

b2
¼ 1

where a and b are the length of the semi-major and semi-
minor axes.

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

where e is the eccentricity of the ellipse. The ellipse for s, t can
be oriented in any direction.Therefore, the origin must be
shifted appropriately, and the ellipse is rotated so that the el-

lipse appears as in Fig. 8.
The modified equation of the ellipse is then

X� x1þx2
2

� �� �2
a2

cos hþ
Y� y1þy2

2

� �� �2
b2

sin h ¼ 1

1. Constructing the sub-graph

Vertices that are inside or outside the ellipse can be found
by substituting the (x, y) co-ordinates in the equation of the
Figure 6 Translation of latitude co-ordinates to algebraic co-

ordinates.

Figure 7 Ellipse construction.

X(t) =d

Figure 8 Ellipse rotation.

 //Parallel pseudo code Executed in Main Simulating
TDSPP
 #pragma omp parallel
Begin

 #pragma omp sections
 Begin
 #pragma omp section
Call FlagThread(G, cost, ea, coord);

 #pragma omp section
Call TimerThread(cost,edgeCount);
end

end

Figure 9 Pseudocode for parallel code simulating TDSPP.

A speedup technique for dynamic graphs using partitioning strategy and multithreaded approach 115
ellipse. Then,X
2

a2
þ Y2

b2
6 1, and the vertex lies inside the ellipse;

otherwise, the vertex lies outside the ellipse. Only those edges

whose end vertices are within the ellipse are considered to be
a part of the sub-graph.

1. Running Dijkstra on the sub-graph

Dijkstra’s algorithm is run for s, t on the sub-graph instead
of the whole graph. The only overhead for this technique is

building the sub-graph, which takes O(m+ n) time, where m
and n are the number of edges and the number of vertices in
the graph, respectively. The complexity of Dijkstra’s algorithm

on the sub-graph would be O(k log k), where k is the number
of vertices in the sub-graph and k 6 n.

3.3. Parallel Time-Dependent RSB combined with Elliptic
Convolution of the shortest path method for shortest path

computation

The TD-RSB combined with the Elliptic Convolution of the
shortest path method is parallelized in the precomputation
phase and update phase using OpenMp parallel programming
constructs. By adapting the fork and join model of OpenMp

constructs, the TD-RSB and Elliptic Convolution of shortest
path method is parallelized and executed in parallel.

Fig. 9 displays the code for simulating the TDSPP scenario.

Both the threads, i.e., the Flag Thread and Timer Thread, are
started simultaneously, and both of them run in parallel. The
edges changed by the Timer Thread are appropriately updated

by the Flag Thread, as explained in Figs. 1 and 2.

4. Experimental results

Computation of the shortest path in dynamic networks using
Time-Dependent Combined RSB and Elliptic Convolution of
shortest path method and parallel Time-Dependent Combined

RSB and Elliptic Convolution of shortest path method is
implemented and experimented on in the following system
configuration. All of the results are compiled on an Intel Core
2 Duo Desktop clocking 2.83 GHz with 4 GB RAM running

on Ubuntu 10.04 Linux. The programs are written in C++
and LEDA, i.e., Library of Efficient Data types and Algo-
rithms. LEDA is used for the graph data structures.

4.1. Dynamic test environments

The speedup techniques are implemented and tested in ran-

dom, planar graphs and real-world graphs. The real-world
graphs are extracted from the Tamil Nadu map OSM file. The
metrics measured are the Update Time and QPL (Query Perfor-

mance Loss), which determine the impact of the speedup tech-
nique with respect to the time-dependent scenario. The
random graph can be considered for network applications or

as a model of real-world networks such as the Internet, social
networks or biological networks. The planar graphs can be con-
sidered in applications such as telecommunications (e.g., span-
ning trees) and vehicle routing (e.g., planning routes on roads

without underpasses). The real-world network is constructed
using a real-world data set from open street map. For all of
the real road network simulations, extracts from the Tamil

NaduOSMfile are used. Building the graph data structure from
theOSMfile involves parsing the file. First, node tags are parsed
by the<node> tag, and for every parse of the tag, a new node is

created in the graph and its ID is stored. Then, the<way> tags
are parsed by building edges for every consecutive pair of
<nd> tags. For the road networks, the nodes range from
1000 to 10,000 and the runtime, update time and pre-processing

time are tabulated, and from that, the output metric query per-
formance loss is evaluated and tabulated.

