On Vector Invariants over Finite Fields

DAVID R. RICHMAN

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208

Let F denote a finite field and let $S(m, n, F)$ denote a set of generators of the invariants of $\text{SL}(n, F)$ acting on m n-component vectors. This paper proves that if $m > n > 1$, then $S(m, n, F)$ must contain a generator whose degree is greater than or equal to $(m - n + 2)(|F| - 1)$. Similar results are obtained for the vector invariants of other groups of matrices with entries in F. © 1990 Academic Press, Inc.

0. INTRODUCTION

Let K denote a field and let $U_1, ..., U_m, V_1, ..., V_m$ denote commuting indeterminates. If $x \in K$ and $f \in K(U_i, V_j : 1 \leq i \leq m)$, let $\sigma(x)$ denote the K-algebra automorphism of $K(U_i, V_j : 1 \leq i \leq m)$ which maps U_i to U_i and V_i to $xU_i + V_i$ for every i and let $f^{\sigma(x)}$ denote the image of f under this automorphism. If $A \subseteq K$, let $\text{UT}(A) = \{ \sigma(x) : x \in A \}$; the letters UT in UT$(A)$ stand for “unipotent triangular,” coming from the matrix equation

\[
(U_i^{\sigma(x)}V_j^{\sigma(x)}) = (U_iV_j)^\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.
\]

Suppose that $A \subseteq K$ and $R \subseteq K(U_i, V_j : 1 \leq i \leq m)$. Let $R^{\text{UT}(A)}$ denote the set of elements of R which are fixed by every automorphism in UT(A); such elements are said to be invariants of UT(A). Most of this paper is concerned with properties of sets of K-algebra generators of $K[U_i, V_j : 1 \leq i \leq m]^{\text{UT}(A)}$. Note that $\sigma(x) \circ \sigma(y) = \sigma(x + y)$ for all $x, y \in K$. Therefore, if A' denotes the additive group generated by A, then $R^{\text{UT}(A)} = R^{\text{UT}(A')}$.

Hence, when studying the ring $R^{\text{UT}(A)}$, one may assume without loss of generality that A is an additive subgroup of K.

It is known that

if K is an infinite field, then

\[
K[U_i, V_j : 1 \leq i \leq m]^{\text{UT}(K)} = K[U_i, U_jV_j - U_jV_i : 1 \leq i, j \leq m].
\]

A proof of this result, in the case that K is a field of characteristic zero, can be found in [18, pp. 47–49] and a proof in the general case can be found.
in [14, Proposition 7(i), p. 54] (in [14] the group $\text{UT}(K)$ is denoted $\text{UUT}(2, K)$). Suppose that $f \in K[U_i, V_i : 1 \leq i \leq m]$ and note that $f^{(x)}$ can be expressed as a polynomial in x with coefficients in $K[U_i, V_i : 1 \leq i \leq m]$. Therefore, if $f^{(x)} - f = 0$ for more than $\deg f$ values of x, then $f^{(x)} - f = 0$ for all $x \in K$. This observation and statement (0.1) imply that

if A is an infinite subset of K, then

$$K[U_i, V_i : 1 \leq i \leq m]^\text{UT(A)} = K[U_i, U_i V_j - U_j V_i : 1 \leq i, j \leq m].$$

(0.2)

Let p denote a prime and let F_p denote the field of size p. Campbell, Hughes, and Pollack [1] showed that

$$F_p[1/U_1, U_i, V_i : 1 \leq i \leq m]^\text{UT(Fp)}$$

$$= F_p[1/U_1, U_i, V_i^p - U_i^{p-1} V_i, U_1 V_j - U_j V_1 : 1 \leq i \leq m, 2 \leq j \leq m]$$

(0.3)

and

$$F_p[U_1, U_2, V_1, V_2]^\text{UT(Fp)}$$

$$= F_p[U_1, V_i^p - U_i^{p-1} V_i, U_1 V_2 - U_2 V_1 : i = 1, 2].$$

(0.4)

Let A denote a finite additive subgroup of K (such a subgroup can be non-trivial only when the characteristic of K is non-zero). This paper proves that

if $m \geq 2$ and $|A| > 1$, then $K[U_i, V_i : 1 \leq i \leq m]^\text{UT(A)}$ is generated as a K-algebra by polynomials whose degrees are less than or equal to $m(|A| - 1)$

(0.5)

and

if $m \geq 3$, then $K[U_i, V_i : 1 \leq i \leq m]^\text{UT(A)}$ cannot be generated as a K-algebra by polynomials whose degrees are strictly less than $m(|A| - 1)$.

(0.6)

This paper also proves that

if $m \geq 3$ and $|A| > 1$, and $S(m)$ is a set of K-algebra generators of $K[U_i, V_i : 1 \leq i \leq m]^\text{UT(A)}$, then the monomial $(U_1 V_2 V_3 \cdots V_m)^{|A| - 1}$ appears in some element of $S(m)$.

(0.7)

Note that statement (0.6) is an immediate consequence of statement (0.7). Statement (0.6) implies that if $|A| > 1$ and m is very large, then every set of K-algebra generators of $K[U_i, V_i : 1 \leq i \leq m]^\text{UT(A)}$ must contain a generator whose degree is very large. This contrasts with the situations described
in statements (0.2) and (0.3); this also contrasts with the results of E. Noether [11; 18, pp. 275–276] on the invariants of finite groups over fields of characteristic zero.

It is an open problem to concretely list a finite set of K-algebra generators of $K[U_i, V_i : 1 \leq i \leq m]^{U_T(A)}$ when $m > 2$ and A is a finite additive subgroup of K whose size is strictly greater than 1. I conjecture that if the characteristic of K is p and A is an additive subgroup of K of size p, then

$$
K[U_i, V_i : 1 \leq i \leq m]^{U_T(A)} = K \left[U_i, \prod_{a \in A} (a U_i + V_i), U_i V_j - U_j V_i, \right.
$$

$$
\sum_{a \in U_T(A)} f^a : 1 \leq i, j \leq m, f
$$

divides $(V_1 V_2 \ldots V_m)^{p-1}$.

This paper establishes the conjecture in the case that $p = 2$.

In order to describe and motivate the results in the last section of the paper, the following definitions and notations are needed. Let $\{C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$ denote a set of commuting indeterminates. Let $GL(n, K)$ denote the group of invertible $n \times n$ matrices whose entries lie in K. If $g = (g_{ij}) \in GL(n, K)$ and $f \in K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]$, let f^g denote the image of f under the K-algebra homomorphism which maps C_{ij} to $C_{ij} g_{ij} + C_{i2} g_{2j} + \cdots + C_{in} g_{nj}$ for all i, j. If $G \subseteq GL(n, K)$, let $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]^G$ denote the set of elements f in $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq N]$ such that $f^g = f$ for every $g \in G$. Such elements f are called vector invariants (or simply invariants) of G and the ring $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]^G$ is called the ring of invariants of G acting on $m \times n$-component vectors (the vectors referred to here are the n-tuples $(C_{i1}, C_{i2}, \ldots, C_{in})$).

It is easy to verify that if G is a subset of $GL(n, K)$ which contains infinitely many scalar multiples of the identity matrix, then $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]^G = K$. Therefore, if K is infinite, then $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]^G_{L(n, K)} = K$. Let $SL(n, K)$ denote the set of matrices in $GL(n, K)$ of determinant 1. It is known that

if K is an infinite field, then $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n]^G_{L(n, K)}$ is generated as a K-algebra by the $n \times n$ minors of $(C_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$.

(0.8)

Proofs of this result, in the case that the characteristic of K is 0, can be found in [17, pp. 187–189; 18, pp. 45–47]. Statement (0.8) was first proved in full generality by Igusa [7]; several more elementary proofs have later
appeared, e.g., in [2, 3, 14]. The introduction in [14] contains references to other proofs of statement (0.8). Dickson [5] discovered finite sets of K-algebra generators of $K[C_{ij}: 1 \leq j \leq n]^{GL(n, K)}$ and $K[C_{ij}: 1 \leq j \leq n]^{SL(n, K)}$ in the case that K is a finite field. Simpler proofs of these results are found in [6, 13, 19]. Krathwohl [8] discovered generators for the invariants of $GL(2, K)$ acting on two 2-component vectors in the case that K is a finite field. Other results about invariants over finite fields are found in [6; 12; 15; 16; 10, pp. 9-10]. It is an open problem to concretely list a finite set of generators of $K[C_{ij}: 1 \leq i \leq m, 1 \leq j \leq n]^{GL(n, K)}$ or $K[C_{ij}: 1 \leq i \leq m, 1 \leq j \leq n]^{SL(n, K)}$ in the case that K is a finite field, $m > 2$ and $n \geq 2$. This paper establishes the following result.

Let F denote a finite field and let $G \subseteq GL(n, F)$. Let I denote the $n \times n$ identity matrix and suppose that there is an element $g \in GL(n, F)$ such that $\text{rank}(g - I) = 1$, $(g - I)^2 = 0$, and $I + x(g - I) \in G$ for every $x \in F$. If $m > n$, then every set of F-algebra generators of $F[C_{ij}: 1 \leq i \leq m, 1 \leq j \leq n]^G$ contains a generator whose degree is greater than or equal to $(m - n + 2)(|F| - 1)$.

(0.9)

Note that if G satisfies the conditions of statement (0.9) and m is much larger than n, then every set of generators of the invariants of G must contain a generator whose degree is much larger than $\max\{n, |G|\}$. This contrasts with situation described in statement (0.8) and with the results of Noether [11; 18, pp. 275-276]. Observe that if $n \geq 2$ and F is a finite field, then the groups $SL(n, F)$ and $GL(n, F)$ satisfy the conditions of statement (0.9). Therefore the result stated in the abstract is a consequence of statement (0.9).

For the rest of this paper, let K denote a field of characteristic $p > 0$. Let A denote a finite additive subgroup of K and let $N_A(V_i) = \prod_{a \in A} (aU_i + V_i)$ for $i = 1, 2, \ldots, m$.

