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ABSTRACT 

We investigate projected iterative algorithms for solving constrained symmetric 
singular linear systems. We discuss the symmetry of generalized inverses and investi- 
gate projected standard iterative methods as well as projected conjugate-gradient 
algorithms. Using a generalization of Stein’s theorem for singular matrices, we obtain 
a new proof of Keller’s theorem. We also strengthen a result from Neumann and 
Plemmons about the spectrum of iteration matrices. As an application, we consider 
the linear systems arising from the kinetic theory of gases and providing transport 
coefficients in multicomponent gas mixtures. We obtain low-cost accurate approximate 
expressions for the transport coefficients that can be used in multicomponent flow 
models. Typical examples for the species diffusion coefficients and the volume 
viscosity are presented. 0 Elsevier Science Inc., 1997 
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1. INTRODUCTION 

1.1. Transport Linear Systems 
In multicomponent gas mixtures, the evaluation of transport coefficients 

-such as the species diffusion coefficients or the viscosity-requires solving 
linear systems derived from the kinetic theory of dilute gases. These linear 
systems arise from variational procedures used to solve approximately linear 
integral equations. These integral equations are, in turn, obtained from the 
Enskog-Chapman expansion and involve a linearized Boltzmann integral 
collision operator. For more details about the derivation of the transport 
linear systems, we refer to [3, 6, 51. These systems are constrained singular 
systems in the form 

GCY = p, 

(l-1) 
ff E is?, 

where G E [w”,“’ is a symmetric positive semidefinite matrix, (Y, P E [w ” are 
vectors, and g is a linear subspace of [w”. In some applications, there are w 
transport coefficients associated with the system (1.1) which are given by the 
components of (Y. This situation arises with the species diffusion coefficients, 
for instance, and will be referred to as the vector case. The constraint (Y E ‘Z 
is then a constraint on the transport coefficients, which is important from a 
physical point of view and is typically associated with a conservation property. 
In other applications, there is a unique transport coefficient associated with 
the system (l.l), which is usually given by the scalar product 

This situation occurs with the volume viscosity coefficient for instance and 
will be referred to as the scalar case. In this situation the constraint is not 
strictly necessary, because any solution x of Gx = /3 is such that x - (Y E 
N(G) and thus yields the same transport coefficient I_L = (x, P >, thanks to 
P E R(G) = N(G)l . However, if for practical purposes the expression (1.2) 
is replaced by p = ( IX, p’), where p’ - p E Z? ’ , then the constraint on (Y 
is again required. 

The authors have developed a theory of iterative algorithms for solving 
the linear systems arising from multicomponent transport [5]. A first step was 
to derive the mathematical structure and the properties of the linear systems 
directly from those of the original integral equations. Once these properties 
were obtained, it was then possible to use iterative techniques to obtain 
convergent iterative algorithms. As a result, the authors were able to expand 
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the transport coefficients as convergent series. By truncating these series, 
rigorously derived, analytic approximations have been obtained for all the 
transport coefficients [5]. 

In this paper, we generalize the mathematical tools that have been used 
to investigate the constrained linear systems of multicomponent transport. 
We first relate the solution of (1.1) to generalized inverses naturally associ- 
ated with the problem and investigate their symmetry. We then study the 
convergence of projected standard iterative methods and projected conju- 
gate-gradient methods for solving the constrained singular system (1.1). The 
conjugate-gradient methods usually have better convergence behavior and 
should generally be preferred. However, as opposed to standard methods, 
they do not yield a linear dependence between the iterates and the second 
members, and this linear dependence turns out to be of fundamental 
importance in some applications, as for instance with the species diffusion 
coefficients. Thus, when this linear dependence is needed, only standard 
iterative methods can be used. 

In some applications also, there exists a block structure of the transport 
linear systems such that the lower right block is diagonal and nonsingular. In 
this case, it is possible to consider the Schur complement of this lower right 
block and to use an iterative algorithm to solve the associated linear system of 
smaller size. Indeed, keeping in mind that each iteration mainly requires to 
form the product of the Schur complement with a vector, the corresponding 
computational costs are identical to those associated with the original system, 
thanks to the diagonal structure of the lower right block. As a consequence, 
we also investigate iterative techniques for Schur complements. Note, how- 
ever, that the analysis of convergence is still valid when the lower right block 
is not diagonal. 

We then present typical applications associated with the species diffusion 
coefficients and the volume viscosity in multicomponent mixtures. We also 
present numerical results concerning these coefficients for a mixture associ- 
ated with metal-organic chemical vapor deposition reactors. 

After some mathematical preliminaries in Section 1, we investigate in 
Section 2 the properties of generalized inverses. In Section 3, we then study 
the convergence of projected iterative algorithms. Finally, in Section 4, we 
present the applications together with the numerical results. 

1.2. Notation and Preliminaries 
We denote by R w the crtdimensional real space and by [w”*, w2 the set of 

matrices with w, rows and o2 columns. For a vector x E R”, we denote by 
x = (Xi,. . . ) xw> its components and by Rx the subspace span(x). For 
x, y E R”, (;r, y> denotes the scalar product (x, y> = ,Ek E ti, wlxk yk and 



292 ALEXANDRE ERN AND VINCENT GIOVANGIGLI 

11x11 = (x, x)“~ the Euclidean norm of X. For a subspace S of R”, we 
denote by S ’ its orthogonal complement. If S, and S, are two complemen- 
tary subspaces of R”, i.e., S, @ S, = R”, we denote by Z’s,,s, the oblique 
projector onto the subspace S, along the subspace S,. For A E [W”I~“P, we 
write 

A = (Akl)kE[I.W,l.I~[l,W21 

for the entries of the matrix A, and A’ for the transpose of A. The nullspace 
and the range of A are denoted by N(A) and R(A), respectively, and the 
rank of A is denoted by rank A. For X, y E R”, x @ y E R”‘, @ denotes the 
tensor-product matrix x B y = (x, yljk. I l [,, wl. The identity matrix is de- 
noted by I, and diagi hi, . . . , A,) is the diagonal matrix with diagonal ele- 
ments hi,. . . , A,. For a matrix A E R w~, wl, we define 

where a,, is the Kronecker symbol, and we denote by 11 A(( its Frobenius 
norm 

IIAII = c 
kE[l, w,l,I‘=[l, w,l 

Finally, for a matrix A E R w W, we denote by nA the characteristic polyno= 
mial of A. 

The following propositions can be found in [l, 23 and characterize 
generalized inverses with prescribed range and nullspace as well as group 
inverses. 

PROPOSITION 1.1. Let G E [w w, w he a matrix, and let 55’ and S he two 
subspaces of R" such that N(G) CB E’ = 1w” and R(G) CB S = [w W. Then 
there exists a unique matrix Z such that GZG = G, ZGZ = Z, N(Z) = S, 
and R(Z) = E’. The matrix Z is called the generalized inverse of G with 
prescribed range ‘CF and nullspace S and is also such that GZ = PR(c), s and 

ZG = P,, N(C). 

