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a b s t r a c t

This paper addresses a decentralized robust set-valued state estimation problem for a
class of uncertain systems via a data-rate constrained sensor network. The uncertainties of
the systems satisfy an energy-type constraint known as an integral quadratic constraint.
The sensor network consists of spatially distributed sensors and a fusion center where
set-valued state estimation is carried out. The communications from the sensors to the
fusion center are through data-rate constrained communication channels. We propose a
state estimation scheme which involves coders that are implemented in the sensors, and
a decoder–estimator that is located at the fusion center. Their construction is based on the
robust Kalman filtering techniques. The robust set-valued state estimation results of this
paper involve the solution of a jump Riccati differential equation and the solution of a set
of jump state equations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Sensor networks have been widely applied to the state estimation and control of large-scale control systems. There are
a number of advantages of using sensor networks or multisensors; e.g., more information can be gathered through the use
of sensor fusion techniques, geographical constraints can be overcome by using a number of spatially distributed sensors,
and reliability is improved from some degree of redundancy of sensors. For instance, sensor fusion has been widely applied
to vehicle and missile guidance; see e.g. [1,2].
The communications in a sensor network are often implicitly assumed to be of infinite precision or to have an infinite

bit rate. Due to the enormous growth in communication technology, it is becoming more common to employ data-rate
constrained communication networks for the exchange of information between system components. However, classical
estimation theory cannot be applied since the measurement information is sent via data-rate constrained communication
channels, hence, the estimator only observes the transmitted sequence of finite-valued symbols. As amatter of fact, in recent
years, there has been a significant interest in the problems of state estimation and control with communication; for state
estimation, see, e.g., [3–15]; for both control and estimation, see, e.g, [16–25].
In relation to the state estimation problem, estimation of stochastic systems via communication channels were studied

by using: recursive linear minimum variance estimator [5,10]; H∞ filter [11]; dynamic Markov jump filter [12]; and least-
squares filters [8,13,14]. For instance, the approach taken in [8,13,14] is based on the covariance functions of the process that
is included in the observation equation, and hence the knowledge of the signal state-space model is not required that is in
contrast to [5,10–12]. State estimation using quantized measurements with logarithmic quantizers was studied in [15].
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As a matter of fact, the above-mentioned papers mainly considered state estimation via communication channels with
effects, such as delay, noises, quantization, and packet dropouts during transmission, in a stochastic setting. In Ref. [4],
it is shown that if Shannon capacity bound is met, a stable observer with limited computation complexity and memory
per unit time can be constructed for estimating discrete-time partially observed linear systems via limited-capacity noisy
communication channels. Necessary and sufficient conditions for reconstruction and stability of linear stochastic partially
observed systems via additivewhiteGaussiannoise channelswere derived in [16]. Using the conditions, an encoder, decoder,
and controller of mean-square reconstruction and stability were also designed. In order to reduce sensor data traffic, a
modified Kalman filter, that operates when the sensor values change more than a specified value, was proposed in [9].
When the statistics of the external noises and uncertain parameters in the systems are unknown, an H∞ filter for linear

systems with uncertainties that belong to L2[0,∞) was developed in [7] in a deterministic setting with communication
channels subject to bounded delays and data-packet dropouts. For a similar class of systems and also in a deterministic
setup, but in a different approach, a constructive coder-decoder scheme for a robust set-valued state estimation problem of
continuous-time uncertain linear systems via limited capacity communication channels was proposed in [3]. The proposed
coder–decoder was developed using the idea of the recursive set-valued state estimation technique [26] that originated
from the deterministic interpretation of the Kalman filter [27]. When the Kalman filter is viewed from this deterministic
view point, the set-valued state estimation problem turns out to be a linear quadratic (LQ) optimal control problem in
which time is reversed.
Using the approach taken by [26], but with a different coding scheme, a constructive algorithm for robust estimationwas

proposed in [6] for a wider class of uncertain systems. The uncertainties of the systems considered in [6] are defined by a
certain Integral Quadratic Constraint (IQC) (see, e.g., [28]), and this class of uncertainties allows for nonlinear, time-varying,
dynamic uncertainties. However, only point state estimates can be obtained by the algorithm proposed in [6] as compared
to the set-valued state estimate. Indeed, besides the work [3], the problem of robust set-valued state estimation via limited
communication channels is seldom reported in the literature to the best of the authors’ knowledge.
Even though the works of [3,6] provide constructive algorithms that allow one to reliably estimate the state of an uncer-

tain system through communication networks, a drawback of their proposed coding schemes is that they are centralized,
requiring that all the measurement information is available to a single centralized coder. The coder uses the information to
obtain a state estimate that is then encoded and sent to a decoder. However, this scheme may not be practical in a sensor
network or multisensor setting since the sensors may be spatially distributed or geographically separated. The transmission
of all the measurement information to a centralized coder, and the transmission of the full state estimate to a decoder, will
take up a significant amount of bandwidth, as bandwidth is always a constraint in a communication network. Therefore, it
is more realistic to transmit each sensor measurement to the decoder directly, rather than collecting all the measurements
from the sensors and processing them at a centralized coder.
In this paper, we consider a decentralized robust set-valued state estimation via a data-rate constrained, or limited

capacity, sensor network. The sensors in the network are spatially distributed. Instead of transmitting all the measurements
to a centralized coder as in [3,6], we employ a decentralized scheme and design a coder for each individual sensor. Each
encoded measurement is sent to a remotely-located fusion center where a decoder and a robust state estimator are
embedded. The fusion center combines all the received codewords from the remote sensors and produces a set-valued
state estimate, which is an ellipsoid, that over-bounds the true set of possible states of the uncertain system.
The systems considered in this paper consist of uncertainties that satisfy the IQC and, as mentioned before, this class