This paper is organized as follows. Section 1 contains a proof of statement (0.5) and of a generalization of Eq. (0.3). Section 2 describes properties of monomials which appear in invariants of $UT(A)$. Section 3 contains a proof of statement (0.7). Section 4 contains a proof that $K[U_{ij}, N_A(V_i), U_iV_j - U_jV_i: 1 \leq i, j \leq m]$ contains every element of $K[U_{ij}, V_i: 1 \leq i \leq m]^{UT(A)}$ whose degree is strictly less than $2|A| - |A|/p$. It also contains a proof of a generalization of Eq. (0.4). Section 5 contains examples of invariants of $UT(A)$ and $GL(n, F)$, where F denotes a finite field. Section 6 contains a proof of statement (0.9), based on results from Sections 2 and 3.
1. Examples of Sets of Generators of the Invariants of $UT(A)$

Proposition 1. Let $B_m = B_m(A)$ denote the K vector space spanned by the monomials $U_1^{d_1} \ldots U_m^{d_m} V_1^{e_1} \ldots V_m^{e_m}$ such that $d_i + e_i < |A|$ for $i = 1, \ldots, m$. Then

$$K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$$

is generated as a $K[U_i, V_i : 1 \leq i \leq m]_{UT(A)}$-module by $B_m^{UT(A)}$. (1.1)

Therefore $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$ is generated as a K-algebra by polynomials whose degrees are less than or equal to $\max\{|A|, m(|A| - 1)\}$.

Proof. Let W denote the K vector spanned by the monomials $U_1^{d_1} \ldots U_m^{d_m} V_1^{e_1} \ldots V_m^{e_m}$ such that $e_i < |A|$ for $i = 1, 2, \ldots, m$.

Claim. $K[U_i, V_i : 1 \leq i \leq m]$ is the direct sum of the vector spaces $W_{N_A(V_1)^{e_1}} \ldots N_A(V_m)^{e_m}$, as (e_1, \ldots, e_m) varies over all m-tuples of non-negative integers.

Proof of the Claim. If f is a non-zero element of $K[U_i, V_i : 1 \leq i \leq m]$, define the V-exponent of f to be the lexicographically biggest m-tuple (E_1, \ldots, E_m) such that $V_1^{E_1} \ldots V_m^{E_m}$ divides some monomial appearing in f. Note that if $f \in W_{N_A(V_1)^{e_1}} \ldots N_A(V_m)^{e_m}$ and (E_1, \ldots, E_m) is its V-exponent, then $|A| e_i \leq E_i < |A|(e_i + 1)$ for every i. Therefore a collection of non-zero polynomials which lie in distinct vector spaces of the form $W_{N_A(V_1)^{e_1}} \ldots N_A(V_m)^{e_m}$ must have distinct V-exponents and hence must be linearly independent over K. Therefore the vector spaces $W_{N_A(V_1)^{e_1}} \ldots N_A(V_m)^{e_m}$ are linearly disjoint.

Define the V-degree of the monomial $U_1^{d_1} \ldots U_m^{d_m} V_1^{e_1} \ldots V_m^{e_m}$ to be $e_1 + \cdots + e_m$. Let W^* denote the sum of the vector spaces $W_{N_A(V_1)^{e_1}} \ldots N_A(V_m)^{e_m}$, as (e_1, \ldots, e_m) varies over all m tuples of non-negative integers. It will be shown by induction on the V-degree that every monomial in $K[U_i, V_i : 1 \leq i \leq m]$ lies in W^*. Let $g = U_1^{d_1} \ldots U_m^{d_m} V_1^{E_1} \ldots V_m^{E_m}$. If $E_i < |A|$ for $i = 1, \ldots, m$, then $g \in W$. Suppose now that $E_i \geq |A|$ for some subscript i. Write, for $j = 1, \ldots, m$, $E_j = |A| b_j + c_j$, where b_j and c_j are non-negative integers and $c_j < |A|$. Let $w = U_1^{d_1} \ldots U_m^{d_m} V_1^{c_1} \ldots V_m^{c_m}$ and note that $w \in W$. Note also that

$$w_{N_A(V_1)^{b_1}} \ldots N_A(V_m)^{b_m} = g + \text{a linear combination of monomials whose } V \text{-degrees are strictly less than the } V \text{-degree of } g.$$

This equation and the induction hypothesis imply that g lies in W^*. Thus
contains every monomial in $K[U_i, V_i : 1 \leq i \leq m]$, so $W^* = K[U_i, V_i : 1 \leq i \leq m]$. This establishes the claim.

For every $\sigma \in UT(A)$ and $i \in \{1, \ldots, m\}$, $N_{A}(V_i)$ is fixed by σ and W is mapped into itself by σ. This observation and the claim imply that

$$K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$$

is the direct sum of the vector spaces $W^{UT(A)} N_{A}(V_1)^{e_1} \cdots N_{A}(V_m)^{e_m}$, as (e_1, \ldots, e_m) varies over all m-tuples of non-negative integers.

Let b_1, \ldots, b_m denote non-negative integers. Let $W(b_1, \ldots, b_m)$ denote the K vector space spanned by the monomials $U_1^{d_1} \cdots U_m^{d_m} V_1^{e_1} \cdots V_m^{e_m}$ such that $d_i + e_i = b_i$ and $e_i < |A|$ for $i = 1, \ldots, m$. Note that W is the direct sum of the vector spaces $W(b_1, \ldots, b_m)$, as (b_1, \ldots, b_m) varies over all m-tuples of non-negative integers, and

$$W^{UT(A)} = \bigoplus_{(b_1, \ldots, b_m)} W(b_1, \ldots, b_m)^{UT(A)}. \quad (1.3)$$

If h is an integer, define $e(h) = \min\{h, |A| - 1\}$. Observe that, for every m-tuple (b_1, \ldots, b_m) of non-negative integers,

$$W(b_1, \ldots, b_m) = \left(\prod_{i=1}^{m} U_i^{b_i - e(b_i)} \right) W(e(b_1), \ldots, e(b_m))$$

and

$$W(b_1, \ldots, b_m)^{UT(A)} = U_1^{b_1 - e(b_1)} \cdots U_m^{b_m - e(b_m)} W(e(b_1), \ldots, e(b_m))^{UT(A)}. \quad (1.4)$$

Note that

$$W(e(b_1), \ldots, e(b_m)) \subset B_m$$

for every m-tuple (b_1, \ldots, b_m) of non-negative integers.

Statements (1.2)–(1.5) imply that $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$ is contained in the $K[U_i, N_{A}(V_i) : 1 \leq i \leq m]$-module generated by $B_m^{UT(A)}$. Therefore statement (1.1) holds. The last assertion of the proposition is an immediate consequence of statement (1.1).

Note that B_m is a finite-dimensional vector space over K and $UT(A)$ is finite. Therefore one can compute a basis for $B_m^{UT(A)}$ by a straightforward linear algebra computation. Hence, by Proposition 1, one can concretely compute a finite set of generators of $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$.

Proposition 1 can be generalized as follows. Suppose that $g = (a \ b)$, where $a, b, d \in K$ and $ad \neq 0$. For each $f \in K[U_i, V_i : 1 \leq i \leq m]$, let f^g denote the image of f under the K-algebra homomorphism which maps U_i
to aU_i and V_i to $bU_i + dV_i$ for every i. Let G denote a finite subgroup of
\{$(a,b,d) : a, b, d \in K, ad \neq 0 \}$. If $f \in K[U_i, V_i : 1 \leq i \leq m]$, let $N_G(f)$ denote the
product of the elements of $f^g : g \in G$. Let $B_m(G)$ denote the K vector
space spanned by the monomials $U_1^{d_1} \cdots U_m^{d_m} V_1^{e_1} \cdots V_m^{e_m}$ such that $d_i + e_i \leq \deg N_G(U_i) + \deg N_G(V_i) - 2$ for every i, and let $B_m(G)^G$ denote the set of
elements of $B_m(G)$ which are invariants of G. Then

the set of invariants of G in $K[U_i, V_i : 1 \leq i \leq m]$ is

generated as a $K[N_G(U_i), N_G(V_i) : 1 \leq i \leq m]$-module by

\[B_m(G)^G. \] (1.6)

This result can be established by an argument similar to the one used to
prove Proposition 1; since the result will not be used in the rest of the
paper, the details of the proof are omitted.

The following proposition describes more explicitly a set of generators of
$K[U_i, V_i : 1 \leq i \leq m]$ in the case that $|A| = 2$.

Proposition 2. Assume that the characteristic of K is 2 and let σ denote
a non-identity element of $UT(K)$. Then

\[K[U_i, V_i : 1 \leq i \leq m]^{\{\sigma\}} = K[h + h^\sigma, V_1, V_2 : h \text{ divides } V_1 V_2 \cdots V_m, 1 \leq i \leq m]. \] (2.1)

Proof. If $S \subseteq \{1, 2, \ldots, m\}$, define $U_S = \prod_{i \in S} U_i$ and $V_S = \prod_{i \in S} V_i$.
Note that there is a non-zero element γ in K such that

\[V_1^\gamma = V_1 + \gamma U_1 \] for every i. (2.2)

Therefore, for every subset S of $\{1, \ldots, m\}$,

\[g^{1_S} U_S = \prod_{i \in S} (V_1^\gamma + V_i) \]

\[= \sum_{S^* \subseteq S} V_1^{(S^*)} V_{S - S^*}. \] (2.3)

Let B_m denote the K vector space spanned by $\{U_S V_T : S$ and T are disjoint
subsets of $\{1, \ldots, m\}\}$. Equation (2.3) implies that

\[B_m \text{ is spanned by } \{V_1^{S^*} V_T : S \text{ and } T \text{ are disjoint subsets of } \{1, \ldots, m\}\}. \] (2.4)

Let $B^* = \{V_1^{S^*} V_T : S \text{ and } T \text{ are disjoint subsets of } \{1, \ldots, m\}\}$. Equation (2.2) implies that the linear forms $V_1, \ldots, V_m, V_1^\gamma, \ldots, V_m^\gamma$ are algebraically
independent over K; therefore B^* is a linearly independent set over K. The
hypotheses that $\sigma \in \text{UT}(K)$ and the characteristic of K is two imply that σ^2 is the identity map. Therefore

$$ (V_S^\sigma V_T^\sigma)^\sigma = V_S V_T^\sigma $$

for all subsets S, T of \{1, ..., m\}. \hspace{1cm} (2.5)

Let $f \in B_m^{[\sigma]}$. Statement (2.4) implies that f can be expressed as a linear combination of elements of B^σ. Recall that B^σ is a linearly independent set; therefore Eq. (2.5) and the fact that $f^\sigma = f$ imply that the coefficient of $V_S^\sigma V_T^\sigma$ in f is the same as that of $V_S V_T^\sigma$ in f for every element $V_S^\sigma V_T^\sigma \in B^\sigma$. Therefore f is a scalar plus a linear combination of the polynomials $V_S V_T^\sigma + V_S^\sigma V_T$, where $V_S^\sigma V_T$ varies over the elements of B^σ. This proves that

$$ B_m^{[\sigma]} \subset K[V_S V_T + V_S^\sigma V_T^\sigma : S \text{ and } T \text{ are disjoint subsets of } \{1, ..., m\}] \hspace{1cm} (2.6) $$

Suppose that S and T are disjoint subsets of \{1, ..., m\}. Observe that

$$ V_S^\sigma V_T + V_S V_T^\sigma = (V_S + V_S^\sigma)(V_T + V_T^\sigma) - (V_S V_T + V_S^\sigma V_T^\sigma) $$

$$ = (V_S + V_S^\sigma)(V_T + V_T^\sigma) - (V_{S \cup T} + V_{S \cup T}^\sigma). $$

This equation and statement (2.6) imply that

$$ B_m^{[\sigma]} \subset K[V_S + V_S^\sigma : 1 \leq i \leq m] \hspace{1cm} (2.7) $$

Since σ^2 is the identity map, \{identity, σ\} is a subgroup of $\text{UT}(K)$. Note also that $U_i \in B_m^{[\sigma]}$ for every $i \in \{1, ..., m\}$. Therefore Proposition 1 implies that $K[U_i, V_i : 1 \leq i \leq m]^{[\sigma]}$ is generated as a K-algebra by $\{V_i V_i^\sigma : 1 \leq i \leq m\} \cup B_m^{[\sigma]}$. This observation and relation (2.7) establish Eq. (2.1).