PROPOSITION 1.2. Let G E [w”, w be a matrix such that N(G) CB R(G) = 
Iw”. Then there exists a unique matrix Z such that GZG = G, ZGZ = Z, and 
GZ = ZG. The matrix Z is called the group inverse of G and is denoted by 
G’. The group inverse is also the generalized inverse with prescribed range 
R(G) and nullspace N(G) and is also such that GZ = ZG = Pncc), N(C). 
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For a matrix T E [w”‘. WI (T(T) and p(T) d enote respectively the spectrum 
and the spectral radius of T, and we also define ~(7’) = maxi] A]; A E 
(T(T), A # 11. A matrix T is said to be convergent when lim i ‘z T’ exists, not 
necessarily being zero. This corresponds to the terminology of Neumann and 
Plemmons [I31 as opposed to the more conventional terminology, where a 
matrix T is said to be convergent when lim i j cc T i = 0. The following result 
[ 14, 131 characterizes convergent matrices. 

P~o~~xxrro~ 1.3. A tnutrir T E R o. w is convergent if and only $&her 
p(T) < 1 or p(T) = 1, 1 E u(T), y(T) < 1, and (I - T)# exists, i.e., T 
hns only elrnlclntq divisors corresponding to the eigenvalue 1. 

Next, for a matrix G E [w w. w, the decomposition 

G=M-W (1.3) 

is a splitting if the matrix h4 is invertible. Following Ortega [15], this splitting 
is said to be P-regular if the matrix M + W is positive definite. In order to 
solve the linear system 

GQ, = /3, (I-4) 

where p E [w”, the splitting (1.3) induces the iterative scheme 

X I+ I = TX, + M-lb, i > 0, (1.5) 

where T = M-’ W. Assuming that p E R(G), we have M-‘p E R(Z - T), 
and the behavior of the sequences of iterates (1.5) is given in Lemma 1.4, 
which can be found in [I2, 21 except for misprints in the matrix E corrected 
in the recent version of [2]. 

LEMMA 1.4. Let T E [w”, “‘, and let 2 E R” such that z E R(Z - T). 
Then the iterative scheme xi+, = Tsi + 2, i > 0, converges for any x,, E R” 
if und only if T is convergent. In this situation, the limit limi err X, = x, is 

given by s, = (I - T)% + Er,,, where E = Z - (I - T)(Z - T)‘. 

2. CONSTRAINED SINGULAR SYSTEMS 

2.1. Well- Poseclness 
We first investigate the well-posedness of the constrained singular system 

(1.1) and relate its solution to generalized inverses naturally associated with 
the problem. 
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PROPOSITION 2.1. Let G E [w”, w he a matrix, and let @ be a subspace 
of [w”. Then the constrained linear system (1.1) is well posed, i.e., admits a 
unique solution (Y for any /? E R(G), if and only if N(G) CB @ = [w”. In this 
situation, for any subspace S such that R(G) @ S = [w”, the solution (Y can 
be written (Y = ZR, where Z is the generalized inverse of G with prescribed 
range g and nullspace S. 

Proof. The proof is straightforward and is omitted. n 

2.2. Symmetric Generalized Inverse 
By using the symmetry property of the matrix G, it is possible to select a 

symmetric generalized inverse of G with prescribed range g. 

PROPOSITION 2.2. Let G E [w”, W be a singular symmetric positive 
semi&finite matrix, let E’ be a s&space of [w”, and assume that N(G) CB 
E’ = [w”. Let Z be the generalized inverse of G with prescribed nullspace 
N(Z) = %?‘I and range R(Z) = E’. Th en the matrix Z is symmetric, positive 
semidefinite, and positive definite on the subspace R(G). It is the unique 
symmetric generalized inverse of G with range k?, that is, the unique 
symmetric matrix L such that LGL = L, GLG = G, and R(L) = S9. Fur- 
thermore, denoting by uI, . . . , u,, a basis of N(G), where p = dim N(G) > 1, 
there exist vectors v,, . . . , v,’ spanning %?‘I such that (vi, uj> = a,,, 1 < i, 
j < p, and for any positive numbers ai, b,, 1 < i < p, such that aibi = 1, 
1 < i < p, we have 

-1 

a,v, C3 v, - f biui @ ui, (2.1) 
i=l 

where the matrix G + C,r’= laiv, 8 vi is symmetric positive definite. Further- 
more, for /3 E R(G), the solution LY (If (1.1) obtained from Proposition 2.1 
also satisfies the system 

G+; 
i=l 

(2.2) 

and we also have 

(2.3) 
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Proof. From N(G) @ e = [w” it is straightforward to obtain that 
N(G)’ @ %?I = Iw”, so that R(G) @ g ’ = Iw”, since G is symmetric. The 
generalized inverse of G with prescribed range %Y and prescribed nullspace 
g’I is therefore well defined. Furthermore, from GZG = G, ZGZ = Z, 
N(Z)=gl, R(Z)=$?, and Gt = G, we first deduce that GZ’G = G, 
Z’GZ’ = Z’, N(Zt) = g’ , and R(Zt) = E”, since R(Z’) = N(Z)’ and 
N(Z’) = R(Z)‘. From the uniqueness of the generalized inverse with 
prescribed range and nullspace, we deduce that Z = Z’, i.e., Z is symmetric. 
Moreover, Z is positive semidefinite, since for y E [w”, we have ( y, Zy) = 
(Zy, GZy) > 0 because Z = ZGZ, Z is symmetric, and G is positive 
semidefinite. We then deduce that Z is positive definite on R(G), since this 
subspace is complementary to N(Z). Any symmetric matrix L such that 
LGL = L, GLG = G, and R(L) = 5? also satisfies N(L) = @ ’ by symme- 
try and therefore coincides with Z. The vectors vi, 1 Q i < p, with p = 
dim N(G) are then easily obtained by selecting for ui a nonzero element in 
the one-dimensional subspace 

[span(u,, . . . . *di-i.Uifl ,..., U,)]’ ng’I , 

and by normalizing it. It is then easily shown that PBcz,, N(G) = I - C,P_,u, @ 

vi and I&) N(Z) = Z - Cf=,ui @ ui, which yields (2.3) and implies that 
GZ = Z - Cf= ioi 8 ui, and the formula (2.1) directly follows. The equation 
(2.2) is then a direct consequence of (2.11, since /3 E [N(G)] ’ . n 

2.3. Schur Complements 
In some applications, there exists a block structure of the transport linear 

systems such that the lower right block is nonsingular. In that case, it is 
possible to consider the Schur complement of this lower right block and to 
use an iterative algorithm to solve the associated linear system of smaller size. 
This strategy is computationally interesting when the lower right block is 
diagonal, as discussed in Section 3.2. 

Therefore, we assume in this section that [w o = [W”I X lR”z with o = 

wi + @2> and we consider the associated block decomposition of the sym- 
metric matrix G E [w o, w 

(2.4) 

where Gil E [w%~“I, G12 E [wU1~%, G2i E li$w2iw~, Gz2 E [WUp,02. Eachvec- 

tor xEIWW is correspondingly decomposed into x = (xi, x2), x1 E R”‘, 
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x2 E [w”z. Finally, we assume that the submatrix Gz2 is nonsingular, and we 
denote by G,,, E [w”l, w~ its Schur complement 

G,,, = G” - CI”(G22)-1G21. (2.5) 

LEMMA 2.3. Let G E Iw”‘* w be a singular symmetric positive semidej- 
nite matrix, and let p E R(G). Let SF be a subspace of [w” such that 
N(G) @ g = [w”, and denote by v 1, . . . , v,, a basis of F ’ where p = 

dim N(G) > 1. Define next v[~,~ = v! - G’“(G22)-‘v2, 1 6 i < p, %YLs, = 
[span(vt,],, . . . , vLslp)]L , and RIS1 = /I?’ - G’2(G22)-1R2. Then the matrix 
G,,, is singular symmetric positive semidefinite, and the constrained linear 
system 

is well posed, that is, RI,Y1 E R(G,,,) and N(GL,SI) @ gCSI = [w”‘. Moreover, 
denoting by oLSl and (Y the unique solutions of (2.6) and (1.1), respectively, 

we have (Y’ - cqSI E N(Gr,sI), so that we have 

P = ((y[,T], P[s,) + ((G2”)-‘P2, P”), (2.7) 

where p = (a, 0). 