of uncertainties allows for nonlinear, time-varying, dynamic uncertainties. Our proposed algorithm computes a set-valued
state estimate at the fusion center by using the codewords generated at the remote sensors. A major benefit of having a set-
valued estimate over a point estimate is that not only is the point estimate available, but also the upper and lower bounds
of the true system states can be computed at the fusion center or decoder. In other words, the range of possible states of
the uncertain system can also be obtained at the fusion center. The robust set-valued state estimation results of this paper
involve the solution of a jump Riccati differential equation and the solution of a set of jump state equations. The jump Riccati
differential equation has discontinuous right-hand sides and it behaves like a standard Riccati differential equation between
sampling instants, but its solution exhibits finite jumps at the sample times.
The main advantages of this paper over the works of [3,6] are: (1) a decentralized scheme is used instead of a centralized

scheme; (2) the communication overhead is reduced; (3) a set-valued state estimate is obtained for a larger class of
uncertain systems; and (4) a continuous set-valued state estimate is obtained at the decoder rather than at discrete sampling
times. As for the communication overhead, the schemes proposed in [3,6] require sensors-to-coder and coder-to-decoder
communication links; whereas in this paper, we only need communication links from sensors to a decoder and hence
communication overhead can be significantly reduced. Another advantage of this paper when compared with the work [6]
is that here we obtain a set-valued state estimate, rather than a point-valued state estimate, of an uncertain system at the
remotely-located decoder. From the set-valued state estimate, upper and lower bounds of the true system states can be
computed. In contrast, the scheme proposed in [6] only allows us to retrieve a point-valued state estimate and the bounds
of the true system states are not available at the decoder. Furthermore, the state estimate obtained by the algorithms in [3,
6] is available only at discrete times rather than continuously available as in our scheme. In other words, the inter-sampling
behavior was not studied and considered in [3,6], but it is considered in this paper.
Furthermore, the improved feature of this decentralized scheme as compared to other schemes previously proposed in

the area of state estimation (or control) over communication networks is that here we only require a simple quantization at
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the coders within the sensors, and the use of the central processing unit (CPU) is not necessary in the coders. We only need a
CPU at the fusion center to perform state estimation. In contrast, the coding schemes in the previous works (e.g., Refs. [18,3,
19,6,22,23]) require that the centralized coder is equipped with a state estimator, and hence the use of a CPU in the coder is
necessary. Therefore, our proposed decentralized scheme is more applicable than the previous scheme, since we only need
simple and low computational-cost coders in the sensors.
The paper is organized as follows. In Section 2, we formulate the problem of decentralized robust state estimation via a

data-rate constrained sensor network. To solve theproblem, somepreliminary results are presented in Section 3. In Section 4,
a design of coders and decoder–estimator that solves the proposed problem is introduced. Finally, a practical example is
presented in Section 5 to demonstrate the effectiveness of the proposed algorithms.

2. Problem statement

Consider the time-varying uncertain system defined over the finite time interval [0,NT ]:

ẋ(t) = A(t)x(t)+ B(t)w(t)
z(t) = K(t)x(t)

(1)

where N > 0 is an integer, T > 0 is a given constant, x ∈ Rn is the state, w(t) ∈ Rp is an uncertainty input, z(t) ∈ Rq is
the uncertainty output and A(·), B(·), and K(·) are bounded piecewise continuous matrix functions defined on [0,NT ]. The
uncertainty inputw(·) depends dynamically on the uncertainty output z(·), and itmay describe some dynamic uncertainties
such as those that arise from unmodeled dynamics.
The decentralized estimation problem studied in this paper is to robustly estimate the state of the uncertain system (1)

by a sensor network consisting of l low-cost and low-power sensors, namely {Ω1,Ω2, . . . ,Ωl}, that are spatially distributed.
For each sensorΩi, the observation or measurement yi(·) ∈ Rmi is corrupted by a noise vi(·) ∈ Rmi and it is given by

yi(t) = Ci(t)x(t)+ vi(t), i = 1, 2, . . . , l, (2)
where the measurement matrix Ci(·) ∈ Rmi×n is bounded and piecewise continuous over the time interval [0,NT ].
The information of themeasurement yi(·) from each sensorΩi is passed on to a fusion center that is remotely located from

the sensors. The only way of communicating information from the sensors to the fusion center is via digital communication
channels. In other words, each sensor Ωi not only observes the measurement yi(·), but also converts it into a finite-length
codeword for transmitting the information to the fusion center. To convert the measurement yi(·) into a finite-length
codeword, each sensor Ωi is equipped with a coder Fi that takes the measurement yi(·) and encodes this measurement
into a codeword hi(·).
The channel connecting the sensorΩi to the fusion center carries one discrete-valued symbol hi(kT ) at time kT , selected

from a coding alphabet Hi of size νi. Here T > 0 is a given period and k = 0, 1, 2, . . . ,N . This restricted number νi of
codewords hi(kT ) is determined by the transmission data rate of the channel. We assume that the channel is a perfect
noiseless channel and there is no time delay.
Using this communication channel, the codeword hi(kT ) produced by the coder Fi is transmitted to the fusion center. A

decoder and a robust state estimator are embedded in the fusion center. The job of the fusion center is to combine all the
received codewords h1(kT ), h2(kT ), . . . , hl(kT ) from the remote sensors and to produce a set-valued state estimateXt , for
all t ∈ [kT , (k+ 1)T ), that over-bounds the true set of possible state x(t) of system (1) over the time interval [kT , (k+ 1)T ).
The decoder and the state estimator within the fusion center are called decoder–estimator G.
We define the total number of measurements from all the sensors as m̄ := m1 + m2 + · · · + ml. Let h(·) =

[h1(·) h2(·) . . . hl(·)]′ ∈ Rm̄ be the vector of codewords produced by the sensors. Then the coders and the
decoder–estimator are in the form: for k = 0, 1, 2, . . . ,N , Coders (i = 1, 2, . . . , l): hi(kT ) = Fi

(
yi(·) |kT0

)
; Decoder-

estimator: Xt = G (h(T ), h(2T ), . . . , h(kT )), ∀t ∈ [kT , (k+ 1)T ). A schematic of the proposed robust state estimation via
a data-rate constrained sensor network is illustrated in Fig. 1.