PROPOSITION 3. If $f \in K[U_i, V_i : 1 \leq i \leq m]^{\text{UT}(A)}$, then

$$ U_i^{m-1} f \in K[U_i V_j - U_j V_i, U_i, N_A(V_i) : 1 \leq i \leq m, 2 \leq j \leq m]. $$

Proof. Let $R = K[U_i V_j - U_j V_i, U_i : 1 \leq i \leq m, 2 \leq j \leq m]$. Note that, if $e_1, ..., e_m$ are non-negative integers, then

$$ U_i^{e_i} V_1^{e_1} V_2^{e_2} \cdots V_m^{e_m} = V_1^{e_1} \prod_{i=2}^{m} (U_i V_i - U_i V_i + U_i V_i) V_1^{e_1} \in R[V_1]. \hspace{1cm} (3.1) $$

The claim from the proof of Proposition 1 implies that

$$ K[U_i, V_1] = K[U_i, N_A(V_1)] + K[U_i, N_A(V_1)] V_1 $$

$$ + \cdots + K[U_i, N_A(V_1)] V_1^{[\sigma]-1}. $$
Therefore
\[R[V_1] \subseteq R[N_A(V_1)] + R[N_A(V_1)] V_1 + \cdots + R[N_A(V_1)] V_1^{|A|-1}. \quad (3.2) \]

Let \(W \) denote the \(K \) vector space spanned by the monomials
\[U_1^{e_1} \cdots U_m^{e_m} V_1^{e_1} \cdots V_m^{e_m} \]
such that \(e_i < |A| \) for every \(i \) and let \(f \) denote an element of \(U_1^{(m-1)(|A|-1)} W^{|UT(A)|} \). Relations (3.1) and (3.2) imply that

\[
\text{there exist elements } r_0, r_1, \ldots, r_{|A|-1} \text{ in } R[N_A(V_1)] \text{ such that } f = r_0 + r_1 V_1 + r_2 V_1^2 + \cdots + r_{|A|-1} V_1^{|A|-1}. \quad (3.3)
\]

Let \(Y \) denote an indeterminate and let \(\sigma \) denote the \(K \)-algebra automorphism of \(K[Y, U_i, V_i : 1 \leq i \leq m] \) such that \(Y^\sigma = Y, U_i^\sigma = U_i, \) and \(V_i^\sigma = YU_i + V_i \) for every \(i \). Since \(f \) is an invariant of \(UT(A) \), \(f^\sigma - f \) becomes zero when \(Y \) is replaced by any element of \(A \). Therefore

\[f^\sigma - f \text{ is divisible by } \prod_{a \in A} Y - a. \quad (3.4) \]

A similar argument implies that

\[r^\sigma - r \text{ is divisible by } \prod_{a \in A} Y - a \text{ for every } r \in R[N_A(V_1)]. \quad (3.5) \]

Note that
\[
0 \equiv f^\sigma - f \pmod{\prod_{a \in A} Y - a}, \text{ by } (3.4) \\
\equiv \sum_{i=1}^{|A|-1} r_i ((V_i^\sigma)^i - V_i^i) \pmod{\prod_{a \in A} Y - a}, \text{ by } (3.3) \text{ and } (3.5).
\]

This congruence and the fact that the \(Y \)-degree of \(\sum_{i=1}^{|A|-1} r_i ((V_i^\sigma)^i - V_i^i) \) is strictly less than \(|A| \) imply that \(\sum_{i=1}^{|A|-1} r_i ((V_i^\sigma)^i - V_i^i) = 0 \). This equation and the fact that \(V_i^\sigma \) is transcendental over \(K(U_i, V_i : 1 \leq i \leq m) \) (because \(Y \) is an indeterminate) imply that \(r_i = 0 \) for every \(i > 0 \). This observation and Eq. (3.3) imply that \(f = r_0 \in R[N_A(V_1)] \). This proves (since \(f \) is an arbitrary element of \(U_1^{(m-1)(|A|-1)} W^{|UT(A)|} \)) that \(U_1^{(m-1)(|A|-1)} W^{|UT(A)|} \subseteq R[N_A(V_1)] \). This containment and statement (1.2) imply that

\[U_1^{(m-1)(|A|-1)} K[U_i, V_i : 1 \leq i \leq m]^{UT(A)} \subseteq R[N_A(V_i) : 1 \leq i \leq m]. \]

This completes the proof. \(\square \)

Corollary.

\[K[U_i, V_i, 1/U_i : 1 \leq i \leq m]^{UT(A)} = K[U_i V_j - U_j V_i, U_i, N_A(V_1), 1/U_i : 1 \leq i \leq m, 2 \leq j \leq m]. \]
Proof. The polynomials $U_j V_j - U_j V_1$, U_1, and $N_A(V_1)$ are invariants of $UT(A)$, so

$$K[U_1 V_j - U_j V_1, U_1, N_A(V_1), 1/U_1 : 1 \leq i \leq m, 2 \leq j \leq m]$$

is a subset of $K[U_i, V_i, 1/U_1 : 1 \leq i \leq m]^{UT(A)}$. (3.6)

Suppose that $f \in K[U_i, V_i, 1/U_1 : 1 \leq i \leq m]^{UT(A)}$, then there is an integer $d > 0$ such that $U_1^d f \in K[U_i, V_i, 1 \leq i \leq m]^{UT(A)}$. This observation and Proposition 3 imply that

$$f \in K[U_1 V_j - U_j V_1, U_1, N_A(V_1), 1/U_1 : 1 \leq i \leq m, 2 \leq j \leq m].$$

(3.7)

Define $h(X) = \prod_{a \in A} (X + a)$ and note that

$$N_A(V_i) - U^{\text{deg} h(V_i/U_i)}$$

for every i. (3.8)

The theory of p-polynomials [13, pp. 564–565] implies that there are elements c_0, c_1, \ldots, c_e in K such that $c_e \neq 0$ and $h(X) = \sum_{j=0}^e c_j X^j$. This observation and Eq. (3.8) imply that

$$N_A(V_i) = \sum_{j=0}^e c_j V_j^p U_j^p - p^i$$

for every i. (3.9)

Observe that, for every $i \in \{1, \ldots, m\}$,

$$U_j^{p^i} N_A(V_i) = \sum_{j=0}^e c_j (U_1 V_i)^{p^i} (U_1 U_i)^{p^i - p^j},$$

by (3.9)

$$= \sum_{j=0}^e c_j (U_1 V_i - U_i V_1)^{p^i} (U_1 U_i)^{p^i - p^j} + \sum_{j=0}^e c_j (U_i V_1)^{p^i} (U_1 U_i)^{p^i - p^j}$$

$$= \sum_{j=0}^e c_j (U_1 V_i - U_i V_1)^{p^i} (U_1 U_i)^{p^i - p^j} + U_i^{p^i} N_A(V_1),$$

by (3.9)

$$\in K[U_1 V_i - U_i V_1, U_1, U_i, N_A(V_1)].$$

This observation and statement (3.7) imply that $f \in K[U_1 V_i - U_i V_1, U_1, N_A(V_1), 1/U_1 : 1 \leq i \leq m, 2 \leq j \leq m]$ for every $f \in K[U_i, V_i, 1/U_1 : 1 \leq i \leq m]^{UT(A)}$. This observation and statement (3.6) establish the corollary. \qed
This corollary implies that

the field of fractions of $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$

equals $K(U_i, U_j V_j - U_j V_1, N_{A}(V_1) : 1 \leq i \leq m, 2 \leq j \leq m)$. \hspace{1cm} (3.10)

Note that every element of $K[U_i, V_i : 1 \leq i \leq m]$ is algebraic over the
field of fractions of $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$, because $UT(A)$ is a finite

group. Therefore the transcendence degree of the field of fractions of
$K(U_i, V_i : 1 \leq i \leq m)^{UT(A)}$ over K equals the transcendence degree of
$K(U_i, V_i : 1 \leq i \leq m)$ over K, which equals $2m$. This observation and state-
ment (3.10) imply that

the set \{ $U_i, U_j V_j - U_j V_1, N_{A}(V_1) : 1 \leq i \leq m, 2 \leq j \leq m$ \}

is algebraically independent over K. \hspace{1cm} (3.11)

Statements (3.10) and (3.11) imply that the field of fractions of
$K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$ is a purely transcendental extension of K.

2. PROPERTIES OF MONOMIALS

WHICH APPEAR IN INVARIANTS OF $UT(A)$

The results of this section imply that if B_m is defined as in Proposition 1,
then every non-constant monomial which appears in an element of $B_m^{UT(A)}$
must be divisible by U_1 or U_2 or ... or U_m. Note, however, that a non-
constant monomial which appears in an invariant of $UT(A)$ need not be
divisible by U_1 or U_2 or ... or U_m; for example, the monomial $V_1^{[A]}
appears in $\prod_{a \in A} (V_1 + aU_1)$, which is an invariant of $UT(A)$.

PROPOSITION 4. Let $\Pi_{i=1}^{m} U_i^{d_i} V_i^{e_i}$ denote a monomial which appears in
an invariant of $UT(A)$. If T is a subset of \{ $1, ..., m$ \} such that $d_i = 0$ for every
$t \in T$ and $\sum_{t \in T} e_t < |A|$, then $d_1 + ... + d_m \geq \sum_{t \in T} e_t$.