The important metrics used for the Time-Dependent Sce-

nario are the Update Time and Query Performance Loss
(QPL). The Update Time is the time taken by the speed-up tech-
nique when an edge weight changes to update the data structure

so that it can be used for further point–point shortest path que-
ries. QPL is the ratio of the time taken to solve the query after an
update to the time taken to solve the query by pre-processing

from scratch. QPL is a specific property of the speed-up tech-
nique and is useful to measure the suitability of the technique
to the time-dependent case. The lower theQPL, the better suited
the speedup technique for the time-dependent case.

It can also be stated that the metric Query Performance
Loss chosen to evaluate the performance is the ratio between
the average query time after the execution of the edge weight

change and the time obtained for the from-scratch recomputa-
tion. This value is referred to as the Query Performance Loss
(QPL).

QPL ¼ ðUpdate TimeþRunning TimeÞ
ðPre-processing timeþRunning timeÞ
4.2. Comparison of the RSB-based partitioning with the Grid
partitioning technique

Here, the RSB-based speedup technique is compared with the

arc-flag method. The arc-flag method (Mohring et al., 2006)

Table 2 Comparison of RSB-based Speedup Techniques with

the grid partitioning-based Arc-flag technique on planar

graphs.

Nodes Edges Grid-QPL RSB-QPL RSB-EL QPL

1000 1507 0.73333 0.03824 1.51991e-06

2000 3204 0.74602 0.03221 7.07804e-07

3000 4914 0.75232 0.03534 7.69702e-07

4000 6667 0.75243 0.0241 7.96065e-07

5000 8506 0.74447 0.04288 9.61123e-07

6000 10,283 0.74632 0.04238 6.86517e-07

7000 12,061 0.75029 0.02393 8.01952e-07

8000 13,872 0.74496 0.03093 7.03478e-07

9000 15,674 0.75549 0.01888 1.01944e-06

10,000 17,498 0.74634 0.03858 1.08996e-06

Table 3 Comparison of RSB-based Speedup Techniques with

the grid partitioning based arc-flag technique on road

networks.

Nodes Edges Grid-QPL RSB-QPL RSB-EL QPL

1000 1000 0.0004 0.04 2.00606e-06

2000 2001 0.00101 0.0466 1.96695e-06

3000 3003 0.00092 0.05598 2.64246e-06

4000 4037 0.00059 0.03209 2.97104e-06

5000 5063 0.00052 0.03829 3.35039e-06

6000 6066 0.00037 0.02718 3.03982e-06

7000 7079 0.00045 0.05068 3.53479e-06

8000 8093 0.00026 0.03222 4.05309e-06

9000 9126 0.00024 0.04781 5.12211e-06

10,000 10,132 0.0002 0.02861 6.55302e-06

116 R. Kalpana, P. Thambidurai
was originally solved by adapting the grid partitioning strat-
egy. In this part of the section, the grid partitioning and
RSB-based partitioning results are experimented on random,

planar and road networks, and the results are tabulated in Ta-
bles 1–3, respectively.

The tabulated data show the QPL results for the arc-flag

method (Mohring et al., 2006) using grid partitioning strategy,
the QPL results for the same arc-flag method with a Recursive
Spectral Bisection partitioning strategy (Zhang et al., 2010)

and the QPL results for the proposed RSB partitioning com-
bined with the Elliptic Convolution of the shortest path meth-
od in random graphs. The proposed new technique is
compared with the existing techniques of the arc-flag method

using the grid partitioning strategy and an arc-flag method
with Recursive Spectral Bisection partitioning strategy. The
RSB partitioning reduces the Query Performance Loss because

the update time is zero. The average speedup in the QPL value
is 38 in RSB combined with the Elliptic Convolution of short-
est path method. The speedup assumes the value of 21 in the

RSB partitioning technique.
The QPL results for the proposed RSB partitioning com-

bined with the Elliptic Convolution of the shortest path meth-

od are compared with other techniques in planar graphs. In
RSB combined with the Elliptic Convolution of the shortest
path method, the QPL is reduced by 8 lakh times compared
with the original Grid-based arc-flag method.