Notation 2.1. Let x = [x1 x2 · · · xn]′ be a vector fromRn. Then ‖x‖∞ := maxj=1,...,n |xj|. Furthermore, ‖·‖ denotes the standard

Euclidean vector norm: ‖x‖ :=
√∑n

j=1 x
2
j .

Notation 2.2. The set F = {F1, F2, . . . ,Fl} denotes the collection of coders in the sensors. The vectors y = [y1 y2 . . . yl]′ ∈
Rm̄ and v = [v1 v2 . . . vl]

′
∈ Rm̄ denote the augmented measurement vector from all the sensors and the augmented

measurement noise vector, respectively. Themeasurementmatrix C(·) ∈ Rm̄×n is defined as C(·) :=
[
C ′1(·)

... C ′2(·)
... . . .

... C ′l (·)
]′
.

To solve our proposed estimation problem, we make the following assumption on the uncertain system (1) and the
measurement noise in (2).

Assumption 2.1. The uncertainty w(t) vector in system (1) and the augmented measurement noise vector v(t) satisfy the
following integral quadratic constraint (IQC). Let Y0 = Y ′0 > 0 be a given matrix, x0 ∈ Rn be a given vector, d > 0 be a given
constant, Q (·) = Q (·)′ and R(·) = R(·)′ be given bounded piecewise continuous matrix weighting functions satisfying the
following condition. There exists a constant δ > 0 such that Q (t) ≥ δI , R(t) ≥ δI for all t . Then for a given time interval
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Fig. 1. Robust state estimation via a data-rate constrained sensor network.

[0, s], s ≤ NT , we will consider the uncertainty input w(·), the measurement noise v(·) and initial condition x(0) such
that

(x(0)− x0)′Y0(x(0)− x0)+
∫ s

0
(w(t)′Q (t)w(t)+ v(t)′R(t)v(t))dt ≤ d+

∫ s

0
‖z(t)‖2dt. (3)

The description (3) in Assumption 2.1 allows the uncertainty inputs w(·) and v(·) to be dynamically dependent upon
the uncertainty output z(·). In fact, the IQC condition (3) can be satisfied by many classes of commonly known uncertain
systems [28]. For instance, consider the norm-bounded uncertain system:

ẋ = [A(t)+ B(t)1(t)K1]x(t), y(t) = [C(t)+1(t)K2(t)]x(t), (4)

where 1(t) is an uncertainty matrix and the initial value satisfies (x(0) − x0)′Y0(x(0) − x0) ≤ d. If we let w(t) =
1(t)K1(t)x(t), v(t) = 1(t)K2(t)x(t), z(t)′ = [K1(t)x(t) K2(t)x(t)]′ and ‖1(t)‖ ≤ 1 for all t ∈ [0,NT ), then the IQC
condition (3) is satisfied with Q (·) ≡ R(·) ≡ I . Also, it is not hard to see that systems with sector-bounded nonlinearities
(a class of nonlinear systems arose from the celebrated theory of absolute stability) can be considered as a special case of
the norm-bounded uncertain systems. System (1) with uncertainties satisfying (3) is more general than the ones considered
in [3] where K(t) ≡ 0. In other words, in this paper, we allow a much larger class of uncertainties in the systems than that
of [3]; for example, the norm-bounded uncertain systems (4) described above cannot be handled by the technique proposed
by [3].

Notation 2.3. Let y(t) = y0(t) be a fixed measured output of the uncertain system (1) and let the finite-time interval [0, s]
be given. Furthermore, let F and G be given coders and decoder–estimator, respectively. Then,Xs[x0, y0(·) |s0, d,F ,G] denotes
the set produced by the coders/decoder–estimator pair (F ,G) that captures all possible state x(s) at time s for the uncertain
system (1) with uncertainty input w(t) and measurement noise v(t) satisfying the constraint (3).

The problem of decentralized robust state estimation via a sensor network with data-rate constrained communication
channels considered in this paper is the problem of constructing the coders/decoder–estimator pair (F ,G) and the set
Xs[x0, y0(·) |s0, d,F ,G].

Definition 2.1. The coders/decoder–estimator pair (F ,G) is said to detect the state of system (1) via a data-rate constrained
sensor network if for any vector x0 ∈ Rn, any time s ∈ [0,NT ], any constant d > 0, and any sampling period T > 0, and any
fixed output y(t) = y0(t), the setXs[x0, y0(·) |s0, d,F ,G] is bounded.

3. Preliminaries

This section presents two useful preliminary results that are important for the development of the main result in this
paper. The first result concerns the robust prediction that will be applied to determining the size of a quantization region
in designing coders F and decoder–estimator G. The second result concerns the set-valued state estimation of uncertain
continuous systems with discrete measurements.