Proof. The proof-lengthy but straightforward-is omitted. n 

3. PROJECTED ITERATIVE ALGORITHMS 

3.1. Generalized Inverses and Projected Iterative Algorithms 
We are now interested in solving the constrained singular system (1.1) by 

standard iterative techniques. These techniques provide iterates which de- 
pend linearly on the right member /3, and this property will be important for 
some of our applications, in particular for the matrix of species diffusion 
coefficients. 

For a given splitting G = M - W and for p E R(G), assuming that the 
iteration matrix T = M-lW is convergent, the iterates (1.5) will converge for 
any ~a. When the matrix G is singular, we have p(T) = 1, since TX = x for 
x E N(G), and neither the iterates {xi; i 2 O} nor the limit x0; are guaran- 
teed to be in the constraint space %‘. In order to overcome these difficulties, 
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we investigate a projected iterative scheme in the form 

Yt+1 = PTy, + PM-‘p, i >, 0, (3.1) 

where P = P, N(G) is the projector onto the subspace E’ along N(G). This 
algorithm and its iteration matrix PT provide very useful tools for investigat- 
ing the convergence properties of (1.5) and of its iteration matrix T. In 
addition all the corresponding iterates { yi; i 2 O} satisfy the constraint, which 
is important in the vector case in order to obtain satisfactory approximate 
transport coefficients, keeping in mind that the constraint is typically associ- 
ated with a conservation property. The projected iterative algorithms are thus 
interesting from both a theoretical and a practical point of view. These 
schemes were introduced in [7] when studying convergent iterative methods 
for multicomponent diffusion coefficients. 

For the transport linear system (1.11, assuming that the splitting G = 
M - W is P-regular, the convergence of the matrix T is obtained from 
Keller’s theorem [lo]. 

THEOREM 3.1 (Keller). Let G E R“‘. w be a symmetric matrix, and let 
G = M - W be a P-regular splitting. Then T = M-IW is convergent if and 
only if G is positive semidefinite. 

The spectral radius of the iteration matrix PT can then be estimated by 
using a result from Neumann and Plemmons [13]. 

THEOREM 3.2 (Neumann and Plemmons). Let T be a matrix such that 
(I - T)# exists, i.e., such that R( I - T) n N( Z - T) = IO}. Let @ be a 
subspace complementary to N( 1 - T), i.e., such that N(Z - T) @ 55’ = R”, 
and let P be the oblique projector onto the subspace %? along N( Z - T ). Then 
we have the relation 

p(PT) = y(T). (3.2) 

Proof. Since R( Z - T) n N( I - T) = {O}, the root subspace of T asso- 
ciated with the eigenvalue 1 is N( Z - T). Let P’ denote the projection onto 
the join of all root subspaces of T associated with the eigenvalues other than 
1 along the eigenspace of T associated with the eigenvalue 1. By definition of 
y(T), we have the relation y(T) = p(TP’), and it is well known that P’ 
commutes with T. One may also easily check that PP’ = P and P’P = P’, 
since N(P) = N( P’) = N( I - T). Keeping in mind that p( AB) = p(Z?Al 
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for any A, B E R’ w w, we now obtain that 

y(T) = p(TP’) = p(TP’P) = p( PTP’) = p( PP’T) = PC PO, 

so that p(PT) = y(T). n 

In this paper, we give new proofs of Theorems 3.1-3.2, and we strengthen 
(3.2) by establishing that the spectra of T and PT are essentially the same. 

THEOREM 3.3. ZCeep the assumptions of Theorem 3.2. Then 

u(PT) = b(T) ’ WI ” (0) !f N(Z - T) + {OL 
a(T) if N(Z - T) = (0). 

(33) 

. 

Furthermore, the matrices T and P satisfy the relation PT = PTP. 

Our proof of Theorem 3.1 will use a generalization of Stein’s theorem [16] 
to the case of singular matrices. 

THEOREM 3.4. A matrix T is convergent if and only if there exist two 
symmetric positive semidefinite matrices A and B such that B = A - T”AT 
and N(A) = N(B) = N(Z - T). 

We will first establish Theorem 3.3, then Theorem 3.4, and finally 
Theorem 3.1. 

Proof of Theorem 3.3. We first note that PTP = PT, since for z E F we 
have Pz = z, and for 2 EN(Z-T)weobtainT;;=zandPz=O,sothat 
PTP and PT coincide on E’ and N( Z - T) and hence on R o = N(Z - T) @ 
I%‘. In the rest of the proof, we only consider the nontrivial case P f I, that is, 
the case N(Z - T) # (0). 

Let now A E a(T) and u z 0 be such that Tu = Au. Applying the 
projector P then yields PTu = APu and thus PTv = hv with v = Pu, thanks 
to PTP = PT. If A # 1 then v # 0, since v = 0 implies u E N(P) = N(Z - 
T), which yields A = 1. We have thus shown that a(T) \ {l} C (r(PT) and 
we also have 0 E a( PT) because rank PT < rank P < w, so that finally 

[a(T) \ tl)I U (0) c dPT). 
Conversely, let A E u(PT) and u # 0 be such that PTu = Au. All we 

have to show is that if A # 0 then A E a(T) and A # 1. Assuming that 
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A z 0, we first obtain that u = (l/A)PTu E E’. Since u E E”, we have 
u = Pu and thus PTu = APu, which yields P(Tu - Au) = 0. As a conse- 
quence, we obtain that Tu - Au E N( Z - T), so that (I - TXT - AZ)u = 0 
and hence (T - AZ)u = 0 where t, = (I - T)u. 

We then note that ti = (I - T)u # 0, since u = 0 yields u E N( Z - T) 
and thus u E E?’ f~ N( I - T) = {0}, contradicting u # 0. In addition, if 
A = 1, then 0 E R(Z - T) n N(Z - T) and thus u = 0, since (I - T)’ 
exists, contradicting u # 0. Therefore, we have e + 0, A # 1, and (T - AZ) 
u = 0, so that A E v(T) \ {l}, and the proof is complete. n 

REMARK 3.5. It is also possible to relate the characteristic polynomials of 
T and PT. More specifically, let ci, 1 < i < w, be a basis of R” such that 
wi, 1 < i < w - p, is a basis E’ and wi, o - p + 1 < i < w, is a basis of 
N( Z - T) = N(P) with p = dim[ N( Z - T)], and let d be the associated 
transformation matrix. Then the matrices F’T@ and dplPTB admit the 
following block decompositions: 

@-‘PT@= (; ;)(; ;) = (; ;). 

which implies that II,(A) = II,(A)(l - Ajp and II,,(A) = II&AX-A)“. 
We also note that n,,(l) # 0, since (I - T)’ exists. 