Proof. First some notation and preliminary observations are intro-
duced. Let f denote an invariant of $UT(A)$ in which $\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i}$ appears.
Let Y denote an indeterminate and let f^* denote the image of f under the
K algebra homomorphism which maps U_i to U_i and V_i to $YU_i + V_i$, for
every i. Write

$$f^* = \sum_{w} \sum_{i=0}^{\deg f} c(w, i) w^{Y_i},$$

where the outer sum ranges over all monomials w in $K[U_i, V_i : 1 \leq i \leq m]$
whose degrees do not exceed $\deg f$ and $c(w, i) \in K$ for all w, i. Observe
that if \(Y \) is replaced by zero, then \(f^* \) is replaced by \(f \). Therefore

\[
f^* - f = \sum_{w} \sum_{i=1}^{\deg f} c(w, i) w Y'.
\]

(4.1)

The next goal is to express the coefficients \(c(w, i) \), which appear in Eq. (4.1), in terms of the coefficients of \(f \). Suppose that \(h \) is a map from \(\{1, \ldots, m\} \) to the integers such that \(0 \leq h(i) \leq d_i + e_i \) for every \(i \). Define

\[
\text{mon}(h) = \prod_{i=1}^{m} U_i^{d_i + e_i - h(i)} Y_i^{h(i)}.
\]

If \(j \geq 0 \), let \(M^*(h, j) \) denote the set of maps \(g \) from \(\{1, \ldots, m\} \) to the integers such that \(d_i + e_i \geq g(i) \geq h(i) \) for every \(i \), and \(g(1) + g(2) + \cdots + g(m) = h(1) + h(2) + \cdots + h(m) + j \). The definition of \(f^* \) implies that

\[
c(\text{mon}(h), j) = \left(\prod_{i=1}^{m} \binom{g(i)}{h(i)} \right) \text{(the coefficient of mon}(g) \text{ in } f) \]

(4.2)

for every integer \(j \geq 0 \); here \(\binom{g(i)}{h(i)} \) denotes the binomial coefficient.

Let \(T \) denote a subset of \(\{1, \ldots, m\} \) such that \(d_t = 0 \) for every \(t \in T \) and \(\sum_{t \in T} e_t < |A| \). Let \(M(h, j) \) denote the set of maps \(g \) from \(\{1, \ldots, m\} \) to the integers such that \(g(i) = h(i) \) for every \(i \in \{1, \ldots, m\} - T \), \(0 \leq g(t) \leq e_t \) for every \(t \in T \), and \(\sum_{t \in T} g(t) = j \). The proposition will be derived from the following claim.

Claim. If \(j > \sum_{i \in \{1, \ldots, m\} - T} (d_i + e_i - h(i)) \), then

\[
\sum_{g \in M(h, j)} \text{the coefficient of mon}(g) \text{ in } f = 0.
\]

Proof of the Claim. Let \(u(h) = \sum_{i \in \{1, \ldots, m\} - T} (d_i + e_i - h(i)) \) and suppose that \(j > u(h) \); the claim will be established by induction on \(u(h) \). Observe that neither \(u(h) \) nor \(M(h, j) \) depends on the restriction of \(h \) to \(T \). Therefore we may assume without loss of generality that \(h(t) = 0 \) for every \(t \in T \). Using this assumption, it will be shown that

\[
c(\text{mon}(h), j) = \sum_{g \in M(h, j)} \text{the coefficient of mon}(g) \text{ in } f.
\]

(4.3)

Assume at first and \(u(h) = 0 \). This assumption and the fact that \(h(i) \leq d_i + e_i \) for every \(i \) imply that \(h(i) = d_i + e_i \) for every \(i \in \{1, \ldots, m\} - T \). This observation and the assumption that \(h(t) = 0 \) for every \(t \in T \) imply that
$M^*(h, j) = M(h, j)$ and $\prod_{i=1}^m \left(\frac{g(i)}{h(i)}\right) = 1$ for every $g \in M^*(h, j)$. Therefore Eq. (4.3) follows immediately from Eq. (4.2).

Suppose now that $u(h) > 0$. Note that $M(h, j) \subseteq M^*(h, j)$, because $h(t) = 0$ for every $t \in T$. Equation (4.2) and the assumption that $h(t) = 0$ for every $t \in T$ imply that

$$c(\text{mon}(h), j) = \sum_{g \in M(h, j)} \text{the coefficient of mon}(g) \text{ in } f$$

+ a linear combination of expressions of the form

$$\sum_{g \in M(z, k)} \text{the coefficient of mon}(g) \text{ in } f,$$

where

$$d_i + e_i \geq z(i) \geq h(i) \text{ for every } i, z(t) = 0 \text{ for every } t \in T, \sum_{i=1}^m z(i) > \sum_{i=1}^m h(i), \text{ and}

k + \sum_{i=1}^m z(i) = j + \sum_{i=1}^m h(i).$$

(4.4)

Suppose that z and k satisfy the conditions of statement (4.4). Note that $u(z) < u(h)$, because $\sum_i z(i) > \sum_i h(i)$ and $z(t) = h(t) = 0$ for every $t \in T$. Note also that

$$u(z) = u(h) + \sum_{i=1}^m (h(i) - z(i)),$$

because $z(t) = h(t) = 0$ for every $t \in T$

$$< k, \text{ because } u(h) < j \text{ and } k + \sum_{i=1}^m z(i) = j + \sum_{i=1}^m h(i).$$

Thus $u(z) < u(h)$ and $u(z) < k$; therefore the induction hypothesis for the claim implies that

$$\sum_{g \in M(z, k)} \text{the coefficient of mon}(g) \text{ in } f = 0.$$

This equation and statement (4.4) establish Eq. (4.3). Thus Eq. (4.3) holds in all cases.

Let $E = \sum_{t \in T} (d_t + e_t) = \sum_{t \in T} e_t$. The definition of $M(h, J)$ implies that

$$M(h, J) \text{ is empty when } J > E.$$

(4.5)

If $u(h) \geq E$, then $j > E$ (by the hypothesis that $j > u(h)$), so statement (4.5) implies that $M(h, j)$ is empty. Therefore the claim is true when $u(h) \geq E$.

Suppose now that \(u(h) < E \). Equation (4.3) holds for every integer \(j > u(h) \), so it holds for every integer \(j \geq E \) (because \(E > u(h) \)). Therefore Eq. (4.3) (with \(j \) replaced by \(J \)) and statement (4.5) imply that

\[
c(\text{mon}(h), J) = 0 \quad \text{when} \quad J > E.
\]

Recall the definition of \(f^* \). Since \(f \) is an invariant of \(UT(A) \), \(f^* - f \) becomes zero when \(Y \) is replaced by any element of \(A \). Therefore \(f^* - f \) is divisible by \(\prod_{a \in A} Y - a \). This observation and Eq. (4.1) imply that

\[
\sum_{i \geq 1} c(\text{mon}(h), i) Y^i \text{ is divisible by } \prod_{a \in A} Y - a.
\]

Note that

\[
\deg \left(\sum_{i \geq 1} c(\text{mon}(h), i) Y^i \right) \leq E, \quad \text{by (4.6)}
\]

\[
< |A|, \quad \text{by the definitions of } E \text{ and } T.
\]

This inequality and statement (4.7) imply that \(c(\text{mon}(h), i) = 0 \) for every \(i \geq 1 \). In particular, \(c(\text{mon}(h), j) = 0 \). This observation and Eq. (4.3) establish the claim.

Suppose now that \(h(i) = e_i \) for every \(i \in \{1, \ldots, m\} - T \) and \(h(t) = 0 \) for every \(t \in T \). As in the proof of the claim, let \(E = \sum_{i \in T} (d_i + e_i) = \sum_{i \in T} e_i \).

Note that \(M(h, E) \) contains only one element, and

\[
\sum_{g \in M(h, E)} \text{ the coefficient of } \text{mon}(g) \text{ in } f = \text{ the coefficient of } \prod_{i=1}^{m} U_i^{d_i} V_i^{e_i} \text{ in } f
\]

\[
\neq 0, \quad \text{by the definition of } f.
\]

This observation and the claim imply that

\[
E \leq \sum_{i \in \{1, \ldots, m\} - T} (d_i + e_i - h(i)).
\]

Note also that

\[
\sum_{i \in \{1, \ldots, m\} - T} (d_i + e_i - h(i)) = \sum_{i \in \{1, \ldots, m\} - T} d_i \quad \text{by the definition of } h
\]

\[
= d_1 + \cdots + d_m \quad \text{by the definition of } T.
\]

Therefore \(E \leq d_1 + \cdots + d_m \); this establishes the proposition. \(\square \)
PROPOSITION 5. Let $\prod_{i=1}^{m} U_i^d V_i^{e_i}$ denote a monomial which appears in an invariant of $UT(A)$ and let b denote an integer such that $p^b \leq |A|$. If $e_i < p^b$ for every i, then $d_i + \cdots + d_m \geq \min\{ |A| - p^{b-1}, e_1 + \cdots + e_m \}$.

Proof: Suppose that $e_i < p^b$ for every i, and let f denote an invariant of $UT(A)$ in which $\prod_{i=1}^{m} U_i^d V_i^{e_i}$ appears. Let ψ denote the K-algebra homomorphism from $K[U_i, V_i : 1 \leq i \leq m]$ to $K[U_i, V_i : 1 \leq i \leq m + pm]$ such that

$$\psi(U_i) = U_i + U_{i+m} + U_{i+2m} + \cdots + U_{i+pm},$$

and

$$\psi(V_i) = V_i + V_{i+m} + V_{i+2m} + \cdots + V_{i+pm}$$

for every $i \in \{1, \ldots, m\}$. Note that, for every $i \in \{1, \ldots, m\}$ and $\sigma \in UT(A)$, $\psi(U_i) = \psi(U_i^\sigma)$ and $\psi(V_i) = \psi(V_i^\sigma)$. Therefore $\psi(h)^\sigma = \psi(h)\sigma$ for every $h \in K[U_i, V_i : 1 \leq i \leq m]$ and $\sigma \in UT(A)$; hence

$$\psi$$ maps invariants of $UT(A)$ to invariants of $UT(A)$. (5.1)

Claim. There exist integers $c_m + 1, c_{m+2}, \ldots, c_{m+pm}$ such that $0 \leq c_i \leq p^{b-1}$ for every i, $c_{m+1} + c_{m+2} + \cdots + c_{m+pm} = e_1 + \cdots + e_m$, and $(\prod_{i=1}^{m} U_i^d)(\prod_{i=m+1}^{m+pm} V_i^{e_i})$ appears in $\psi(f)$.