3.1. Robustly predictable systems

We consider system (1) that satisfies the following IQC condition. Let d̂ > 0 be a given constant, S0 = S ′0 > 0 be a given
matrix, and Q (·) = Q (·)′ be a given bounded piecewise continuous matrix weighting function satisfying the following
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condition. There exists a constant δ > 0 such that Q (t) ≥ δI for all t . Then for a given time interval [0, s], s ≤ NT , we will
consider the uncertainty inputw(·) and initial condition x(0) such that

x(0)′S0x(0)+
∫ s

0
w(t)′Q (t)w(t)dt ≤ d̂+

∫ s

0
‖z(t)‖2dt. (5)

Next, consider the following Riccati differential equation: for all t ∈ [0, NT ],

− Ṡ(t) = S(t)A(t)+ A(t)′S(t)+ S(t)B(t)Q (t)−1B(t)′S(t)+ K(t)′K(t), S(0) = S0. (6)

Definition 3.1. Uncertain system (1) and (5) is said to be robustly predictable on [0,NT ] if for any time s ∈ [0,NT ] and any
constant d̂ > 0, the setXs[d̂] is bounded whereXs[d̂] denotes the set of all possible state x(s) at time s for the uncertain
system (1) with uncertainty inputw(t) and initial condition x(0) satisfying the constraint (5).

Theorem 3.1. Consider system (1). Let S0 = S ′0 > 0 be a given matrix, and Q (·) = Q (·)
′ > 0 be a given matrix function such

that condition (5) holds over time interval [0,NT ]. Then, for a given constant d̂ > 0 and any time s ∈ [0,NT ], the system (1) and
(5) is robustly predictable on [0,NT ] if and only if the Riccati equation (6) has a solution over [0,NT ] such that S(·) = S(·)′ > 0.
Furthermore, the set Xs[d̂] is given byXs[d̂] = {xs ∈ Rn : x′sS(s)xs ≤ d̂}.

Proof. The proof is similar to the proof of Theorem 2.1 in [26]. Here, we set x0 = 0, and the cost function is defined by
J[xs, w(·)] := x(0)′S0x(0)+

∫ s
0 w(t)

′Q (t)w(t)− x(t)′K(t)′K(t)x(t)dt ≤ d̂. (See Appendix for details.) �

Theorem3.1 shows that the state x(·)of theuncertain system (1) belongs to the ellipsoidXs[d̂] if its hypothesis is satisfied.
In otherwords, the bounds on x(·) can be evaluated fromXs[d̂] for s ≤ NT . In fact, Theorem3.1 ismarkedly different from [6,
Lemma 5.3.2] that was introduced to compute the ellipsoid that bounds the state estimate x̂(·) rather than the actual state
x(·). Since in [6], their coder encodes the state estimate x̂(·) and the knowledge on the bounds of x̂(·) is required to quantize
it. On the other hand, our proposed coderswill not encode x̂(·) instead theywill encode themeasurements yi(·), i = 1, . . . , l,
that are related to x(·) not x̂(·). When comparing Theorem 3.1 with [26, Theorem 2.1], Theorem 3.1 is a prediction result
whereas [26, Theorem 2.1] is a filtering result.

Corollary 3.1. Suppose that Assumption 2.1 holds and the Riccati equation (6) has a solution S(·) = S(·)′ > 0 over [0,NT ]with
initial condition S(0) = Y0. Then system (1) is robustly predictable on [0,NT ].

Proof. Using d, x0 and Y0 in (3), we define a constant d̂ := λmax(Y0)
(
‖x0‖ +

√
d/λmin(Y0)

)2, whereλmax(Y0) andλmin(Y0) are
the largest and smallest eigenvalues of the matrix Y0 respectively. Inequality (3) then implies inequality (5) with S0 = Y0.
Using Theorem 3.1, system (1) is robustly predictable over [0,NT ]. �

3.2. Robust state estimation with discrete quantized measurements

In this subsection, we again consider the continuous-time system (1), but assume that the remote sensors observe the
system at discrete times and also that these sensors quantize their measurements. We define the augmented discrete
quantized measurement equation as:

ȳ(kT ) = C(kT )x(kT )+ v̄(kT ) (7)

where

ȳ(·) =
[
ȳ1(·) ȳ2(·) . . . ȳl(·)

]′
∈ Rm̄,

v̄(·) =
[
v̄1(·) v̄2(·) . . . v̄l(·)

]′
∈ Rm̄

are the discrete quantized measurement vector andmeasurement noise vector, respectively. In (7), the measurement ȳ(kT )
is the sampled and quantized version of y(t) in (2), and it is only available at discrete time instances T , 2T , . . . ,NT . In this
case, the measurement noise v̄(kT ) in (7) resulted from two sources, namely v(kT ) (i.e., the noise v(t) in (2) when t = kT )
and the quantization noise. Thus, the measurement noise of the sampled and quantized measurement can be written as

v̄(kT ) = v(kT )+ ȳ(kT )− y(kT )

where (ȳ(kT )− y(kT )) is defined as the quantization noise at kT .
Suppose that the uncertainty w(·) and the measurement noise v̄(·) satisfy a Sum Integral Quadratic Constraint (SIQC)

such that

(x(0)− x0)′P−10 (x(0)− x0)+
∫ s

0
w(t)′Q̄ (t)w(t)dt +

∑
kT≤s

v̄(kT )′R̄v̄(kT ) ≤ d̄+
∫ s

0
‖z(t)‖2dt, (8)

where P0, Q̄ (·) and R̄(·) are given symmetric positive definite weighting matrices of suitable dimensions, and d̄ > 0 is a
given constant. Note that Q̄ (·), R̄(·) and d̄ can be different from Q (·), R(·) and d in (2) and (3).
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Notation 3.1. Let ȳ(kT ) = ȳ0(kT ) be a given fixed discrete measurement of system (1). The set X̄s[x0, ȳ0(·) |s0, d̄] denotes a set
containing all the possible states of system (1) at time s ∈ [0,NT ] with uncertainty and measurement noise satisfying SIQC (8).