Proof of Theorem 3.4. Assume first that there exist two symmetric 
positive semidefinite matrices A and B such that B = A - T’AT and 
N(A) = N(B) = N( Z - T). Consider any complementary space %? to N 
(I - T), and let P be the oblique projector onto the subspace % along 
N( Z - T). We then have N(P) = N(Z - T) = N(A) = N(B), so that in 
particular A = AP = PTA, keeping in mind that A is symmetric, and thus we 
have B = A - T ‘AT = A - (PT)‘A( PT ). Defining then A’ = A + (I - 
P)‘( Z - P) and B’ = B + (I - P)‘(Z - P), we obtain that B’ = A’ - 
(PT )‘A’( PT) thanks to (I - P)P = 0. We remark now that both A’ and B’ 
are positive definite, since A, B and (I - P)‘(Z - P) are positive semidefi- 
nite, and since N( Z - P) = E’ and N( Z - T) f~ E’ = {O). Applying now the 
nonsingular version of Stein’s theorem [16], we deduce that p(PT) < 1. 

When P = I, that is, when Z - T is regular, we get p(T) = p(PT) < 1 

and T is thus convergent. In the strictly singular case, where N(Z - 7’) is 

nonzero, all we need to show is that (I - T)’ exists. Indeed, from Theorem 
3.2 and p( PT) < 1, we will get that y(T) = p( PT) < 1, and, using Proposi- 
tion 1.3, this will prove that T is convergent. We have thus to establish that 
N(Z - T) f’ R(Z - T) = {O}. Arguing by contradiction, we assume that there 
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exist u # 0 and v # 0 such that TV = v + u and Tu = u. Since v e N(Z - 
T),wenotethat(Bw,v)>O,sinceN(B)=N(Z-T),andthatuEN(Z- 
T) yields Au = 0. Furthermore, ( Bv, v) = (Au, v) - ( ATv, TV), and us- 
ing TV = u + u, Au = 0, and the symmetry of A yields that ( ATv, TV) = 
(Au, v), so that (Bv, v) = 0, an obvious contradiction, and we have thus 
shown that T is convergent. 

Conversely, assume now that T is convergent. Consider any complemen- 
tary space ‘8 to N( Z - T), and let P be the oblique projector onto the 
subspace ‘8 along N(Z - T). S’ mce T is convergent, we know from Theo- 
rems 3.2 and 3.3 that p(PT) < 1. From the nonsingular version of Stein’s 
theorem, we know that there exist two symmetric positive definite matrices 
A’ and B’ such that B’ = A’ - (PTjtA’( PT). We now let A = PtA’P and 
B = P’B’P, and we have B = A - T/AT thanks to PT = PTP from Theo- 
rem 3.3. Finally, A and B are symmetric positive semidefinite, and we have 
N(A) = N(B) = N(P) = N( Z - T), and the proof is complete. n 

Proof of Theorun 3.1. Assume first that G is positive semidefinite. 
Consider any complementary space E’ to N(Z - T) = N(G), and let P be 
the oblique projector onto the subspace E’ along N(Z - T). Defining then 
A = G and B = A - T’AT, we note that A and B are symmetric and that 
A is positive semidefinite. On the other hand, since T = Z - Mp ’ G, we also 
get after some algebra 

B = (M-‘G)‘( M’ + W)( KIG). 

Noting that M t + W is positive definite with M + W, we see that the matrix 
in the right-hand side is positive semidefinite and A and B have kernel 
N(A) = N(B) = N(G) = N(1 - T). Applying Theorem 3.4, we conclude 
that T is convergent. 

Conversely, assuming now that T is convergent, we have to show that G 
is positive semidefinite. Proceeding as in the first part of the proof, we 
introduce a complementary space E’ to N(Z - T) and the corresponding 
projector P. Using Theorems 3.2 and 3.3, we then have p(PT) < 1. Defining 
again B = G - T’GT, we still have GP = PtG = G, so that B = G - 
(PTYG(PT). On the other hand, from T = 1 - Mp ’ G we again have 
B = (M-‘G)‘(Mt + WXMp’G), and thus B = G - (PT)tG(PT) is posi- 
tive semidefinite. An easy induction then yields that G - [( PT)“‘ltG( PT)“’ is 
positive semidefinite for all r11 2 0. Using now p( PT) < 1, which implies that 

lim ,,, + ?i (PT)“’ = 0, and passing to the limit m + 00, we get that G is 
positive semidefinite, as was to he shown, and the proof is complete. n 
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We now investigate the convergence and properties of projected iterative 
algorithms. 

THEOREM 3.6. Let G E [w o. w be a singular symmetric positive semidefi- 
nite matrix, and let %? be a subspace complementary to N(G), i.e., N(G) @ 
%?’ = 172”. Consider a P-regular splitting G = M - W, assume that M is 
symmetric, and define T = M-‘W. Let P be the oblique projector onto the 
subspace E’ along N(G). Let also R E R(G), x0 E [w”‘, y0 = Px,, and 
consider fc>r i > 0 the iterates xi+, = TX, + M- ‘/3 as in (1.5) and yi+ 1 = 
PTy, + PM-‘/3 as in (3.1). Then yi = Px, for all i > 0, the matrices T and PT 
are convergent, p(T) = 1, p(PT) = y(T) < 1, and we have the following 
limits: 

where (Y is the unique solution of (1.1). Moreover, for all i > 0, each partial 
sum 

zi = i ( PT)~PM-‘P’ (3.5) 
j=O 

is symmetric, is positive semidefinite, is positive definite on R(G), and admits 
nullspace N(Zi) = %?“I and range R(Zi) = E’. In addition, we have 

z = g ( PT)‘PM-lo’, (3.6) 
j=O 

where Z is the symmetric generalized inverse of G with prescribed nullspace 
N(Z) = %“I and range R(Z) = 29’. Furthermore, the quantities pIi = 
( Zi /?, /3 > are positive for i > 0 if R # 0, and we have 

lim P[i] = (ZP, P) = (a, P) = p. (3.7) 
i-z 

Proof. From Theorems 3.1 and 3.3 we first obtain that T is convergent 
and that p( PT) = y(T) < 1. Furthermore, from 0 E R(G), we deduce that 
M-lo E R( I - T ), and since T is convergent, the sequence {xi; i > 0) is 
then convergent by Lemma 1.4. In addition, since p(PT) < 1, we deduce 
that the sequence { yi; i 2 0) is also convergent. From Theorem 3.3 we also 
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have PTP = PT, and we then deduce by induction that y, = Px, for all 
i > 0. Consequently, we have lim , jr yi = P(lim i ~ 3. xi), and denoting by (Y 
this limit, we have Q E ‘i??. Moreover, from the relation GP = G and (1.51, 
we easily deduce that Ga = G(lim, Jm xi) = /3, and therefore (Y is the 
unique solution of (1.1). Furth ermore, since /I E R(G), we obtain by induc- 
tion that yi+ i = Zi p for the particular choice y. = 0, and from Proposition 
2.1 we also deduce that (Y = Zp, where Z is the generalized inverse of G 
with prescribed nullspace N(Z) = E’ ’ and range R(Z) = %?‘. Since 
limi,, yi = CY, we obt am a = Z/3 = X7=,,< PT)jPM- ‘Pf3. The matrices Z 
and ~~=,(PT)-‘PM-‘P’ therefore coincide on R(G). Furthermore, they 
trivially coincide on E’ ’ , and hence (3.6) is proven, since R(G) @ %’ ’ = [w w. 