The tabulated data shows the QPL results for the arc-flag
method using the grid partitioning strategy, the QPL results
for the same arc-flag method with the Recursive Spectral

Bisection partitioning strategy and the QPL results for the pro-
posed RSB partitioning combined with Elliptic Convolution of
shortest path method in road networks. The results show that

an average speedup in the QPL of 140 is achieved in the RSB
combined with the Elliptic Convolution of the shortest path
method.

4.3. Time-Dependent Combined RSB and Elliptic Convolution

Technique

The Time-Dependent Combined RSB and Elliptic Convolu-

tion of the shortest path method are applied in dynamic net-
works using a time-dependent modeling approach. The
modeling approach takes two types of threads, the Timer

Thread and the Flag Thread, which have an impact on the out-
Table 1 Comparison of RSB-based Speedup Techniques with

the grid partitioning-based arcflag technique on random

graphs.

Nodes Edges Grid-QPL RSB-QPL RSB-EL QPL

1000 2020 0.77994 0.02947 9.50E-07

2000 4041 0.74776 0.02913 1.03E-06

3000 6049 0.75744 0.03382 1.52E-06

4000 8078 0.75124 0.03759 7.20E-07

5000 10,099 0.74879 0.04337 9.38E-07

6000 12,112 0.75937 0.03306 0.115385

7000 14,112 0.75455 0.03492 0.0384622

8000 16,160 0.76278 0.04322 6.24E-07

9000 18,186 0.80406 0.03192 1.13E-06

10,000 20,196 0.75715 0.0355 0.0454554
put parameters: the update time and the metric QPL. The
Timer Thread is used to change the edge weight at a random

time to make the graph dynamic. The Flag Thread is used to
assign the flag for a newly changed edge and also to compute
the shortest path by using the assigned flag. The results for
TD-RSB and the Elliptic Convolution of the shortest path

method are recorded in Tables 4–6 for random graphs, planar
graphs and road networks, respectively.

The tabulated value for the update time parameter is zero,

which implies the simplicity of the pre-processing technique,
and subsequently, the pre-processing time and QPL are the
lowest for this technique. In this technique, the shortest path

is enclosed within the ellipse. This fact reduces the search space
to a greater extent. Hence, the running time is also reduced.
The formula for QPL has the running time and update time

in the numerator. Because the update time is zero in the
RSB-based speedup technique, the QPL depends on the run-
ning time and the pre-processing time.

From Table 4–6 and Fig. 10, it is evident that real and pla-

nar graphs exhibit the same performance with the least QPL
among all of the techniques. The node to edge ratio ranges
from 1:1.5 to 1:1 in planar and road networks, respectively.

The reduction in the number of edges reduces the pre-process-
ing time, which has a significant impact on its QPL. The node
to edge ratio in the random networks is 1:2, which doubles the

number of edges, and correspondingly, the pre-processing time
is also increased. The performance is better with planar graphs
compared to random graphs.

Table 4 Time-Dependent RSB and enclosing ellipse technique

on random graphs.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 2020 0.0004 0 9.50E-07

2000 4041 0.0006 0 1.03E-06

3000 6049 0.0008 0 1.52E-06

4000 8078 0.0014 0 7.20E-07

5000 10,099 0.0021 0 9.38E-07

6000 12,112 0.0023 0 0.115385

7000 14,112 0.0025 0 0.0384622

8000 16,160 0.0034 0 6.24E-07

9000 18,186 0.0033 0 1.13E-06

10,000 20,196 0.0042 0 0.0454554

Average 0.0021 0 0.01993095

Table 5 Time-Dependent RSB and enclosing ellipse technique

on planar graphs.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 1507 0.0003 0 1.51991e-06

2000 3204 0.0009 0 7.07804e-07

3000 4914 0.0013 0 7.69702e-07

4000 6667 0.0013 0 7.96065e-07

5000 8506 0.0017 0 9.61123e-07

6000 10,283 0.0028 0 6.86517e-07

7000 12,061 0.0022 0 8.01952e-07

8000 13,872 0.0031 0 7.03478e-07

9000 15,674 0.0029 0 1.01944e-06

10,000 17,498 0.0041 0 1.08996e-06

Average 0.00206 0 1.543E-06

Table 6 Time-Dependent Combined RSB and enclosing

ellipse technique on road networks.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 1000 0.0004 0 2.00606e-06