The following set-valued state estimation of an uncertain continuous system with discrete measurements is a special
case of Theorem 6.3.1 in [29]. Before we state this result, we introduce a notation: the term ν(t−) denotes the limit of the
function ν(·) at the point t from the left; i.e., ν(t−) := limε>0,ε→0 ν(t − ε).

Theorem 3.2. Let P0 = P ′0 > 0 be a given matrix, Q̄ (·) = Q̄ (·)
′ > 0 and R̄(·) = R̄(·)′ > 0 be given matrix functions. Consider

uncertain system (1) and constraint (8) with discrete measurement (7). Then, the set X̄s[x0, ȳ0(·) |s0, d̄] is bounded over [0,NT ]
if and only if the following jump Riccati equation

Ṗ(t) = A(t)P(t)+ P(t)A(t)′ + B(t)Q−1(t)B(t)′ + P(t)K(t)′K(t)P(t), for t 6= kT

P(kT ) = [P−1(kT−)+ C(kT )′R̄(kT )C(kT )]−1, for k = 1, 2, . . . ,N
(9)

has a solution over [0,NT ] such that P(·) = P(·)′ > 0 and P(0) = P0. Furthermore, the set X̄s[x0, ȳ0(·) |s0, d̄] = {xs ∈ Rn :
(xs − x̂(s))′P(s)−1(xs − x̂(s)) ≤ d̄+ ρ̄(s)} for any s ∈ [0,NT ], where x̂(·) is the solution to the following jump state equation:

˙̂x(t) = [A(t)+ P(t)K(t)′K(t)]x̂(t), for t 6= kT

x̂(kT ) = x̂(kT−)+ P(kT−)C(kT )′R̄(kT )
(
ȳ(kT )− C(kT )x̂(kT−)

)
, for k = 1, 2, . . . ,N,

(10)

with initial condition x̂(0) = x0, and the function ρ̄(s) is defined as ρ̄(s) :=
∫ s
0 ‖K(t)x̂(t)‖

2dt−
∑
kT≤s ‖R̄(kT )

1/2(C(kT )x̂(kT )−
ȳ0(kT ))‖2.

Proof. See Theorem 6.3.1 in [29]. �

Remark 3.1. The jump Riccati differential equation (9) behaves like a standard Riccati differential equation between
sampling instants, but its solution exhibits finite jumps at the sample times.

4. Coders and Decoder-estimator

In this section, we design coders F = {F1,F2, . . . ,Fl} and a decoder–estimator G that solve the state estimation
problem proposed in Section 2. For each sensorΩi, its coder Fi measures yi(t) and converts it into a finite-length codeword
hi(kT ) through sampling and quantization. The coderFi is static and does not have anymemory, and therefore, computations
at the coder can be kept at minimal.
To construct each Fi, we first need to know the possible range of yi(·) for quantization a priori. By using

Corollary 3.1(Robust predictability), if system (1) with uncertainty w(·) and initial condition x(0) satisfying the IQC (5),
and the Riccati equation (6) has a solution over [0,NT ] such that S(·) = S(·)′ > 0, then for all s ∈ [0,NT ],

‖x(s)‖∞ ≤ β
√
d̂, β := max

k=0,1,2,...,N

(
max

j=1,2,...,n

√
[S(kT )−1]j,j

)
, (11)

where [S(kT )−1]j,j denotes the (j, j) element of the matrix S(kT )−1.
Since each measurement matrix Ci(·) in (2) is a bounded piecewise continuous matrix function, there exists a constant

γi > 0 such that maxk=0,1,2,...,N ‖Ci(kT )‖∞ = γi, where ‖Ci(·)‖∞ denotes the maximum row sum matrix norm of the
matrix Ci(·), i.e., ‖Ci(·)‖∞ := maxi

∑n
j=1 |[Ci(·)]i,j|. To get a bound for yi(·), we impose the following assumption on the

measurement noise (2).

Assumption 4.1. Themeasurement noise vi(·) in (2) from each sensorΩi is bounded and there exists a known boundαi > 0
such that ‖vi(s)‖ ≤ αi for all s ≤ NT .

Then a bound Li for the measurement yi(·) over the time interval [0,NT ] can be defined as follows:

Li := γiβ
√
d̂+ αi ≥ ‖yi(s)‖∞ (12)

for all s ∈ [0,NT ]. The bound Li (12) can be pre-computed without the knowledge of the actual output yi(·). This bound is
then used to define a quantization region for the output measurement yi(kT ), for k = 0, 1, 2, . . . ,N .
Each coderFi, i = 1, 2, . . . , l uses uniform quantization of themeasurement yi(·). Let the setBLi := {yi ∈ Rmi : ‖yi‖∞ ≤

Li} be the quantization region. Themeasurement yi(·) is quantized by simply dividing the quantization regionBLi uniformly
into qmii hypercubes where qi is a specified integer. For each j ∈ {1, 2, . . . ,mi}, we divide the corresponding component of
the vector yi = [yi,1 yi,2 . . . yi,mi ]

′ into qi intervals as follows:
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I j1(Li) :=
{
yi,j : yi,j ∈

[
−Li, −Li +

2Li
qi

)}
;

I j2(Li) :=
{
yi,j : yi,j ∈

[
−Li +

2Li
qi
,−Li +

4Li
qi

)}
;

...

I jqi(Li) :=
{
yi,j : yi,j ∈

[
Li −

2Li
qi
, Li

]}
.