Furthermore, from the relation PTP = PT, one can easily show by 
induction that (PT)JP = PT.j for all j > 0, and we also have (TjM- ‘1’ = 
TjM- ’ for all j > 0. Therefore, we can write Zi = Xi= 0 PTjM ~’ P’ and Zi is 
thus symmetric. In addition, we have the relations 

(PT”jM-‘P’=., z)= ( MT~w,TJw) 

for any ;. E R”, where w = Mp’P’z, and 

(PT”j+‘M-‘P’z, z) + ( PT’.jMp’Pf=., z) = (( M + W)Tjw, Tjw). 

Thanks to the positive definiteness of M and M + W, these relations imply 
that for any i > 1 and =. E R” we have 

(z,i=, => a (Z,,_,-, ->, 

and 

(z,,+lz, 2) 2 (z,i_lz, z> 2 ... > (ZlZ, z>. 

Since (Z, 2, z > = ((M + W)w,w) and (Z,-,z) = (Mw,w) with w = 
M-‘P’- 

A> all the matrices Zi, i > 0, are positive semidefinite. In addition, we 
have (Zjz, z) = 0 if an only if w = 0, which in turn is equivalent to 
zEgL. This implies that N( Zi) = E’ L and that Zi is positive definite on 
R(G), since R(G) @ ‘iiF L = [w”. From the symmetry of Zi, we next deduce 
that R(Zj) = E’. In addition, the quantities( Zi p, p ), i > 0, are then positive 
if p # 0, since /3 E R(G). Finally, the limit (3.7) results from (3.6), since 

p = (ZP, P). W 
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REMARK 3.7. The projector P is needed for the convergence of the 
series (3.6). Indeed, although the partial sums Zj in (3.5) can be rewritten in 
the form 

the series Cj=,TjM-’ has no limit, since Cj=,TjM-‘(Mu) = (i + 1)~ for 
u E N(G). Furthermore, in the vector case where all the components of the 
vector (Y are transport coefficients, any satisfactory approximation for these 
coefficients must also satisfy the physical constraint, so that the most interest- 
ing approximations are given by the projected iterates (3.1). On the other 
hand, note also that we have Tz = z for z E N(G) and Me@ E R(Z - T), 
since p E R(G), so that qY(,-), sCI_r~xi = PNCG), sCI_r~x,, for all i > 0. 

REMARK 3.8. Assuming that the splitting matrix M is diagonal, or more 
generally such that forming the product of M-l with a given vector only 
costs O(w) flops, each iteration of the scheme (1.5) costs w2 + O(w) flops. 
Similarly, each iteration of (3.1) requires the same cost, thanks to the 
decomposition P,, ,,,(o) = Z - C,!‘= iui 8 vi obtained in Proposition 2.2. 

REMARK 3.9. Iterative methods applied to the regular formulation (2.2) 
usually converge more slowly than those applied to the singular formulation 
(1.1) [5]. Moreover, the corresponding iterates do not generally satisfy the 
constraint at each step, so that they cannot be used satisfactorily as approxi- 
mate transport coefficients in the vector case. 

REMARK 3.10. Various parts of Theorems 3.1 and 3.6 are still valid for 
nonsymmetric systems [5]. Indeed, let G E Iw”, o be a nonsymmetric matrix, 
let G = M - W be a splitting, and assume that the matrix T = M-‘W is 
convergent. Assume also that the subspaces e and S are such that N(G) @ 
E’ = KY”’ and R(G) CB S = R”, and denote by P the oblique projector onto 
the subspace %? along N(G), and by Q the oblique projector onto R(G) 
along the subspace S. Then we still have (3.2) and 2 = Cy= ,(PT)jPM- 'Q, 
where Z is the generalized inverse of G with prescribed range E’ and 
nullspace S. In addition, if we denote by Zi the partial sum Zi = 
C;=,(PT)jPM-‘Q, th en Zj admits nullspace N(Zi) = S and range R(Zj) = 
g. 



304 ALEXANDRE ERN AND VINCENT GIOVANGIGLI 

3.2. Schur Complements 
We now investigate iterative methods for Schur complements of lower 

right diagonal nonsingular blocks. Consider a splitting matrix M,,, for the 
Schur complement G,,Y, = G” - G’“(G2”)P’G”, which is diagonal or such 
that forming the product of ML:: with a given vector only costs O(w’) flops. 
Then, an iteration for the Schur complement-projected or not-costs 
UP + 2 wlwZ + O( w> = 6~’ - wi + O(w). This is exactly the cost of an 
iteration for the full matrix, as discussed in Remark 3.8, making use of the 
diagonal structure of the lower right block. As a consequence, it is also 
interesting to consider iterative methods for the Schur complement. 

The convergence Theorem 3.1 can readily be applied to the system (3.6) 
associated G,,s,. In the next proposition, we relate the convergence properties 
of a splitting of the Schur complement to those of a special splitting of the 
original system (1.1). This splitting yields more zeros in the residual matrix 
and may thus lead to higher convergence rates. Note that this proposition 
does not require the lower right block G2’ to be diagonal. 

PROPOSITION 3.11. Let G E Iw”~” he a symmetric positive semidefinite 
matrix; assume that G admits the block decomposition (2.4), and that the 
matrix G”’ is nonsingular. Let M,,Y, E I#“], w1 be a symmetric positive 
definite matrix, and consider the splittings G,,, = M,,, - Wrsl and G = M - 
W, where 

M= %,I O 

[ 1 G”’ G”” (3.8) 

and the corresponding iteration matrice.s Trsl = (M,,,))’ Wrsl and T = M- ‘W. 
Then T is convergent if and only if T,,,, is convergent, and p(Trs,) = p(T). In 
particular, if 2 M,,s, - G” i.s positive definite, then Tr,] and T are conver- 
gent. Furthermore, consider the auxiliary system Gz = t with l1 = pI,51 and 
5 ’ = 0, and the corresponding iterates xLiI, E [W”I and zi E R”, i > 0, 

defi:nedby~I.51r+l = T~,51x~aIi + (iI,,,)y1!5, and zi+l = Tzi + M-k. Thenfor 
all i > 0, we have the relations zi -x [sli and z& = II;! where KI = 
_(G2”)-lG21. 