2000 2001 0.0007 0 1.96695e-06

3000 3003 0.0009 0 2.64246e-06

4000 4037 0.0013 0 2.97104e-06

5000 5063 0.00190001 0 3.35039e-06

6000 6066 0.00220001 0 3.03982e-06

7000 7079 0.00230001 0 3.53479e-06

8000 8093 0.00260001 0 4.05309e-06

9000 9126 0.00310001 0 5.12211e-06

10,000 10,132 0.00350002 0 6.55302e-06

Average 0.00189001 0 3.524E-06

Figure 10 Performance of TD-RSB and Elliptic Convolution.

Table 7 Parallel Time-Dependent RSB and ellipse convolu-

tion technique on random graphs.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 2020 0.0003 0 0.250001

2000 4041 0.0007 0 8.84489e-07

3000 6049 0.000800001 0 1.14273e-06

4000 8078 0.0013 0 9.14701e-07

5000 10,099 0.0017 0 8.82235e-07

6000 12,112 0.002 0 0.0476198

7000 14,112 0.0029 0 0.0333339

8000 16,160 0.0032 0 0.0303037

9000 18,186 0.0038 0 0.0731715

10,000 20,196 0.0037 0 8.1473e-07

Average 0.00204 0 0.08688598

A speedup technique for dynamic graphs using partitioning strategy and multithreaded approach 117
The low value of QPL indicates that the Time-Dependent
RSB and the Elliptic Convolution of the shortest path methods

are well suited for planar graphs and road networks. This rela-
tionship occurs because planar graphs and road networks have
very few edges. Because the number of edges is smaller, the

pre-processing time is also reduced.
4.4. Parallel Time-Dependent RSB and Elliptic Convolution
Technique

The objective of parallelization is to improve the performance
of the proposed technique. The incorporation of paralleliza-

tion in a dynamic scenario will improve the speedup of the sys-
tem. The operations of the Timer Thread and Flag Thread are
implemented using the multithreaded approach in this tech-

nique. The two OpenMp constructs used for implementing this
technique are parallel for and parallel sections.

The results of parallel TD-Combined RSB and Elliptic

Convolution of the shortest path method are tabulated in Ta-
ble 7–9 for random graphs, planar graphs and road networks,
respectively.

In earlier discussions, the QPL values of the TD-Combined
RSB and Elliptic Convolution of the shortest path method are
compared with existing speedup techniques, namely, the Arc
and RSB techniques. It is concluded that the QPL values are

better in the TD-Combined RSB and Elliptic Convolution of
the Shortest Path method. Hence, the results of the parallel
technique are presented, and the parallel speedup is calculated.

The number of edges generated is doubled with respect to
the nodes in the random graphs. This relationship is reflected
in the Query Performance Loss. The average speedup for

QPL is 0.23, which is much less and allows an increase in
the number of nodes of more than 10,000. The pre-processing
time is almost the same in the parallel TD-RSB and Elliptic

Convolution of the shortest path method compared with the
sequential approach.

Table 8 Parallel Time-Dependent RSB and enclosing ellipse

technique on planar graphs.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 1507 0.0004 0 1.2964e-06

2000 3204 0.0009 0 7.39262e-07

3000 4914 0.001 0 1.23903e-06

4000 6667 0.0016 0 6.81727e-07

5000 8506 0.002 0 9.49203e-07

6000 10,283 0.0019 0 9.1446e-07

7000 12,061 0.0024 0 7.23326e-07

8000 13,887 0.0034 0 7.37168e-07

9000 15,674 0.0035 0 9.78366e-07

10,000 17,535 0.0035 0 9.07692e-07

Average 0.00206 0 9.17E-07

Table 9 Parallel Time-Dependent RSB and enclosing ellipse

technique on road networks.