Proof of the Claim. For every $i \in \{1, \ldots, m\}$, one can write $e_i = a_i p^b + r_i$, where $a_i \in \{0, 1, \ldots, p-1\}$ (because $e_i < p^b$) and $0 \leq r_i < p^{b-1}$. Observe that

$$\psi(V_i)^{a_i p^b + r_i} = (V_i^{p^b + r_i} + V_{i+m}^{p^b + r_i} + \cdots + V_{i+pm}^{p^b + r_i})^a (V_i + \cdots + V_{i+pm})^{r_i},$$

because the characteristic of K is p.

This equation and the multinomial theorem (together with the fact that $r_i < p^{b-1}$) imply that the coefficient of $(\prod_{i=1}^{m} V_i^{p^{b-1}}) V_i^r$ in $\psi(V_i)^{a_i}$ is a_i. Therefore (since $a_i < p$) the monomial $(\prod_{i=1}^{m} V_i^{p^{b-1}}) V_i^r$ appears in $\psi(V_i)^{a_i}$. Therefore, setting $w_i = (\prod_{i=1}^{m} V_i^{p^{b-1}}) V_i^r$, the monomial $\prod_{i=1}^{m} U_i^{d_i} w_i$ appears in $\psi(\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i})$. Note also that if h is a monomial in $K[U_i, V_i : 1 \leq i \leq m]$ which is different than $\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i}$, then $\prod_{i=1}^{m} U_i^{d_i} w_i$ does not appear in $\psi(h)$. These observations and the hypothesis that $\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i}$ appears in f imply that $\prod_{i=1}^{m} U_i^{d_i} w_i$ appears in $\psi(f)$. This establishes the claim, because one can write $\prod_{i=1}^{m} U_i^{d_i} w_i = \prod_{j=m+1}^{m+pm} V_j^{e_j}$, where the exponents c_j have the desired properties.
Suppose that \(c_{m+1}, c_{m+2}, \ldots, c_{m+pm} \) have the properties stated in the claim. The claim and statement (5.1) imply that

\[
\left(\prod_{i=1}^{m} U_i^{d_i} \right) \left(\prod_{i=m+1}^{m+pm} V_i^{e_i} \right)
\]

appears in an invariant of \(\text{UT}(A) \). \(\text{(5.2)} \)

Let \(T \) denote a maximal subset of \(\{ m+1, m+2, \ldots, m+pm \} \) such that \(\sum_{i \in T} c_i < |A| \). Proposition 4 and statement (5.2) imply that

\[
d_1 + \cdots + d_m \geq \sum_{i \in T} c_i.
\] \(\text{(5.3)} \)

Suppose at first that \(\sum_{i \in T} c_i < c_{m+1} + c_{m+2} + \cdots + c_{m+pm} \). Then there is a subscript \(j \) such that \(c_j > 0 \) and \(j \) does not lie in \(T \). Observe that

\[
\sum_{i \in T} c_i \geq |A| - c_i,
\]

by the maximality of \(T \)

\[
\geq |A| - p^{b-1},
\]

because \(c_i \leq p^{b-1} \) for every \(i \).

Suppose now that \(\sum_{i \in T} c_i = c_{m+1} + c_{m+2} + \cdots + c_{m+pm} \). Then \(\sum_{i \in T} c_i = e_1 + \cdots + e_m \), because \(c_{m+1} + \cdots + c_{m+pm} = e_1 + \cdots + e_m \). Thus, in all cases, \(\sum_{i \in T} c_i \geq \min \{|A| - p^{b-1}, e_1 + \cdots + e_m\} \). This inequality and relation (5.3) imply that \(d_1 + \cdots + d_m \geq \min \{|A| - p^{b-1}, e_1 + \cdots + e_m\} \).

Remarks. Let \(f \) and \(\psi \) be defined as in the proof of Proposition 5 (it is not necessary to assume that \(e_i < p^{b} \) for every \(i \)). Note that \(\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i} \) appears in \(\psi(f) \) and \(\psi(f) \) is an invariant of \(\text{UT}(A) \) (by (5.1)). These observations imply (by applying Proposition 4 to \(\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i} \) rather than to \(\prod_{i=1}^{m} U_i^{d_i} V_i^{e_i} \)) that Proposition 4 still holds when one omits the condition that \(d_i = 0 \) for every \(i \in T \).

It will be shown in Remark 3 after Proposition 12 that the lower bound for \(d_1 + \cdots + d_m \) given in Proposition 5 is attained in infinitely many cases.

3. Monomials Which Must Appear in Some Generator of the Invariants of \(\text{UT}(A) \)

Definition. If \(w = U_1^{d_1} \cdots U_m^{d_m} V_1^{e_1} \cdots V_m^{e_m} \), define the \(U \)-degree of \(w \), denoted by \(U \)-degree \(w \), to be \(d_1 + \cdots + d_m \), and define its \(V \)-degree to be \(e_1 + \cdots + e_m \).

Proposition 6. Assume that \(|A| > 1 \). Let \(S \subseteq K[U_i, V_i : 1 \leq i \leq m]^{\text{UT}(A)} \) and let \(K[S] \) denote the \(K \)-algebra which is generated by \(S \). If the monomial \(V_1^{e_1} \) appears in an element of \(K[S] \), then it appears in an element of \(S \). If
the monomial \((U_1 V_2 V_3 \cdots V_k)^{|A| - 1}\), where \(k \geq 3\), appears in an element of \(K[S]\), then it appears in an element of \(S\).

Proof. Suppose that \(V_1^{|A|}\) appears in an element of \(K[S]\). Then one can write

\[
V_1^{|A|} = w_1 w_2 \cdots w_t,
\]

where each \(w_i\) is a non-constant monomial which appears in an element of \(S\). (6.1)

Let \(F_p\) denote the subfield of \(K\) of size \(p\). Since \(A\) is an additive subgroup of \(K\), it is a vector space over \(F_p\). Therefore \(|A|\) is a power of \(p\). Proposition 5, with \(p^h = |A|\), implies that every non-constant monomial which appears in an invariant of \(UT(A)\) and whose degree is strictly less than \(|A|\) must be divisible by \(U_1\) or \(U_2\) or \(\cdots\) or \(U_m\). This observation and Eq. (6.1) imply that \(\deg w_i \geq |A|\) for every \(i\); hence \(t = 1\). Therefore \(V_1^{|A|} = w_1\), so it appears in an element of \(S\).

Suppose now that the monomial \((U_1 V_2 V_3 \cdots V_k)^{|A| - 1}\), where \(k \geq 3\), appears in an element of \(K[S]\). Then one can write

\[
(U_1 V_2 V_3 \cdots V_k)^{|A| - 1} = w_1 w_2 \cdots w_t,
\]

where each \(w_i\) is a non-constant monomial which appears in an element of \(S\). (6.2)

Equation (6.2) implies that there is a subscript \(I\) such that

\[
(U\text{-degree } w_I)/\deg w_I \leq \frac{U\text{-degree}(U_1 V_2 \cdots V_k)^{|A| - 1}}{\deg(U_1 V_2 \cdots V_k)^{|A| - 1}} = \frac{1}{k}\]

\[
\leq \frac{1}{3}, \quad \text{because } k \geq 3.
\]

Therefore

\[
U\text{-degree } w_I \leq (\deg w_I)/3 = (U\text{-degree } w_I + V\text{-degree } w_I)/3.
\]

Therefore \(U\text{-degree } w_I \leq (V\text{-degree } w_I)/2\). This inequality and the fact that \(U\text{-degree } w_I + V\text{-degree } w_I = \deg w_I > 0\) imply that \(U\text{-degree } w_I < V\text{-degree } w_I\). Therefore Proposition 5, with \(p^h = |A|\), implies that

\[
U\text{-degree } w_I \geq |A| - |A|/p. \quad (6.3)
\]

Equation (6.2) implies that one can write \(w_I = U_1^c V_2^{e_2} \cdots V_k^{e_k}\), where \(0 \leq c < |A|\) and \(0 \leq e_i < |A|\) for every \(i\). Define

\[
z = U_1^{|A| - 1 - c} V_2^{|A| - 1 - e_2} V_3^{|A| - 1 - e_3} \cdots V_k^{|A| - 1 - e_k}.\]
Let $e_j = \max\{e_2, ..., e_k\}$ and observe that

$$|A| - 1 \geq e_j \geq \left(\sum_{i=2}^{k} e_i\right)/(k-1)$$

$$= |A| - 1 - (\deg z - U\text{-degree } z)/(k-1).$$

These inequalities and Proposition 4 (with $\prod_{i=1}^{m} U_i^j V_i^{-i} = w_i$ and $T = \{j\}$) imply that

$$U\text{-degree } w_i \geq e_j \geq |A| - 1 - (\deg z - U\text{-degree } z)/(k-1). \quad (6.4)$$

Note that

$$|A| - 1 = U\text{-degree } w_i + U\text{-degree } z, \quad \text{by the definition of } z$$

$$\geq |A| - 1 - (\deg z)/(k-1) + k(U\text{-degree } z)/(k-1), \quad \text{by } (6.4).$$

Therefore

$$k(U\text{-degree } z) \leq \deg z. \quad (6.5)$$

Statements (6.2) and (6.3) imply that, when $i \neq I$, $U\text{-degree } w_i < |A|/p$.

This observation and Proposition 5 (with $p^h = |A|$) imply that $U\text{-degree } w_i \geq V\text{-degree } w_i$ when $i \neq I$; hence

$$2(U\text{-degree } w_i) \geq U\text{-degree } w_i + V\text{-degree } w_i$$

$$= \deg w_i \quad \text{when } i \neq I.$$

Note also that $z = \prod_{i \neq I} w_i$ (by (6.2) and the definition of z); therefore

$$2(U\text{-degree } z) \geq \deg z. \quad (6.6)$$

Note that

$$\frac{(\deg z)}{3} \geq \frac{(\deg z)}{k}, \quad \text{because } k \geq 3$$

$$\geq \frac{(\deg z)}{2}, \quad \text{by } (6.5) \text{ and } (6.6).$$

Hence $\deg z = 0$. Note that $(U_1 V_2 V_3 \cdots V_k)^{|A|-1} = w_I$, because $\deg z = 0$. Therefore the monomial $(U_1 V_2 V_3 \cdots V_k)^{|A|-1}$ appears in an element of S. \]

Proposition 7. If $|A| > 1$ then $\sum_{a \in A} a^{|A|-1} = \prod_{a \in A \setminus \{0\}} a$.

Proof. 1. Assume that $|A| > 1$. Define $s(j) = \sum_{a \in A} a^j$ for every integer $j > 0$. Let J denote the smallest integer such that $J > 0$ and $s(J) \neq 0$; it will be shown that $J = |A| - 1$.