Then for any yi ∈ BLi , yi belongs to one of the hypercubes in BLi . In other words, there exist unique mi integers
θi,1, θi,2, . . . , θi,mi ∈ {1, 2, . . . , qi} such that yi ∈ I

1
θi,1
(Li)× I2θi,2(Li)×· · ·× I

mi
θi,mi

(Li), where I1θi,1(Li)× I
2
θi,2
(Li)×· · ·× I

mi
θi,mi

(Li) is

one of the qmii hypercubes containing yi. Corresponding to the integers θi,1, θi,2, . . . , θi,mi , we define the vector ηi as follows:

ηi(Θi) := −Li +
[
Li(2θi,1 − 1)

qi

Li(2θi,2 − 1)
qi

· · ·
Li(2θi,mi − 1)

qi

]′
whereΘi := [θi,1 θi,2 . . . θi,mi ]

′. The vector ηi(·) is the center of the hypercube I1θi,1(Li)× I
2
θi,2
(Li)× · · ·× I

mi
θi,mi

(Li) containing
the original point yi. Each one of the hypercubes in the quantization region BLi will be assigned a codeword hi(kT ) = Θi
and the coder Fi will transmit the codeword hi(kT ) corresponding to the current measurement vector yi(kT ). By defining
ȳi(kT ) := ηi(Θi), for a given ε > 0, we can choose qi > 0 such that

‖yi(kT )− ȳi(kT )‖∞ ≤ Li/qi ≤ ε, (13)

for all k = 0, 1, 2, . . . ,N . In other words, ε gives the quantization error and it can be controlled by varying the parameter
qi. However, the allowable quantization parameter qi is limited by the capacity of the communication channel between the
sensor Ωi and the fusion center. If qi is unbounded, it means the measurement yi(kT ) can be transmitted with an infinite
precision.
Now we are in a position to introduce our proposed coders and decoder–estimator:

Coder Fi (i = 1, 2, . . . , l): for k = 0, 1, 2, . . . ,N,

hi(kT ) = Θi, for yi ∈ I1θi,1(Li)× I
2
θi,2
(Li)× · · · × I

mi
θi,mi

(Li). (14)

Decoder-estimator G:

Consists of jump state Eq. (10) and Riccati equation (9) with x̂(0) = x0, P(0) = Y−10 ,

and ȳ(kT ) = [η1(Θ1) η2(Θ2) . . . ηl(Θl)]′, for h(kT ) = [Θ1 Θ2 . . . Θl]′.
(15)

The main result of this paper is then stated as follows:

Theorem 4.1. Consider the uncertain system (1) and (2). Let R̄ = diag{r−11 , r
−1
2 , . . . , r

−1
m̄ } be a given diagonal constant matrix

with ri > 0, and let T > 0 and ε > 0 be given constants, and s ∈ (0,NT ] be given. Suppose that Assumptions 2.1 and 4.1
hold and also that the solution S(·) to the Riccati equation (6) with initial condition S(0) = Y0 and the solution P(·) to the jump
Riccati equation (9)with initial condition P(0) = Y−10 are both defined and positive-definite on the interval [0,NT ]. Furthermore,
suppose that the quantization parameter qi satisfies

qi ≥ Li/ε, i = 1, 2, . . . , l, (16)

where Li is defined in (12). Then the coders/decoder–estimator pair (F ,G) (14), (15) detects the state of system (1), (2) via a
data-rate constrained sensor network and the set Xs[x0, y0(·) |s0, d,F ,G] is given by

Xs[x0, y0(·) |s0, d,F ,G] = {xs ∈ Rn : (xs − x̂(s))′P(s)−1(xs − x̂(s)) ≤ d+ ρ(s)} (17)

where ρ(s) :=
∫ s
0 ‖K(t)x̂(t)‖

2dt + N(‖α‖ + ε
√
m̄)2/r −

∑
kT≤s ‖R̄

1/2(C(kT )x̂(kT ) − ȳ0(kT ))‖2, α := [α1 α2 . . . αl]′ and
r := mini≤m̄{ri}. The state x̂(·) is defined by (15) with initial condition x0, ȳ0(·) is the sampled and quantized signal of the fixed
measurement vector y0(·).

Proof. By using Assumption 2.1 and the solution S(·) to the Riccati equation (6), Corollary 3.1 andAssumption 4.1 allowus to
determine a bound Li (12) for the eachmeasurement yi(·) for i = 1, 2, . . . , l. Next, let y(·) = [y1(·) y2(·) . . . yl(·)]′ be a fixed
measurement vector of the uncertain system (1), (3) taken by sensorsΩ1,Ω2, . . . ,Ωl. At time t = kT , k = 0, 1, 2, . . . ,N ,
the decoder–estimator G receives the codeword vector h(kT ) = [h1(·) h2(·) . . . hl(·)]′ corresponding to the measurement
vector y(·). Then the decoder–estimator G decodes h(kT ) into ȳ(kT ) = [ȳ1(kT ) ȳ2(kT ) . . . ȳl(kT )]′. The vector ȳ(kT ) is
the sampled and quantized version of the measurement vector y(t). Since the quantization parameter qi satisfies (16) for
all i = 1, 2, . . . , l, we obtain ‖y(kT ) − ȳ(kT )‖∞ ≤ ε by using (12) and (13). Therefore, the decoder–estimator observes
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Fig. 2. Estimation of a two-mass-spring system via a data-rate constrained sensor network.

the continuous system (1) with discrete measurements ȳ(·) at t = 0, T , 2T , . . . ,NT where ȳ(kT ) = C(kT )x(kT ) + v̄(kT )
and v̄(kT ) := v(kT ) + ȳ(kT ) − y(kT ). Moreover, the uncertainty input vector [w(·) v̄(·)]′ satisfies the SIQC (8) with
Q̄ (·) = Q (·), R̄ = diag{r−11 , r

−1
2 , . . . , r

−1
m̄ } and d̄ := d + N(‖α‖ + ε

√
m̄)2/r . Also, the jump Riccati differential equation

(9) has a solution P(·) = P(·)′ > 0 with initial value P(0) = Y−10 over the time interval [0 NT ]. Then using the state
estimator (9), (10) and (15) for the decoder–estimator G, the result of the theorem can be obtained from Theorem 3.2, and
Xs[x0, y0(·) |s0, d,F ,G] := X̄s[x0, ȳ0(·) |s0, d̄]. �

Remark 4.1. The setXs[x0, y0(·) |s0, d,F ,G] is an ellipsoid and the centroid of this ellipsoid x̂(s) can be used to provide a
point-valued state estimate at time t = s. The setXs captures all the possible state x(s) of system (1). However, it may be
conservative and hence the tightness of this set deserves further investigation.