Nodes Edges Pre-Processing

Time (ms)

Update

Time (ms)

QPL

1000 1000 0.0005 0 1.4171e-06

2000 2001 0.000700001 0 1.87754e-06

3000 3003 0.0013 0 1.68268e-06

4000 4037 0.0011 0 3.25114e-06

5000 5063 0.00180001 0 3.53652e-06

6000 6066 0.00200001 0 3.30804e-06

7000 7079 0.00250001 0 3.16618e-06

8000 8093 0.00270001 0 4.23852e-06

9000 9126 0.00320001 0 4.78323e-06

10,000 10,132 0.00360002 0 5.32E-006

Average 0.001940007 0 3.5239E-06

Figure 11 Speedup Plots of the Query Performance Loss of the

parallel Time-Dependent Combined RSB and the enclosing ellipse

technique on random graphs.

Figure 12 Speedup Plots of the Query Performance loss of

parallel Time-Dependent RSB and enclosing ellipse technique on

planar graphs.

Figure 13 Speedup Plots of the Query Performance Loss of

parallel Time-Dependent RSB and enclosing ellipse technique on

road networks.

118 R. Kalpana, P. Thambidurai
From Fig. 11, it is evident that parallelization gives a max-
imum increase in speedup of 55,800 for a node count of 10,000.

The speedup is expected to increase for more than 10,000
nodes. Compared to random graphs, planar graphs show an
improvement in the QPL. One reason for this improvement

is that there is a linear increase in the number of edges for
the nodes considered.

The QPL values are reduced in the parallel TD-Combined

RSB and Elliptic Convolution of the shortest path method
because the parallelized operations of the Flag Thread and

Timer Thread for the reduced edges dominate the sequential
method.

The average speedup for QPL for planar graphs is 1.68,

which is better than that of random graphs when the number
of nodes is in the range of 1000–10,000. It is obvious from
Figs. 11 and 12 that the impact of parallelization is very good
when there are more than 10,000 nodes. Planar graphs have a

smaller number of edges. Hence, the pre-processing of the
edges will take less time, which will reduce the QPL.

The results of parallel TD-RSB and enclosing ellipse tech-

niques on road networks are tabulated in Table 9. This table
shows a much smaller improvement in the speedup for QPL.
The pre-processing time obtained due to a parallelized ap-

proach is also much less.
From Fig. 13, it is evident that the average speedup for

QPL is 1.000032851, which is marginally greater than one

and is better than random graphs. Here, the edges considered
for the Shortest Path computation play a very important role.

It can also be concluded that the technique of paralleliza-
tion shows improvement in terms of the pre-processing time

and QPL. Usually, the pre-processing-based speedup tech-
niques show improvement in the query performance.

5. Conclusions

The shortest path computation for the Time-Dependent Short-
est Path Problem (TDSPP) is solved using a Speedup Tech-

nique called the Recursive Spectral Bisection Combined with

A speedup technique for dynamic graphs using partitioning strategy and multithreaded approach 119
Elliptic Convolution of shortest path method. The same meth-
od is parallelized using OpenMP parallel programming con-
structs, and the results are recorded and compared with its

sequential counterpart. The TD-Recursive Spectral Bisection
combined with Elliptic Convolution of shortest path method
shows a reduced QPL value in the planar type of networks

and road networks. Then, the results are compared with paral-
lel TD-Combined RSB and Elliptic Convolution of shortest
path method. The results show that the performance of parall-

elization is realized in the planar type of networks rather than
random and road networks, from which it can be concluded
that the number of edges considered for the shortest path com-
putation plays an important role.

Furthermore, the combined Recursive Spectral Bisection
with Elliptic Convolution of shortest path method can be com-
bined with other speedup techniques. The corresponding par-

allelized technique can be applied to new real-world
applications that use multi-core processors.

Acknowledgments

The authors wish to thank the students S. Sarat Chandra, Sar-
ath Subramaniam and Vivek Chandra, who are students of the

Pondicherry Engineering College and who helped to conduct
the experiments.

References

Berrettini, E., D’Angelo,G.,Delling,D., 2009.Dynamic arc-flag in road

network. In: 9th Workshop on Algorithmic Approaches for Trans-

portation Modeling, Optimization, and Systems, ATMOS 2009.

Schloss Dagstuhl–Leibniz-Zentrum f̈ur Informatik, Germany.