607/81:1-4
Let X denote an indeterminate and define $h(X) = \prod_{a \in A} (1 + aX)$. Taking the formal logarithmic derivative of $h(X)$ yields

$$h'(X)/h(X) = \sum_{a \in A} a/(1 + aX)$$

$$= \sum_{j \geq 0} s(j + 1)(-X)^j. \quad (7.1)$$

Let $f(X) = \prod_{a \in A} (X + a)$ and observe that

$$h(X) = \prod_{a \in A} X(X^{-1} + a) = X^{|A|} f(1/X). \quad (7.2)$$

If $b \in A$, then

$$f'(-b) = \prod_{a \in A - \{b\}} (-b + a) = \prod_{a \in A - \{0\}} a;$$

the last equality is due to the fact that the map $a \mapsto -b + a$ is a one-to-one correspondence from $A - \{b\}$ to $A - \{0\}$. Thus $f'(-b) - \prod_{a \in A - \{0\}} a = 0$ for every $b \in A$; on the other hand, the X-degree of $f'(X) - \prod_{a \in A - \{0\}} a$ is strictly less than $|A|$, so

$$f'(X) = \prod_{a \in A - \{0\}} a = f'(0). \quad (7.3)$$

Therefore

$$f(X) = f'(0)X + \text{an element of } K[X^p].$$

This equation and the fact that $\deg f = |A| > 1$ imply that

$$\deg f \text{ and } |A| \text{ are divisible by } p \quad (7.4)$$

and

$$X^{|A|} f(1/X) = f'(0)X^{|A| - 1} + \text{an element of } K[X^p]. \quad (7.5)$$

Note that

$$h'(X) = (|A| - 1) f'(0)X^{|A| - 2}, \quad \text{by (7.2) and (7.5) and}$$

the fact that the characteristic of K is p

$$= -f'(0)X^{|A| - 2}, \quad \text{by (7.4).}$$
This equation and Eq. (7.1) imply that

\[-f'(0)X^{\lvert A \rvert - 1} = h(X) \sum_{j \geq 0} s(j + 1)(-X)^j \]

\[= h(0) s(J)(-X)^{J - 1} + \text{a power series which is divisible by } X^J. \]

By comparing the lowest powers of \(X \) on each side of this equation and using the fact that \(h(0) = 1 \), one concludes that

\[|A| - 2 = J - 1 \quad \text{and} \quad f''(0) = (-1)^J s(J). \quad (7.6) \]

The map \(u \mapsto -u \) is a permutation of \(A - \{0\} \), so

\[\prod_{u \in A - \{0\}} a = \prod_{u \in A - \{0\}} (-a) = (-1)^{|A| - 1} \prod_{u \in A - \{0\}} a. \]

This equation and statement (7.6) imply that

\[1 = (-1)^{|A| - 1} = (-1)^J = f''(0)/s(J) = f''(0)/s(|A| - 1). \]

Hence \(f''(0) = s(|A| - 1) \); this equation and Eq. (7.3) imply that

\[\prod_{u \in A - \{0\}} a = s(|A| - 1). \]

This establishes the proposition. \(\blacksquare \)

Remark. Another way to establish statements (7.3) and (7.4) is to use the theory of \(p \)-polynomials, due to O. Ore [13, pp. 564–565].

Proof 2. Let \(F_p \) denote the subfield of \(K \) of size \(p \). Assume that \(|A| > 1 \) and let \(N \) denote the size of a minimal set of generators of \(A \) as an additive group. Let \(X_1, \ldots, X_N \) denote commuting indeterminates and let \(A^* \) denote the \(F_p \) vector space spanned by \(\{X_1, \ldots, X_N\} \). It will be shown that

\[\sum_{a \in A^*} a^{|A^*| - 1} = \prod_{a \in A^* - \{0\}} a. \quad (7.7) \]

Note that both \(A \) and \(A^* \) are \(N \)-dimensional vector spaces over \(F_p \). Consider an \(F_p \)-algebra homomorphism from \(F_p[X_1, \ldots, X_N] \) to \(K \) which maps \(\{X_1, \ldots, X_N\} \) to a set of generators of \(A \); by applying such a homomorphism to both sides of Eq. (7.7), one obtains the equation stated in the proposition. Therefore, to finish the proof, it suffices to establish Eq. (7.7).

Let \(L \) denote the left side of Eq. (7.7) and let \(B \) denote the set of linear forms in \(F_p[X_2, \ldots, X_N] \). Observe that when \(X_1 \) is replaced by 0, \(L \) is replaced by \(p \sum_{a \in B} a^{|A^*| - 1} \), which equals 0 because the characteristic of \(F_p \) is \(p \). Hence

\[L \text{ is divisible by } X_1. \quad (7.8) \]
Observe that if X_i is replaced by cX_i, where $c \in F_p - \{0\}$, then L is unchanged. Therefore, if $X_1^{e_1} \cdots X_N^{e_N}$ is any monomial which appears in L, then $c^{e_i} = 1$ for every $c \in F_p - \{0\}$; hence e_i must be divisible by $p - 1$. This observation and statement (7.8) imply that

$$L \text{ is divisible by } X_i^{p-1}. \quad (7.9)$$

Note that L is fixed by every automorphism of $F_p[X_1, \ldots , X_N]$ which maps $\{X_1, \ldots , X_N\}$ to a set of linear forms, because such an automorphism permutes the elements of A^*. This observation and statement (7.9) imply that L is divisible by a^{p-1} for every non-zero $a \in A^*$. Note also that the least common multiple of the elements of $\{a^{p-1} : a \in A^* - \{0\}\}$ is $\prod_{a \in A^* - \{0\}} a$; hence L is divisible by $\prod_{a \in A^* - \{0\}} a$. This observation and the fact that $\deg L \leq |A^*| - 1 = \deg \prod_{a \in A^* - \{0\}} a$ imply that there exists an element $c \in F_p$ such that $L = c \prod_{a \in A^* - \{0\}} a. \quad (7.10)$

Let F denote a finite field of size p^N (it is shown in [4, Chap. 2, pp. 14-19] that such a field exists). It is known [4, Chap. 1, p. 11] that

$$x^{|F|-1} = 1 \quad \text{for every } x \in F - \{0\}. \quad (7.11)$$

Let h denote a ring homomorphism from $F_p[X_1, \ldots , X_N]$ to F that maps $\{X_1, \ldots , X_N\}$ to a basis for F over F_p. Note that the restriction of h to A^* is a one-to-one correspondence between A^* and F. Therefore

$$h(L) = \sum_{x \in F} x^{|F|-1} \quad (7.12)$$

and

$$h\left(\prod_{a \in A^* - \{0\}} a\right) - \prod_{x \in F - \{0\}} x. \quad (7.13)$$

By pairing the elements of $F - \{0, -1, 1\}$ with their multiplicative inverses, one obtains the well-known identity

$$\prod_{x \in F - \{0\}} x = -1. \quad (7.14)$$

Note that

$$h(L) = -1, \quad \text{by (7.11) and (7.12)}$$

and

$$= h\left(\prod_{a \in A^* - \{0\}} a\right), \quad \text{by (7.13) and (7.14)}. $$
This equation implies that the scalar c appearing in Eq. (7.10) equals 1. Therefore Eq. (7.7) holds.

Remarks. A shorter (but less self-contained) proof of statement (7.10) can be given by using Dickson’s theorem \cite{5, 6, 13, 19;} on the invariants of $GL(N, F_p)$.

Let $\{a_1, \ldots, a_N\}$ denote a minimal set of generators of A as an additive group. Ore \cite{13, Theorem 9, p. 565;} showed that

$$\prod_{a \in A - \{0\}} a = \left(-1 \right)^N \left(\det \begin{pmatrix} a_1 & a_2 & \cdots & a_N \\ a_1^p & a_2^p & \cdots & a_N^p \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{p^N-1} & a_2^{p^N-1} & \cdots & a_N^{p^N-1} \end{pmatrix} \right)^{p-1}.$$

This equation can also be derived easily from a result of E. H. Moore \cite{9}.

Proposition 8. Assume that $|A| > 1$. Let $S(m)$ denote a set of K-algebra generators of $K[U_i, V_i : 1 \leq i \leq m]^{UT(A)}$. If $m \geq 1$, then the monomial $V_i^{[4]}$ appears in some element of $S(m)$, and if $m \geq 3$, then the monomial $(U_1 V_2 V_3 \cdots V_m)^{[4]} - 1$ appears in some element of $S(m)$.

Proof: Note that the monomial $V_i^{[4]}$ appears in $\prod_{a \in A} (V_i + a U_i)$, which is an invariant of $UT(A)$. This observation and Proposition 6 imply that $V_i^{[4]}$ appears in an element of $S(m)$.

Suppose now that $m \geq 3$ and define

$$h = \sum_{a \in A} (V_i + a U_i)^{[4]} - 1 (V_2 + a U_2)^{[4]} - 1 \cdots (V_m + a U_m)^{[4]} - 1.$$

Note that the coefficient of $(U_1 V_2 V_3 \cdots V_m)^{[4]} - 1$ in h is $\sum_{a \in A} a^{[4]} - 1$, which is non-zero by Proposition 7. Thus the monomial $(U_1 V_2 V_3 \cdots V_m)^{[4]} - 1$ appears in h, which is an invariant of $UT(A)$. This observation and Proposition 6 imply that $(U_1 V_2 V_3 \cdots V_m)^{[4]} - 1$ appears in an element of $S(m)$.

Proposition 9. Let $R = K[U_i, U_i V_j - U_j V_i : 1 \leq i, j \leq m]$ and let R^* denote the R-module which is generated by $\{V_1^{e_1} V_2^{e_2} \cdots V_m^{e_m} : e_1 + \cdots + e_m < |A|\}$. Then $(R^*)^{UT(A)} = R$.
Proof. The polynomials U_i and $U_iV_j - U_jV_i$ are invariants of $\text{UT}(A)$, so

\[\text{every element of } R \text{ is an invariant of } \text{UT}(A). \quad (9.1)\]

Let Y denote an indeterminate and let σ denote the K-algebra automorphism of $K[Y, U_i, V_i : 1 \leq i \leq m]$ such that $Y^\sigma = Y$, $U_i^\sigma = U_i$, and $V_i^\sigma = YU_i + V_i$ for every i. Every element of R is fixed by σ; therefore

\[\text{for every } f \in R^*, \text{ there exist polynomials } f_0, f_1, \ldots, f_{|A|-1} \text{ in } K[U_i, V_i : 1 \leq i \leq m] \text{ such that } f^\sigma = f_0 + f_1Y + \cdots + f_{|A|-1}Y^{|A|-1}. \quad (9.2)\]

Suppose that $f \in (R^*)^{\text{UT}(A)}$. If Y is replaced by an element of A, then $f^\sigma - f$ becomes 0, because f is an invariant of $\text{UT}(A)$. Therefore $f^\sigma - f$ is divisible by $\prod_{u \in A} Y - a$. This observation and statement (9.2) imply that $f^\sigma = f$. Therefore f is an invariant of $\text{UT}(K^*)$ for every field K^* containing K. This observation, with $K^* = K(Y)$, and statement (0.1) (with K replaced by $K(Y)$) imply that $f \in K[Y][U_i, U_iV_j - U_jV_i : 1 \leq i, j \leq m]$. Therefore there is a monic polynomial $d(Y) \in K[Y]$ and elements r_0, r_1, \ldots, r_ℓ in R such that

\[d(Y)f = r_0 + r_1Y + \cdots + r_\ell Y^\ell.\]

By comparing the coefficients of the highest power of Y on each side of this equation, and recalling that $d(Y)$ is monic, one obtains $f = r_{\deg d(Y)} \in R$. This proves that $(R^*)^{\text{UT}(A)} \subseteq R$. This containment and statement (9.1) establish the proposition.

