measurements have been carried out by the injecting RDH-11, N-del RDH-11 and the synthetic N-terminal peptide (NTP) into the subphase of a phospholipid monolayer at the air-water interface. Their kinetics of monolayer binding, monitored by surface pressure measurements, increases as follows: NTP > RDH-11 > N-del RDH-11. Moreover, measurements by polarization-modulated infrared reflection absorption spectroscopy have allowed to confirm the alpha helical structure of the NTP and to determine its orientation as well as to compare the structure and orientation of RDH-11 and N-del RDH-11. For example, compared to the pure protein, N-del RDH-11 undergoes a conformational change upon monolayer binding.

3166-Pos Board B213
Calcium Independent Substrate and Product Diffusion Process of Secretary Phospholipase A2 from Taiwan Cobra
Wen-Guey Wu1,2, Wei-Ning Huang1, Yi-Hung Yeh4, Chang-Ru Chiu3, Tzuy-Schiuan Yang2, Chwan-Deng Hsiao4.
1National Tsing Hua University, HsinChu, Taiwan, 2National Synchrotron Radiation Research Center, Hsinchu, Taiwan, 3Yuanpei University, HsinChu, Taiwan, 4Academia Sinica, Taipei, Taiwan.

Understanding how membrane lipids can be delivered to the active site distant from the interface binding surface of the enzyme and how the products got released from the active site is important to depict the interfacial enzyme reaction mechanism. Based on the crystal structure of the trimeric complex structure of the cobra phospholipase A2 (PLA2) from Naja atra with the enzymatic substrate of diacylglycerol at the hydrocarbon chains of phospholipids and that with the interfacial surface of the enzyme. We also show that phospholipids in membranes surface with high curvature can promote the diffusion of the lipid into the substrate binding hydrophobic channel of cobra PLA2 in a calcium independent manner. The lipid substrate binding site within the channel without calcium is distinct from that in the presence of calcium as one compares its binding position with that of transition binding intermediates. Interestingly, calcium appears to stabilize the binding of both substrate and product binding at the hydrophobic channel even though it is required for the enzymatic catalysis. Our results suggest that the calcium independent lipid diffusion process play an important role in the interfacial binding activation of secretary PLA2 and shed new light for the future depiction of the energy landscape.

3167-Pos Board B214
A New Conformation in SERCA and PMCA Ca2+ Pumps Revealed by a Photoactivatable Phospholipidic Probe
Irene C. Mangialavori1, Ana Maria Villamil Giraldo1, Cristina Marino Busjle Marino Busjle1, Mariela Ferreira Gomes1, Ariel Caride2, Juan Pablo F.C. Rossi1.
1IQFIB-Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina, 2Department of Biochemistry and Molecular Biology. Mayo Clinic., Rochester, MN 55905, MN, USA.

The purpose of this work was to obtain structural information about conformational changes in PMCA membrane regions and their interaction with surrounding lipids. To this end, we have quantified labeling of the sarcoplasmic reticulum Ca2+ pump (SERCA) and the plasma membrane Ca2+ pump (PMCA) with the photoactivatable phosphatidylcholine analog [125I]TID-PC/16, under different conditions. This probe has been used previously to analyze lipid-protein interfaces. We determined that: (1) Incorporation of the photoactivatable agent to SERCA decreases 25% when labeling is performed in the presence of Ca2+ as opposed to EGTA (2) The decrease in labeling matches qualitatively with the decrease in transmembrane surface exposed to the solvent calculated by the Lee-Richards method, when comparing the known SERCA structures 2ear (E2) (pdb file) and 1sua (E1Ca) (pdb file). (3) Labeling of PMCA incubated with Ca2+ and calmodulin decreases by almost the same amount as compared to EGTA. However incubation with Ca2+ alone (no calmodulin) increases labeling by 55%. This suggests that the conformation in which the enzyme is fully active (Ca2+-SERCA and Ca2+-CaM for PMCA) exhibits a more compact transmembrane arrangement in both proteins. Addition of C28, a peptide containing the calmodulin binding region of PMCA, to SERCA in the presence of Ca2+ increases [125I]TID-PC/16 incorporation, confirming the suggestion made above. The results indicate that there is an autoinhibited conformation in these P-type ATPases that affects not only the cytoplasmic regions but also the transmembrane segments.