D’Angelo, Gianlorenzo, D’Emidio, Mattia, Frigioni, Daniele, Vitale,

Camillo, 2012. Fully dynamic maintenance of arc-flags in road

networks. 11th International Symposium-SEA 2012, 7–9 June,

2012, LNCS 7276 147, 135.
D’Angelo, Gianlorenzo, Frigioni, Daniele, Vitale, Camillo, 2011.

Dynamic Arc-Flags in Road Networks. In the proceedings of SEA

2011, Lecture Notes in Computer Science 6630/2011 (99), 88.

Delling, Daniel, Nannicini, Giacomo, 2008. Bidirectional Core-Based

Routing in Dynamic Time-Dependent Road Networks, ISAAC

2008, LNCS 5369, 824(2008) 813, Springer-Verlag Berlin

Heidelberg.

Delling, Daniel, Wagner, Dorothea, 2007. Landmark-based routing in

dynamic graphs, experimental algorithms. Lecture Notes in Com-

puter Science 4525 (65), 52.

Ding, Bolin, Yu, Jeffrey Xu, Qin, Lu, 2008. Finding Time-Dependent

Shortest Paths over Large Graphs. EDBT’08, Nantes, France.

Ehmke, Jan Fabian, Mattfeld, Dirk Christian, 2010. Data allocation

and application for time-dependent vehicle routing in city logistics,

European transport. Trasporti Europein 46 (35), 24.

Li, Yinzhen, He, Ruichun, Zhang, Zhongfu, Guo, Yaohuang, 2005.

Models and algorithms for shortest paths in a time dependent

network. International Symposium on OR and its Applications

328, 319.

Mohring, R.H., Schilling, H., Schutz, B., Wagner, D., Willhalm, T.,

2006. Partitioning graphs to speed up Dijkstra’s algorithm. ACM

Journal of Experimental Algorithmics 11, 1–29.

Sibai, Fadi N., 2013. Performance modeling and analysis of parallel

Gaussian elimination on multi-core computers. Journal of King

Saud University – Computer and Information Sciences. Elsevier,

Vol. 26, pp. 41–54.

Wagner, D., Willhalm, 2003. Geometric Speed-Up Techniques for

Finding Shortest Paths in Large Sparse Graphs. In: Di Battista, G.,

Zwick, U. (Eds.), Proc. Algorithms ESA 2003: 11th Annual

European Symposium on Algorithms. Volume 2832 of LNCS.,

Springer (2003), 787, p. 776.

Wagner, Dorothea, Willhalm, Thomas 2007. Speed-up Techniques for

Shortest-path Computations, IST priority 6th FP, University at

Karlsruhe, Germany.

Zhang, Lin, Yang, Zhaosheng, Jia, Hongmei, Wang, Bin, Chen,

Guang, 2010. Test and Implement of a Parallel Shortest Path

Calculation System for Traffic Network, ICICA 2010, Part I, CCIS

105, 288(2010) 282, ª Springer-Verlag Berlin Heidelberg.

http://refhub.elsevier.com/S1319-1578(13)00015-3/h0010
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0010
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0010
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0010
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0015
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0015
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0015
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0015
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0020
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0020
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0020
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0025
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0025
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0025
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0035
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0035
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0035
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0005
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0005
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0005
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0005
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0045
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0045
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0045
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0040
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0040
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0040
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0040
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0030
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0030
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0030
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0030
http://refhub.elsevier.com/S1319-1578(13)00015-3/h0030

	A speedup technique for dynamic graphs using partitioning strategy and multithreaded approach
	1 Introduction
	2 Related work
	3 Time-Dependent Shortest Path Problem
	3.1 Modeling of Time Dependency
	3.2 The Time-Dependent RSB and Elliptic Convolution of shortest path method for the shortest path computation
	3.2.1 Pre-processing phase
	3.2.2 Shortest path computation phase

	3.3 Parallel Time-Dependent RSB combined with Elliptic Convolution of the shortest path method for shortest path computation

	4 Experimental results
	4.1 Dynamic test environments
	4.2 Comparison of the RSB-based partitioning with the Grid partitioning technique
	4.3 Time-Dependent Combined RSB and Elliptic Convolution Technique
	4.4 Parallel Time-Dependent RSB and Elliptic Convolution Technique

	5 Conclusions
	Acknowledgments
	References