Recall that $N_A(V_i)$ denotes the polynomial $\prod_{u \in A}(V_i + aU_i)$.

Proposition 10. The algebra $K[U_i, N_A(V_i), U_iV_j - U_jV_i : 1 \leq i, j \leq m]$ contains every element of $K[U_i, V_i : 1 \leq i \leq m]^{\text{UT}(A)}$ whose degree is strictly less than $2|A| - |A|/p$.

Proof. Let B denote the set of polynomials in $K[U_i, V_i : 1 \leq i \leq m]$ whose degrees are strictly less than $2|A| - |A|/p$ and let W denote the K vector spanned by the monomials $U_1^{e_1} \cdots U_m^{e_m}V_1^{c_1} \cdots V_m^{c_m}$ such that $e_i < |A|$ for every i. For $i = 1, 2, \ldots, m$, let W_i denote the set of polynomials in B which are divisible by $N_A(V_i)$.

Claim. B is the direct sum of the vector spaces $W \cap B$, W_1, W_2, ..., W_m.

This claim is analogous to the one in the proof of Proposition 1 and can be proved in a similar manner; the details are omitted.
Every automorphism in UT(A) maps $W \cap B$ into itself and W_i into itself for $i = 1, \ldots, m$. This observation and the claim imply that

$$B_{UT (A)}^{m (A)} = \text{the direct sum of } (W \cap B)^{UT (A)}, \ W_0^{UT (A)}, \ W_1^{UT (A)}, \ W_2^{UT (A)}, \ldots, \ W_m^{UT (A)}. \tag{10.1}$$

Observe also that $W_i \subset (W \cap B) N_4 (V_i)$ for every i; hence

$$W_i^{UT (A)} \subset (W \cap B)^{UT (A)} N_4 (V_i) \quad \text{for every } i. \tag{10.2}$$

Let w denote a monomial which appears in an element of $(W \cap B)^{UT (A)}$. Proposition 5, with $p^b = |A|$, implies that U-degree $w \geq \min \{|A| - |A|/p, \deg w - U$-degree $w\}$, so U-degree $w \geq \min \{|A| - |A|/p, \deg w)/2\}$. This observation and the fact that $\deg w < 2 |A| - |A|/p$ (because w appears in an element of B) imply that

$$\deg w - U$-degree $w \leq \max \{|A| - 1, \left[(\deg w)/2\right]\} = |A| - 1.$$
Relations (11.1) and (11.2) establish the proposition in the case that $A = A'$.

For brevity let n_1 and n_2 denote $N.(V_1)$ and $N.(V_2)$, respectively. Suppose that $t \in F_p$; Fermat’s Little Theorem implies that $V_i^p - (xU_i)^{p-1} V_i$ becomes zero when V_i is replaced by $-t x U_i$. Hence $V_i^p - (xU_i)^{p-1} V_i$ is divisible by $V_i + t x U_i$ for every $t \in F_p$; therefore

$$V_i^p - (xU_i)^{p-1} V_i = n_i \quad \text{for } i = 1, 2. \quad (11.3)$$

Therefore

$$U_1 n_2 - U_2 n_1 = (U_1 V_2 - U_2 V_1)^p - (xU_1)^{p-1} (U_1 V_2 - U_2 V_1).$$

This equation can be viewed as an equation of integral dependence of $U_1 V_2 - U_2 V_1$ over $K[U_1, U_2, n_1, n_2]$; hence

$$K[U_1, U_2, n_1, n_2]$$

is generated as a $K[U_1, U_2, n_1, n_2]$-module by $1, U_1 V_2 - U_2 V_1, (U_1 V_2 - U_2 V_1)^p - 1$.

To show B_2 denote the K vector space spanned by the monomials $U_1^{d_1} U_2^{d_2} V_1^{e_1} V_2^{e_2}$ such that $d_1 + e_1 < |A|$ and $d_2 + e_2 < |A|$. Let f denote a non-zero element of $B_2^{UT(A)}$; it will be shown that $f \in K[U_1, U_2, U_1 V_2 - U_2 V_1]$. Since f is an invariant of $UT(A)$ and $A \supseteq A'$, it is an invariant of $UT(A')$. This observation and statements (11.1) and (11.4) imply that one can write

$$f = \sum_{I \geq 0} \sum_{J \geq 0} c_{I,J} n_1^J n_2^J,$$

where every $c_{I,J}$ lies in the $K[U_1, U_2]$-module generated by $1, U_1 V_2 - U_2 V_1, ..., (U_1 V_2 - U_2 V_1)^{p-1}$.

Define $e = \max\{i + j : c_{I,J} \neq 0\}$ and let I denote the biggest integer such that $0 \leq I \leq e$ and $c_{e-I,J} \neq 0$. Equations (11.3) and (11.5) and the definitions of e and I imply that

$$f = c_{e-I,J} n_1^J n_2^{e-I} + \text{a polynomial whose } V_1\text{-degree is}
\text{strictly less than } pI + \text{a polynomial whose } V_2\text{-degree is}
\text{strictly less than } p(e-I).$$

Therefore V_2-degree $f \geq V_2$-degree $n_2^{e-I} = p(e-I)$ and V_1-degree $f \geq V_1$-degree $n_1^I = pI$. These observations and the hypothesis that that $f \in B_2$ imply that

$$p(e-I) < |A| \quad \text{and} \quad pI < |A|. \quad (11.6)$$

The next goal is to show that $I = e$. Let Y denote an indeterminate and
let f^* denote the image of f under the K-algebra homomorphism which maps U_i to U_i and V_i to $V_i + YU_i$ for every i. Define

$$f^*(i, j) = c_0(n_1 + (Y^p - x^p - 1)U_1)U_2j(n_2 + (Y^p - x^p - 1)U_2)$$

for all $i, j \geq 0$. Equations (11.3) and (11.5) imply that

$$f^* = \sum_i \sum_j f^*(i, j).$$

(11.7)

Observe that

if $i < I$, then the V_1-degree of every monomial which appears in $f^*(i, j)$ is strictly less than pI

(11.8)

and

if $i + j < e$, then the sum of the V_1-degree and Y-degree of each monomial which appears in $f^*(i, j)$ is strictly less than pe.

(11.9)

Note also that

$$f^*(I, e - I) = c_{i, e - I} V_1^p(YU_2)^{p(e - I)} + \text{a polynomial whose } V_1\text{-degree is strictly less than that of } c_{i, e - I} V_1^p + \text{a polynomial whose } Y\text{-degree is strictly less than } p(e - I).$$

(11.10)

Let w' denote a monomial of maximum V_1-degree which appears in $c_{i, e - I} V_1^p(YU_2)^{p(e - I)}$. Statements (11.8) and (11.9), together with the definitions of e and I, imply that if $i \neq I$ or $j \neq e - I$, then $w'Y^{p(e - I)}$ does not divide any monomial which appears in $f^*(i, j)$. Equation (11.10) implies that the monomial $w'Y^{p(e - I)}$ appears in $f^*(I, e - I)$ and, for every integer $d > p(e - I)$, $w'Y^d$ does not appear in $f^*(I, e - I)$. These observations and Eq. (11.7) imply that

the monomial $w'Y^{p(e - I)}$ appears in f^* and, for every integer $d > p(e - I)$, $w'Y^d$ does not appear in f^*.

(11.11)

One can write

$$f^* = \sum_w w f_w(Y), \text{ where the sum ranges over all monomials } w \text{ in } K[U_1, U_2, V_1, V_2] \text{ whose degrees are less than or equal to } \deg f \text{ and } f_w(Y) \in K[Y] \text{ for every } w.$$

(11.12)

Note that if Y is replaced by an element of A, then $f^* - f$ becomes zero,
because f is an invariant of $\text{UT}(A)$. Therefore $f^* - f$ is divisible by $\prod_{a \in A} Y - a$. This observation and Eq. (11.12) imply that $f_w(Y) - f_w(0)$ is divisible by $\prod_{a \in A} Y - a$ for every monomial w. Note also that, by statements (11.6) and (11.11), the degree of $f_w(Y)$ is strictly less than $|A|$. Therefore $f_w(Y) - f_w(0)$ is identically zero, so $f_w(Y) \in K$. This inclusion and statements (11.11) and (11.12) imply that $p(e - I) - \deg f_w(Y) = 0$, so $e = I$. This observation and the second part of statement (11.6) imply that $p < |A|$. Since $p < |A|$, Eq. (11.5) and the definition of e imply that f lies in the $K[U_1, U_2, U, V_2 - U_2 V,]$-module generated by the monomials $V_1^e V_2^e$ such that $e_1 + e_2 < |A|$. Recall also that f is an invariant of $\text{UT}(A)$; therefore Proposition 9 implies that $f \in K[U_1, U_2, U, V_2 - U_2 V,]$. This proves that $B_{\text{UT}(A)}$ is a subset of $K[U_1, U_2, U, V_2 - U_2 V,]$] This observation and Proposition 1 imply that $K[U_1, V_i, U_1 V_j - U_2 V_i : i = 1, 2]$. This observation and statement (11.2) establish the proposition.

Remark. Proposition 8 implies that, if $|A| > 1$ and $m \geq 3$, then $K[U_1, V_i : 1 \leq i \leq m]^\text{UT}(A)$ does not equal $K[U_1, N_A(V_i), U_i V_j - U_j V_i : 1 \leq i, j \leq m]$.

5. SOME EXAMPLES OF INVARIANTS

If G denotes a finite group of automorphisms of a commutative ring, then $\sum_{g \in G} r^s$ and $\prod_{g \in G} r^s$ are invariants of G for every element r in the ring. The next proposition describes other examples of invariants of G in the case that $G = \text{UT}(A)$.