When comparing Theorem 4.1 with the results given in [6], Theorem 4.1 is distinctly different, for our decoder not only
provides x̂(·) (i.e., a point estimate of x(·)) at any time, but it also gives the upper and lower limits of the estimation error
(x(s)− x̂(s)). These limits are indeed determined from the ellipsoidXs that is available at the decoder. On the other hand,
the results given in [6] only guarantee that the error ‖x̃(kT )− x̂(kT )‖ is arbitrarily small where x̃(·) is some state estimate of
x(·) obtained at the coder, and the actual state estimation error ‖x(kT )− x̂(kT )‖ is unknown at the decoder side. When the
algorithm proposed by [6] is adopted, to find ‖x(kT )− x̄(kT )‖, one needs to use the information of the output y(·), but it is
unavailable to the decoder of [6]. Furthermore, the state estimate x̂(·) obtained at the decoder of [6] is only a discrete-time
sequence, namely x̂(kT ), k = 1, 2, . . . ,NT , that is in sharp contrast with our results presented in this paper.

5. Illustrative example

We consider a state estimation problem of an uncertain two-mass-spring system via a data-rate constrained sensor
network. The system to be estimated is commonly used in awell-knownbenchmark example in robust control (see, e.g. [28]).
It consists of twomasses connected by a spring as shown in Fig. 2. Themasses are assumed to bem1 = 1 andm2 = 1,whereas
the spring constant k of the spring is uncertain. The spring constant k has a nominal value of k0 = 1.25, but can vary up to
15% of its nominal value. Based on these parameters, a model of the dynamics of the mass-spring system can be obtained
from [28] and is described by the equation

ẋ(t) = Ax(t)+ Bw(t), z(t) = Kx(t) (18)

where x := [x1 x2 ẋ1 ẋ2]′ ∈ R4,

A =

 0 0 1 0
0 0 0 1
−1.25 1.25 0 0
1.25 −1.25 0 0

 , B =

 0
0

−0.1875
0.1875

 , K =
[
1 −1 0 0

]
,

and the uncertainty input w(t) is given by w(t) = 1(t)z(t), and1(t) is an uncertain function satisfying |1(t)| ≤ 1 for all
t ≥ 0.
In this example, we employ two sensors to estimate the state of the system. Sensors 1 and 2 measure the positions of

Mass 1 andMass 2. The encoded measurements from Sensors 1 and 2 are sent to the fusion center via data-rate constrained
communication channels. A schematic of the state estimation of the uncertainmass-spring system via two sensors is shown
in Fig. 2. We let y1(t) and y2(t) be the measurements taken by Sensors 1 and 2, respectively. The measurement equations
are given by y1(t) = C1x(t) + v1(t) = [1 0 0 0]x(t) + v1(t) and y2(t) = C2x(t) + v2(t) = [0 1 0 0]x(t) + v2(t), where
v1(t) = α11(t) and v2(t) = α21(t) are some measurement noises.
Using Sensors 1 and 2,we are interested in estimating the state of system (18) over the time interval [0, 10] secondswith

a sampling period of T = 0.4 s in the coders. Assuming that: the initial condition of system (18) is x(0) = [1 − 1 1 − 0.5]′;
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Fig. 3. Estimation of states x1 (Top) and x2 (Bottom). True value x(t) (−), estimate x̂(t) (– –), upper bound (· · ·), lower bound (·−).

the time-varying uncertain function 1(t) is given by 1(t) = sin 2π t; and the bounds of the measurement noises are
α1 = α2 = 0.3. We choose the vector x0 = [0 0 0 0]′ and the matrices Y0, S0, R̄ and scalar Q as follows: Y0 = S0 =
diag{25, 25, 25, 25}, R̄ = diag{1, 1} and Q = 1. Then the parameters d and d̂ can be chosen as d = d̂ = 90 so that both
conditions (3) and (5) hold. Using the initial conditions P(0) = Y−10 , S(0) = Y0, the solutions of both the Riccati differential
equation (6) and the jump Riccati differential equation (9) are defined and positive definite over the time interval [0, 10].
The solution S(t) of the Riccati differential equation (6) allows us to estimate the bounds L1 and L2 of the measurements

y1(·) and y2(·), respectively via Eqs. (11) and (12). The bounds are found to be L1 = L2 = 19.1. Therefore, given a quantization
error bound as ε = 0.1,we pick the quantization parameters q1 and q2 as q1 = q2 = 386 so that condition (16) holds. Finally,
using the proposed codersF1 andF2 (14) for Sensors 1 and 2, and the decoder–estimatorG (15) for the fusion center together
with the above-mentioned design parameters, we obtain simulation results for the state estimation of system (18) and they
are shown in Figs. 3 and 4. The upper and lower bounds of the state estimates can then be computed from (17) as we are
dealing with set-valued state estimate rather that point estimation. We point out that such upper and lower bounds cannot
be obtained at the decoder side by the algorithm proposed in [6].
This simulation example was implemented in MATLAB/Simulink package using the jump differential equations (9) and