Proof. We denote by2 the subspace of IF!” defined by 

‘A?= {x E R”, x2 = rw}, 
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and by C#J the application C#J :X’+ lF!“l such that 4(x) = x1. Notice that 4 is 
an isomorphism and that +-‘(x1> = (x1, Hx’). On the other hand, a direct 
calculation yields that 

P,s,)-l(M,s, - G”) -Pbl)-lGIZ 
n( M,s&‘( M,,, - G”) -n(MIsl) 

-1 ’ 

G’” 1 

which implies-after some algebra-that +T&’ = Tr,sl. This shows that TtY1 
is convergent if and only if c#JT+- ’ is convergent. In addition, it is readily 
seen that R(T) ~2, so that we also have c#- ‘+T = T. As a consequence, we 
have T” = $-l(+T+-l)‘+T, and 4Tqf- ’ is convergent if and only if T is 
convergent. In addition, since R(T) CZ it is easily shown that T has the 
same spectral radius as its restriction to 2, and since 4T4-l = Tr,sl, we 
obtain that p(T) = p(T[,$. An easy calculation then yields that the matrix 
M + Wt admits the block decomposition 

M+Wt= 2M,d -G" 0 

0 1 G22 ’ 

which shows that if 2M,,, - G” is positive definite, then M + Wt is 
positive definite and thus M + W also, and therefore T and Tr,] are 
convergent from Theorem 3.1. Finally, considering the iterates for the Schur 
complement {x[,]~; i 2 0) and for the auxiliary system {zj; i > O}, the 
relations z,’ = X,&]~ and z& = Hz! are easily established by induction. n 

3.3. Conjugate-Gradient Methods for Constrained Systems 
In this section we introduce a projected conjugate-gradient method for 

positive semidefinite systems which extends the results of Lewis and Rehm 
[ll]. This projected conjugate-gradient method usually has better conver- 
gence behavior than the projected standard method and should generally be 
preferred. However, the corresponding iterates depend nonlinearly on the 
right member P because of the quadratic nature of the conjugate-gradient 
algorithm. This prevents its use in some special situations, as for instance with 
the species diffusion coefficients. 

THEOREM 3.12. Let G E 1w”. w be a symmetric positive semi&finite 
matrix, and let M E [w o, * be a symmetric positive definite matrix. Let %? be 
a subspace complementary to N(G), i.e., N(G) @ ‘Z = [w”; let P be the 
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oblique projector onto the subspace %? along N(G); and let p E R(G). Let 
also x0 E R”, y0 = Px,, r0 = fl - Gx,, p, = 0, t, = 0, and consider for 
i > 0 the iterates 

pi+, = Mp’ri + tip,, 

‘i+l = (riy Mplri)/(pi+l,Gpi+l), 

‘i+l = ‘i + ‘i+l Pi+l, 

Yi+l = Yi + ‘(‘i+l Pi+l)> 
(3.9) 

‘i+l = ri - si+lGpi+l, 

ti+l = (ri+l, M-‘rj+,)/(ri, M-‘ri). 

Then yi = Px, f or all i 2 0, and the sequence of iterates yi converges towards 
the unique solution of (1.1) in at most rank G steps. Furthermore, if x0 = 0 
and P z 0, the quantities pLil = ( yi, p ) = ( xi, /3 ) are positive for all i > 1 
and converge towards p = ( CY, p ) in at most rank G steps. 

Proof. First, we can easily show by induction that we have yi = Px, and 
that ri = P - Gy, = /3 - Gxi, i > 0, since GP = G. One can also prove by 
induction that the orthogonal&y relations [9, 81 

(M-‘r,, 7;) = 0, i #j, 

(pi>Gpj) ~0, i #j, (3.10) 

(ri, Pj) = 0, i aj, 

are still valid when G is positive semidefinite. From these relations, we can 
deduce that the iterates yi converge towards (Y in at most rank G steps, since 
the vectors rj are all in R(G). Furthermore, we have ( yi, p ) = (xi, p ), 
since yi = Pxi and P@ = P. Assuming then that x0 = 0 and P # 0, we have 

(W’P, /3)” 
hl = (M-‘P,G,,-‘P) “7 

since G and M are positive definite. For i > 1, we also obtain pti+lI = 

kti]+si+r(pi+r>P) and (pi+l,P)=(pi+l,ro)=ti(pj,P), using the 
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relation ( M-i r,, ra > = 0 valid for i > 1. Finally, since ( pi, P > > 0, we get 
by induction that ( pi+ i, /3 > 2 0 for i >, 1, which implies that P.[~, 2 ... > 
Z+il > 0 for all i 2 1. n 

REMARK 3.13. A breakdown in (3.9) can only occur if convergence is 
already achieved. Indeed, assuming that ( pi + 1, Gpj + i > = 0, We first obtain 
that pi+ i E N(G), but, on the other hand, we deduce from the relations 

Pj+l = M-‘rj + tjpj, valid for j = 0,. . . , i, that Mpi+ i E R(G). This yields 

(pi+i, Mpi+i) = 0, since N(G) = R(G)l ; and since M is positive definite, 
we obtain that pi+ i = 0. We then deduce from the last orthogonality 
property in (3.10) and pi+ i = 0 that ( ri, M-‘r,) = 0, i.e., ri = 0, as was to 
be shown. 

REMARK 3.14. The conjugate-gradient algorithm (3.9) can also be ap- 
plied to Schur complements of lower right diagonal nonsingular blocks. In 
this situation, the computational costs associated with the two systems are 
identical, but the size of the Schur complement is smaller and may thus lead 
to faster convergence, as illustrated in Section 4. 

4. APPLICATION TO MULTICOMPONENT TRANSPORT 

4.1. Transport Coefficients in Multicomponent Gas Mixtures 
The equations governing multicomponent gas laminar flows are derived 

from the kinetic theory of dilute gases and express the conservation of mass, 
momentum, and energy. These equations contain the terms for transport 
fluxes, that is, the pressure tensor, the species diffusion velocities, and the 
heat flux vector [3, 6, 51. In this p p a er, we will only consider the pressure 
tensor 9 and the species diffusion velocities V,, k E [l, n] = (1,. . . , n), 
where n is the number of species in the mixture. These fluxes can be written 
in the form 

c?? = @ - (K - $)(v-V)l - +%I + (VV)‘], (4-l) 

V, = - c D,,[ VX, + (X, - Yl)V log p + xIV log T], (4.2) 
1ei1. nl 

where p is the thermodynamic pressure, Z the identity matrix, K the volume 
viscosity, 77 the shear viscosity, V the space derivative operator, v the flow 

velocity, D = (D,,),,,,Ii,“l the diffusion matrix, X, the mole fraction of the 
kth species, Y, the mass fraction of the kth species, x = ( ,Q)~ E ti, ,,] the 
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thermal diffusion ratios, and 7 the absolute temperature. The transport 
coefficients, that is, the volume viscosity K, the shear viscosity r], the diffusion 
matrix D, and the thermal diffusion ratios x, are functions of the state 
variables (T, j7, Y,, . . . , YV,). 

However, these coefficients are not explicitly given by the kinetic theory. 
Their evaluation requires solving linear systems derived from orthogonal 
polynomial expansions of the species perturbed distribution functions [3, 6, 
S]. On the other hand, solving these linear systems by direct methods may 
become computationally expensive, since their size can be large and since 
transport properties have to be evaluated at each computational cell in space 
and time. Consequently, the authors have developed a mathematical and 
numerical theory of iterative algorithms for solving the transport linear 
systems [5]. This theory has led t o new cost-effective algorithms with which to 
evahlate transport properties in practical applications. 

In the next sections, we discuss, in particular, the evaluation of the 
diffusion matrix and of the volume viscosity in a multicomponent gas mixture 
of n components. We assume in the following that n > 3 and that the state 
variables (T, j?i, Y,, . . . , Y,,) are given positive quantities. We also assume that 
the mass fractions satisfy the natural normalization condition C;= ,Y, = 1. 