Muscle: Fiber & Molecular Mechanics & Structure II

3168-Pos Board B215
In Vitro Study of Mechanical and Kinetic Properties of Myosin II from Frog Skeletal Muscle
Ravikrishnan Elangovan1, Marco Capitanioi, Francesco S. Pavone2, Vincenzo Lombardi1,3.
1Physiolab, University of Florence, Firenze, Italy, 2Laboratory of Non-Linear Spectroscopy, Firenze, Italy, 3CRS- SOFT, INFM-CNRS, University “La Sapienza”, Rome, Italy.

We provide for the first time the protocol for efficient extraction and conservation of myosin II from frog skeletal muscle, a methodological achievement that makes it possible to apply single molecule techniques to the molecular motor that has been best characterized for its mechanical, structural and energetic characteristics in single muscle cells, where it works as an ensemble in each half-sarcomere. With the in vitro motility assay, we estimate the sliding velocity of actin on frog myosin II (Vf) and its modulation by temperature (range 4-30 °C) and substrate concentration. Vf is 8.88 ± 0.51 ml/s at 30.6 °C and decreases down to 1.6 ± 0.23 ml/s at 4.5 °C. The in vitro mechanical and kinetic parameters are integrated with the in situ mechanical and kinetic parameters of frog muscle myosin working in array in each half-sarcomere. By comparing Vf with the shortening velocity determined in intact frog muscle fibres under different loads and their dependence on temperature (Piazzesi et al., J. Physiol., 549:93, 2003), we find that Vf is 40-50% less than the in situ unloaded shortening velocity (Vs) at the same temperature and we determine the load that explains the reduced value of Vf. With the integrated approach we can define fundamental kinetic steps of the acto-myosin ATPase cycle in situ and their relation with mechanical steps. In particular we clarify the relation between the rate of ADP release and the rate of detachment of myosin from actin and their temperature dependence. Supported by NIH (Grant no. 5RO1AR49033) and MUIR Italy.

3169-Pos Board B216
Construction Of Myosin Model Explaining Difference Between Experimental Results Observed With Scanning Probe And Optical Tweezers
Hiroto Tanaka.
PRESTO, JST, Sendai, Japan.

Single molecule measurement (SMM) techniques have been applied to myosin. Then, SMMs’ results show that, during single ATP hydrolysis cycle, myosins II & V repeat several cycles of association and dissociation from an actin filament to generate sliding motion, suggesting that myosin can convert ATP energy by multi-step processes (MSPs). This MSPs cannot be explained by conventional “lever-arm model”, then “Biased Brownian motion (BBM) model” has been proposed for a mechanism of myosin. However, the MSPs have been observed only by SMM with scanning probe (SP), and not observed with optical tweezers (OT) widely used for SMM. Because MSPs have been observed clearly with myosin II & V, it is strongly suggested that BBM is movement mechanism of myosin. Then, why have MSPs not been observed with optical tweezers? In order to answer this question, here, we construct model including characteristics of SP & OT, and simulate movement of myosin attached to measurement probes (SP or OT). Taking into account the effects of measurement probes, we construct 2-dementional potential along an actin filament, and simulate movement of myosin. Then, SMMs’ results show that, during single ATP hydrolysis cycle, myosins II & V repeat several cycles of association with- and dissociation from an actin filament, when comparing the known SERCA structures 2ear (E2) (pdb file) and 1sua (E1Ca) (pdb file). (3) Labeling of PMCA incubated with Ca2+ and calmodulin decreases by almost the same amount as compared to EGTA. However incubation with Ca2+ alone (no calmodulin) increases labeling by 55%. This suggests that the conformation in which the enzyme is fully active (Ca2+-SERCA and Ca2+-CaM for PMCA) exhibits a more compact transmembrane arrangement in both proteins. Addition of C28, a peptide containing the calmodulin binding region of PMCA, to SERCA in the presence of Ca2+ increases [125I]TID-PC/16 incorporation, confirming the suggestion made above. The results indicate that there is an autoinhibited conformation in these P-type ATPases that affects not only the cytoplasmic regions but also the transmembrane segments.