(10). These equations consist of the terms x̂(kT−), P(kT−) that are the left-handed limits of these functions. For instance, the
jump differential equation (10) for the state estimate x̂(·)was simulated using the integrator block in Simulink. To capture
the jump behavior, the initial value of the integrator was reset at discrete time instances, T , 2T , 3T , . . . ,NT with values
x̂(T ), x̂(2T ), x̂(3T ), . . . , x̂(NT ), respectively. These values were calculated using the second equation of (10). As for the left-
handed limit x̂(kT−), it is the integrator output right before the integrator was reset at kT . Following the same steps, the
jump Riccati differential equation (9) of P(·) was also simulated in a similar manner, except that P(·) is a matrix whereas
x̂(·) is a vector. In this case, the integration was performed in an element-by-element manner, i.e., [Ṗ(·)]i,j, i, j = 1, 2, . . . , n.
Again the left-handed limit P(kT−) is the integrator output right before the integrator was reset at kT . Hence, the matrix
P−1(kT−), i.e, the inverse of P(kT−), can be evaluated since P(·) = P ′(·) > 0.
To calculate the upper and lower bounds of the estimate, Eq. (17) was used, since the set Xs[x0, y0(·) |s0, d,F ,G] is an

ellipsoid (with centroid at x̂(s)) that captures all the possible state x(s) of system (1). Using (17), at s ∈ (0,NT ], one can
obtain the following inequality

|xs,i − x̂i(s)| ≤
√
[P(s)]i,i(d+ ρ(s)) =: Di(s), (19)

for i = 1, 2, . . . , n, where xs,i and x̂i(s) are the ith-component of the n-dimensional vectors xs and x̂(s), respectively, and
[P(kT )]i,i denotes the (i, i) element of thematrix P(kT ). The vector xs is the actual state of the system at time s, and the upper
and lower bounds of the estimate at s ∈ (0,NT ] are

x̂i(s)−Di(s) ≤ xs,i ≤ x̂i(s)+Di(s), (20)

for i = 1, 2, . . . , n.
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Fig. 4. Estimation of states x3 (Top) and x4 (Bottom). True value x(t) (−), estimate x̂(t) (– –), upper bound (· · ·), lower bound (·−).

6. Conclusions

In this paper, we have studied a decentralized robust set-valued state estimation problem for uncertain systems via a
data-rate constrained or limited capacity sensor network. The considered sensor network consists of spatially distributed
low-power and computationally-limited sensors, and a fusion center where the robust set-valued state estimation is carried
out. The communications from the sensors to the fusion center are through data-rate constrained communication channels.
We have proposed a state estimation scheme which involves coders and a decoder–estimator, and they were developed
based on the robust Kalman filtering techniques. The proposed scheme was developed in a deterministic setting and it only
requires simple coders that can be implemented by low-power sensors. To compute the robust set-valued state estimate,
the solution of a jump Riccati differential equation and the solution of a set of jump state equations are utilized in the
decoder–estimator. In the future, the results of this paper will be extended to networks that have noisy communication
channels such as data packet dropouts, and delay during the transmission.

Appendix

Theproof providedhere is for the completeness of the paper.Necessity: Let s ∈ [0,NT ]be given and consider the uncertain
system (1) and (5) defines over [0, s]. By definition ofXs[d̂], xs ∈ Xs[d̂] if and only if there exist vector functions x(·) and
w(·) satisfying (1) such that x(s) = xs and the constraint (5) holds for all t ∈ [0, s]. It implies that xs ∈ Xs[d̂] if and only
if there exists an input w(·) ∈ L2[0, s] such that J[xs, w(·)] ≤ d̂, where J[xs, w(·)] := x(0)′S0x(0) +

∫ s
0 w(t)

′Q (t)w(t) −
x(t)′K(t)′K(t)x(t)dt ≤ d̂, and x(·) is the solution to system (1) with input w(·) and boundary condition x(s) = xs. The
functional J[·] is a homogeneous quadratic functional with a terminal cost term, namely x(0)′S0x(0). Consider the setXs[1]
corresponding to d̂ = 1. SinceXs[1] is bounded, there exists a constant hs > 0 such that all vectors xs ∈ Rn with ‖xs‖ = hs
do not belong to the set Xs[1]. Hence J[xs, w(·)] > 1 for all xs ∈ Rn such that ‖xs‖ = hs for all w(·) ∈ L2[0, s]. Since J
is a homogeneous quadratic functional, we have J[axs, aw(·)] = a2J[xs, w(·)] and hence infw(·)∈L[0,s] J[xs, w(·)] > 0 for all
s ∈ [0,NT ] and xs 6= 0. This optimization problem subject to the constraint defined by system (1) is a linear quadratic (LQ)
optimal regulation problem in which time is reversed (i.e., from s to 0)and a sign indefinite quadratic cost function is being
considered. By using results from LQ control theory, there exists a solution S(·) to the Riccati equation (6) for all s ∈ [0,NT ]
with initial condition S(0) = S0.
Sufficiency: For a given time interval [0, s], we have already shown that xs ∈ Xs[d̂] if and only if there existsw(·) ∈ L[0, s]

such that J[xs, w(·)] ≤ d̂ is satisfied. Next, consider the optimization problemminw(·)∈L2[0,s] J[xs, w(·)], where the minimum
is taken over all x(·) and w(·) connected by (1) with the boundary condition x(s) = xs. This optimal control problem is the
standard LQ control problem with a sign indefinite cost function. Using the results from the theory of LQ optimal control,
we have minw(·)∈L2[0,s] J[xs, w(·)] = x

′
sS(s)xs. Finally, we have that x

′
sS(s)xs ≤ d̂. This completes the proof of Theorem 3.1.
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