4.2. Application to the Dijjbsion Matrix 
The transport linear systems associated with the evaluation of the diffu- 

sion matrix D are the following n systems of size w = n indexed by 1, 
l<l<n: 

where A E [w”, ” and (Y “1, p”l, Y E R” [5]. 
The coefficients of the transport linear systems are functions of the state 

variables (T, p, Y, , . . . , Y?‘,,) which usually have complex expressions. In the 
particular case of the diffusion matrix, these expressions remain fairly simple 
and the matrix A is given by 

A 
‘h ‘1 

kk= c -) k E [I, n], 

/=[I. )I] 9kl 

t#k (4.4) 
xk x/ 

A,,= --, 
gkl 

k,Z E [l, n], k z 1, 
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where gkl denotes the binary diffusion coefficient for the species pair (k, I), 

which only depends on temperature and pressure: gkl =&[(T, p). The 
mole fractions can be expressed in terms of the mass fractions by the 
formulas 

) k E [L n], (4.5) 

where W,, k E [l, n], are the species molecular weights, which are positive 
constants. The right members P ‘1, I E [l, n], are given by 

pp1 = a,, - Y, ) k E [I, n], (4.6) 

and the vector Y E R” is given by Y = (Y,, . . . , Y,,). Finally, the diffusion 
coefficients D,,, k, I E [l, n], are given by 

DI Q,=‘Y~ > k, 1 E [l, n]. (4.7) 

The vectors CY Dl, 1 E [l, n], are therefore the column vectors of the diffusion 
matrix D, and we are exactly in the vector case for each column vector of D. 

In the framework of the kinetic theory of gases, where the transport linear 
systems arise from variational procedures, the authors have established the 
following properties for the matrix A and the vectors Y and /3 Do, 1 E [l, n], 
when n > 3 [S]: 

(Al) A is symmetric positive semidefinite and positive definite on Y ’ . 
(A21 N(A) = RU, where U = (1,. . . , 1). 
(A31 (Y, U) # 0. 
(A41 pDl E R(A), 1 E [l, n]. 
(AS) 2diag(A) - A 1s symmetric positive definite. 
(A6) diagtA) is symmetric positive definite. 

In our particular case, however, since the expressions for the linear system 
coefficients are fairly simple, these properties can also be obtained directly 
[71. 

PROPOSITION 4.1. Let W,, k E [l, n], he positive numbers, let ~3~~ be 
positive number9 definedfor k, 1 E [l, n], k # 1, and symmetric, and assume 
that the mass fractions are positive. Then the matrix A and the vectors Y and 
P Dt, 1 E [l, n], defined as in (4.4)-(4.6) satisfy properties (Al)-(A6). 
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As an application of generalized inverses, we have the following character- 
ization of the multicomponent diffusion matrix D. 

PROPOSITION 4.2. Assume that the matrix A and the vectors Y and p Df, 
1 E [l, nl, satisfy properties (Al)-(A4). Then the n systems (4.3) are well 
posed. In addition, assume that the vectors p Di are given by (4.6). Then the 
matrix D defined by (4.7) is the generalized inverse of A with prescribed 
range Y ’ and prescribed nullspace RY. The mat& D is symmetric positive 
semidefinite and positive definite on U ’ . 

Proof. From the properties of A it is easily seen that for each 1 E [l, n] 
the system (4.3) satisfies the assumptions of Proposition 2.1 and is well posed. 
From Proposition 2.2 the generalized inverse 2 of A with prescribed range 
YL and nullspace [WY is symmetric and positive definite on U L . Assume 
now that the vectors p Dl, 1 E [I, n], are given by (4.6). The column vectors 

z., = (Z,l, . . . , Z,,,), 1 E [l, n], of Z are then easily seen to satisfy the system 
(4.3), since AZ = P, I, Ry. As a consequence, we have Z., = cx Do, I E [l, n], 
and thus Z,, = @I, k, 1 E [l, n], so that D,, = Z,, = Z,,, k, 1 E [l, nl, and 
the proof is complete. n 

REMARK 4.3. The constraints in (4.3) imply that C;= rY, D,, = 0, 1 E 
[l, n], and thus that Ci= rYkVk = 0, which is a mass conservation constraint 
for the species diffusion velocities [6, 7, 51. The positive definiteness of D on 
U ’ also corresponds to the positiveness of the entropy-production quadratic 

form d + (p/7)( Dd, d) on the hyperplane of driving forces U ’ keeping 
in mind that for d = (d,, . . . , d,) and d, = VX, + (X, - Y,)V log p + 
xkV log T, we have d E U ’ thanks to Ck E t,, ,>I X, = 1, Ck E ,1, n,Yk = 1, and 
c k E ,I, n, Xk = 0 [6, 7, 51. 

By applying now Theorem 3.6 to the multicomponent diffusion problem 
(4.3), and by using the linear properties of standard iterative techniques, we 
obtain an asymptotic expansion for the diffusion matrix D. 

THEOREM 4.4. Let A E Iw”, ’ be a matrix satisfying properties 
(Al)-(A6), and let M = diag(M,, . . . , M,,) be such that Mk > Akk, k E 
[l, n]. Consider the splitting A = M - W and the iteration matrix T = 
M- 'W, and let P = Z - U & Y/( U, Y ) denote the oblique projector onto 
Y ’ along RU. Let XI, E R”, y:) = Px:, and con&m-for i > 0 and 1 E [l, n] 
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the iterates xf, 1 = Txf + M-l@ Di and Y!+~ = PTy! + PM-‘R Df. Then y! = 
Pxf for all i > 0, the matrices T and PT are convergent, p(T) = 1, p( PT) < 
1, and we have the following limits: 

1 E [I, nl, (4.8) 

where (Y Dl is the unique solution of (4.3). Moreover, for all i 2 1, each 
partial sum 

i-l 

qiI = C ( PT)~PM-~P* (4.9) 
j=O 

is symmetric, is positive semidefinite, is positive definite on the hyperplane 

UL, and admits nullspace N( D,,,) = [WY and range R( DliI) = Y ’ . Finally, 
we have 

D = /\rnmDiil = 2 (PT)‘PM-‘P’. 
j=o 

(4.10) 

REMARK 4.5. Note that each matrix iterate DLiI is symmetric, satisfies 
the mass conservation constraints Ct= iY, DLiIkl = 0, 1 E [l, n], and yields a 
positive entropy-production quadratic form d + ( j?/T)( D,,,d, d) on the 
hyperplane of driving forces U ’ , as previously discussed for D in Remark 
4.3. 

REMARK 4.6. By using conjugate-gradient techniques, the resulting ap- 
proximate diffusion matrices are not guaranteed to be symmetric or to yield a 
positive entropy production on the hyperplane of zero-sum driving forces, 
unless convergence is already achieved. 

4.3. Application to the Volume Viscosity 
The transport linear system associated with the evaluation of the volume 

viscosity is the system of size o = n + p 

KCxK = p”, 

cxKE.zl, 
(4.11) 

where K E IW”+r,“+J’, LY K, pK,X~ [W”+p, and p is the number of poly- 
atomic species in the mixture [5]. In this section, we assume that p > 1, since 
the volume viscosity vanishes otherwise [6]. 
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The coefficients of the matrix K and of the vectors L%? and /3” are 
complex functions of the state variables involving collision integrals and will 
be omitted [5]. On the other hand, the volume viscosity is given by 

K = (aK, p”>, (4.12) 

which can be simplified into the relation 

K= c x,cU,” (4.13) 
k~[l,nl 

by explicitly using the constraint in (4.11). 
Furthermore, there exists a natural block structure of the system (4.11) 

associated with the decomposition R” = R” X R P, and we denote it by 

(4.14) 

We will also need the matrix db( K) constituted by the diagonals of the blocks 
of K, 

db(K) = 
diag( K ” ) diag( K 12) 

diag(K”) 1 &ag(K”) . (4.15) 

In the framework of the kinetic theory of gases, where the transport linear 
systems arise from variational procedures, the authors have established the 
following properties for the matrix K and the vectors Zand /3 ’ when n > 3 

[51: 

(K 1) K is symmetric positive semidefinite and positive definite on XL . 
(K2) N(K) = IR’FY, where Y= (1,. . . , 1). 
(K3) (3, Y-> # 0. 
(K4) j3” E R(K) and /3” # 0. 
(K5) 2 db( K) - K is symmetric positive definite. 
(K6) db( K) is symmetric positive definite. 

As a direct application of Proposition 2.1, we first obtain the following 
result. 

PROPOSITION 4.6. Let K E R”+l’,“+P be a matrix satisfying properties 
(K l)-( K4). Then the constrained linear system (4.11) admits a unique 
solution LY K, and the quantity K is positiue. 



PROJECTED ITERATIVE ALGORITHMS 313 

We now investigate the linear system of size n associated with the Schur 
complement K,,, = K l1 - K”( K 22)-’ K 21 of K22. We will freely use the 
notation introduced in Section 2.3 and Section 3.2. We have in particular 

=n, w 
>d 

= p, and we define 
pt;, =‘pK1 _ Kr”(K2”)-I@“‘. 

ysl = Vr, Z& =Zr - K12(K22)p1X2, 
In the following theorem, as a direct 

application of Lemma 2.3 and Proposition 3.11, we obtain a new expansion of 
the volume viscosity K for multicomponent mixtures. 

THEOREM 4.7. Let K E [W”+l’.*+P be a matrix satisfying properties 
(Kl)-(K6). Let M,,, E R”,” be the matrix M,,?, = diag(M,, . . . , M,) with 
M, > K::, k E [l, n . II Consider the splitting K,,%, = M,,, - Wrsl with the 
iteration matrix T[,] = (MJ lw,S]’ and let P,,$] = Z - YIS1 @ 

qsl/( qS1, qS,) denote the oblique projector onto 3,; along RV~Sl. Then 
we have the expansion 

4.4. Numerical Experiments 
In this section we perform numerical experiments illustrating the conver- 

gence results established in the previous sections. Numerical tests are per- 
formed for a 22-species mixture associated with gallium arsenide chemical 
vapor deposition reactors, at temperature T = 1000 K and pressure p = 1 
atm [4]. The mixture is constituted by the n = 22 species ASH,, ASH,, ASH, 
As, AS,, Ga(CH,),, Ga(CH,),, GaCH,, Ga, CH,, CH,, CH,, CH, C, H,, 
H, C,H,, C,H,, C,H,, C,H,, C,H,, C,H, and is taken in the equimolar 
state X, = l/n, k E [l, n]. The linear system coefficients are complicated 
expressions in the state variables and involve molecular parameters describing 
the interaction between species pairs, which for brevity are not given [5]. 

We first considered the systems (4.3) associated with the evaluation of the 
species diffusion matrix. We evaluated the first matrix iterates (4.9) obtained 
by using the diagonal splitting M = diag(M,, . . . , M,) with M, = Akk/(l - 
k;-). This splitting is suggested by writing that M- ‘A = DA = P and by 
identifying the diagonal coefficients. The corresponding reduced errors 11 D 
- D,,l)(/ll Dll, for i = 1, . . . , 10, are given in Table 1, in the column labeled 

D, SM. These errors clearly indicate very good convergence behavior of the 
iterative scheme (3.1) for the diffusion matrix problem and the mixture 
considered. It is interesting to note, in particular, that the second iterate Df2, 

is fairly accurate and has a computational cost which still scales like 0(n2), 
since no dense matrix multiplications are needed, although n2 transport 
coefficients are evaluated. 
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TABLE 1 
REDUCED ERRORS FOR ITERATES IN COMPUTING DIFFUSION COEFFICIENTS 

AND VOLUME VISCOSITIES: GALLIUM ARSENIDE MIXTURE IN EQUIMOLAR STATE 

i D, SM K,SM K,CG ‘$1, CG 

1 2.67~ - 2 6.57~ - 2 1.13E - 1 8.56~ - 2 

8 
9 

10 

2.12E - 3 2.45~ - 2 4.05E - 2 1.19E - 3 
2.47~ - 4 5.65~ - 3 8.74~ - 4 2.38~ - 5 
3.74E - 5 2.11E - 3 7.77~ - 6 5.51E - 7 
6.95E - 6 6.58~ - 4 4.07E - 7 6.06E - 9 
1.45E - 6 3.96E - 4 1.82~ - 8 1.47E - 10 
3.21~ - 7 4.94E - *5 S.86E - 10 5.00E - 12 
7.28~ - 8 1.73E - 5 4.41E - 12 2.58~ - 13 
1.66~ - 8 4.76~ - 6 1.02E - 13 2.45~ - 13 
3.81~ - 9 1.62~ - 6 3.46~ - 14 2.45~ - 13 

We then considered the system associated with the volume viscosity of the 
mixture. We evaluated the first iterates of the projected standard iterative 
method using the splitting hf = db(K) and those of the projected 
conjugate-gradient method with the preconditioner M = db( K 1, starting 
with xg = 0. The corresponding reduced errors ]I (Y K - y,]]/]] CY K((, for i = 
1 . . 1 10, are given in Table 1, in the columns labeled K, SM and K, CG, 
respectively. These reduced errors reveal the better convergence behavior of 
the conjugate-gradient algorithm. The corresponding accuracies for the vol- 
ume viscosity are about the same as those for the vector iterates. Finally, we 
considered the Schur complement of the lower right block K 22, as described 
in Section 4.3. We have evaluated the first iterates of the projected 
conjugate-gradient method with the preconditioner M = diag(I$,$ The 
corresponding reduced errors ]]cr,:] - yi]]/]]crt~l]], for i = 1,. . . , 10, are given 
in Table 1, in the column labeled K~,,, CG. These reduced errors also 
indicate an excellent convergence rate. The accuracy of the iterates is also 
higher than that obtained with the full matrix. 

REMARK 4.8. Similar results can be obtained for hydrogen and methane 
mixtures associated with combustion applications [5]. 

REMARK 4.9. The numerical tests only concern the multicomponent 
transport linear systems. In these applications, the size of the systems is not 
very large, but these systems have to be solved at each computational cell in 
space and time in numerical models of multicomponent flows. As a conse- 
quence, iterative methods provide a low-cost alternative to direct methods. 
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However, because of the modest size of these linear systems, the numerical 
experiments cannot be extrapolated to other applications involving much 
larger matrices. In addition, no attempts have been made to investigate error 
propagation due to numerical roundoff in the projected algorithms. 
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