Notation. If A' is a finite additive subgroup of K and $f \in K[U_i, V_i : 1 \leq i \leq m]$, define $N_{A'}(f) = \prod_{\sigma \in \text{UT}(A')} f^\sigma$.

Proposition 12. Assume that $|A| > 1$. Let A' denote a proper subgroup of A and let C denote a system of representatives for the cosets of A' in A. Define

$$h = \sum_{c \in C} N_{A'}(V_1 + c U_1) N_{A'}(V_2 + c U_2) \cdots N_{A'}(V_m + c U_m)$$

and let $i^* = |A| / |A'|$. Then h is an invariant of $\text{UT}(A)$ and, if $m \geq i^*$, then the monomial $(U_1 U_2 \cdots U_r - 1)^{i^* - 1} \prod_{i=m,i^*} V_i^{i^*}$ appears in h.

Proof. Let $\sigma(x)$ be defined as in the introduction and define

$$H(x) = \prod_{i=1}^m N_A(V_i + x U_i)$$
for every \(x \in K \). Note that
\[
H(x)^{a(x)} = H(x + y) \quad \text{for all } x, y \in K. \tag{12.1}
\]

Observe that \(N_{A'}(V_i + xU_i + a'U_i) = N_{A'}(V_i + xU_i) \) for every \(x \in K, a' \in A', \) and \(i \in \{1, \ldots, m\} \). Therefore \(h \) does not depend on the choice of the system of representatives \(C \) for the cosets of \(A' \). Observe that, if \(a \in A \), then
\[
h = \sum_{c \in C} H(c + a), \quad \text{because } \{c + a : c \in C\} \text{ is a system of representatives for the cosets of } A' \text{ in } A
\]

\[
= \sum_{c \in C} H(c)^{a(a)}, \quad \text{by (12.1)}
\]

\[
= h^{a(a)}.
\]

This proves that \(h \) is an invariant of \(UT(A) \).

Suppose that \(m \geq i^* \) and \(c \in C \). Note that, for \(i = 1, 2, \ldots, m \),
\[
N_{A'}(V_i + cU_i) = V_i^{[A']} + \text{an element of } U_iK[U_i, V_i]
\]

and
\[
N_{A'}(V_i + cU_i) = \left(\prod_{a \in A'} c + a \right) U_i^{[A']} + \text{an element of } V_iK[U_i, V_i]
\]

\[
= \left(\prod_{a \in A'} c - a \right) U_i^{[A']} + \text{an element of } V_iK[U_i, V_i]
\]

because the map \(a \mapsto -a \) permutes the elements of \(A' \).

Therefore
\[
\text{the coefficient of } (U_1U_2 \cdots U_{i^*})^{[A']} \prod_{j=i^*}^{m} V_j^{[A']} \text{ in } H(c)
\]

\[
is \prod_{a \in A'} (c - a)^{i^* - 1} \tag{12.2}
\]

Define \(f_{A'}(X) = \prod_{a \in A'} X - a \). The theory of \(p \)-polynomials [13, pp. 564–565] implies that
\[
f_{A'}(x + y) = f_{A'}(x) + f_{A'}(y) \quad \text{for all } x, y \in K. \tag{12.3}
\]

Therefore the restriction of \(f_{A'} \) to \(A \) gives a homomorphism between the additive groups \(A \) and \(f_{A'}(A) \). Note also that the kernel of this homomorphism is \(A' \), so \(|f_{A'}(A)| = |A|/|A'| = i^* \). This observation and Proposition 7 imply that

\[
\sum_{x \in f_{A'}(A)} x^{i^* - 1} \neq 0. \tag{12.4}
\]
Note that

\[
\text{the coefficient of } (U_1 U_2 \cdots U_{i-1})^{A_1} \prod_{i=1}^{m} V_i^{A_i} \text{ in } h = \sum_{c \in C} f_{A'}(c)^{i^* - 1}, \quad \text{by (12.2)}
\]

\[
= \sum_{x \in f_{A'}(C)} x^{i^* - 1}, \quad \text{because the map } c \mapsto f_{A'}(c)
\]

gives a one-to-one correspondence between \(C \)
and \(f_{A'}(A) \)

\[\neq 0, \quad \text{by (12.4)}. \]

This establishes the last assertion of the proposition. \(\square \)

Remarks. Let \(h \) be defined as in Proposition 12.

1. The following argument shows that the \(U \)-degree of every monomial which appears in \(h \) is greater than or equal to \(|A| - |A'|\). Equation (12.3) (with \(K \) replaced by \(K(U_i, V_i; 1 \leq i \leq m) \)) and the fact that \(N_A(V_i + cU_i) = U_i^{A_1'} f_{A'}((V_i/U_i) + c) \) imply that \(N_A(V_i + cU_i) = N_A(V_i) + f_{A'}(c) U_i^{A_1'} \) for every \(i \in \{1, \ldots, m\} \) and \(c \in K \). This observation and the definition of \(h \) imply that

\[
h = \sum_{c \in C} (N_A(V_1) + f_{A'}(c) U_1^{A_1'}) \cdots (N_A(V_m) + f_{A'}(c) U_m^{A_m'}). \tag{12.5}
\]

The proof of Proposition 12 shows that \(f_{A'}(A) \) is an additive group of size \(i^* \). Therefore the first equation of statement (7.6) (with \(A \) replaced by \(f_{A'}(A) \)) implies that

\[
\sum_{x \in f_{A'}(A)} x^j = 0 \quad \text{when } 1 \leq j < i^* - 1.
\]

This observation and the fact that the map \(c \mapsto f_{A'}(c) \) gives a one-to-one correspondence between \(C \) and \(f_{A'}(A) \) imply that

\[
\sum_{c \in C} f_{A'}(c)^j = 0 \quad \text{when } 1 \leq j < i^* - 1. \tag{12.6}
\]

Note also that

\[
|C| \text{ is divisible by } p, \tag{12.7}
\]

because \(|C| = |A|/|A'|\), \(A' \) is a proper subgroup of \(A \), and \(A \) is a vector space over \(F_p \). Statements (12.5)–(12.7) imply that \(h \) is a linear combination of polynomials of the form

\[
\left(\prod_{i \in S} U_i^{A_i} \right) \left(\prod_{i \in \{1, \ldots, m\} - S} N_A(V_i) \right),
\]
where \(S \) denotes a subset of \(\{1, \ldots, m\} \) whose size is greater than or equal to \(i^* - 1 \). Therefore the \(U \)-degree of every monomial which appears in \(h \) is greater than or equal to \(|A'|-1 = |A| - |A'| \).

2. The following argument shows that, if \(|A'| > 1 \) and \(m \geq i^* \), then \(h \) does not lie in \(\{\sum_{\sigma \in UT(A)} f^\sigma \mid N_A(f) \in K[U_i, V_i \mid 1 \leq i \leq m] \} \). The first equation of statement (7.6) implies that

\[
\text{if } 1 \leq j < |A| - 1, \text{ then } \sum_{a \in A} a^j = 0. \tag{12.8}
\]

Let \(w \) denote the monomial \(V_1^{e_1}V_2^{e_2} \cdots V_m^{e_m} \) and observe that

\[
\sum_{\sigma \in UT(A)} w^\sigma = \sum_{a \in A} (V_1 + aU_1)^{e_1} (V_2 + aU_2)^{e_2} \cdots (V_m + aU_m)^{e_m}.
\]

This equation, statement (12.8), and the fact that \(|A| \) is divisible by \(p \) imply that the \(U \)-degree of every monomial which appears in \(\sum_{\sigma \in UT(A)} w^\sigma \) is greater than or equal to \(|A| - 1 \). This observation and the fact that \(K[U_i, V_i \mid 1 \leq i \leq m] \) is generated as a \(K[U_i, \ldots, U_m] \)-module by monomials of the form \(V_1^{e_1} \cdots V_m^{e_m} \) imply that

\[
\text{if } f \in K[U_i, V_i \mid 1 \leq i \leq m], \text{ then the } U \text{-degree of every monomial which appears in } \sum_{\sigma \in UT(A)} f^\sigma \text{ is greater than or equal to } |A| - 1. \tag{12.9}
\]

Assume that \(m \geq i^* \). Proposition 12 and statement (12.9) imply that, if \(|A'| > 1 \), then \(h \) does not lie in the \(K \)-algebra generated by \(\{\sum_{\sigma \in UT(A)} f^\sigma \mid f \in K[U_i, V_i \mid 1 \leq i \leq m] \} \).

Suppose that \(f \in K[U_i, V_i \mid 1 \leq i \leq m] \). If the \(U \)-degree of every monomial which appears in \(f \) is strictly greater than 0, then the \(U \)-degree of every monomial which appears in \(N_A(f) \) is greater than or equal to \(|A| \). This observation and Proposition 12 imply that, if the \(U \)-degree of every monomial which appears in \(f \) is strictly greater than 0, then \(N_A(f) \neq h \). If there is a monomial of \(U \)-degree 0 which appears in \(f \), then there is a monomial of \(U \)-degree 0 which appears in \(N_A(f) \). This observation and Remark 1 imply that, if there is a monomial of \(U \)-degree 0 which appears in \(f \), then \(N_A(f) \neq h \). Thus \(N_A(f) \neq h \) for all \(f \).

3. Assume that \(|A| > 1 \) and let \(b \) denote a strictly positive integer such that \(p^b \leq |A| \). The following examples show that the lower bound for \(d_1 + \cdots + d_m \) given in Proposition 5 is attained in infinitely many cases. Define \(i^* = |A|/p^{b-1} \) and set

\[
w(m) = (U_1 U_2 \cdots U_{i^* - 1}) p^{b-1} \prod_{i = i^*}^m V_i^{p^{b-1}} \quad \text{if } m > i^*
\]
and
\[w(m) = (U_i^{m-1}V_2V_3\cdots V_m)^{p^b-1} \quad \text{if} \quad 2 \leq m \leq i^*. \]

Since \(A \) is a vector space over \(F_p \) and \(|A| \geq p^b \geq p \), there is a subgroup \(A' \) of \(A \) such that \(|A'| = p^b - 1 \). This observation and Proposition 12 imply that if \(m > i^* \), then the monomial \(w(m) \) appears in an invariant of \(UT(A) \). If \(2 \leq m \leq i^* \), then the monomial \(w(m) \) appears in \(\prod_{i=2}^{m} (U_iV_i - U_iV_i')^p \), which is an invariant of \(UT(A) \).

If \(2 \leq m \leq i^* \), then \((m - 1) p^b - 1 \leq (i^* - 1) p^b - 1 = |A| - p^b - 1 \) and
\[U\text{-degree} \ w(m) = V\text{-degree} \ w(m) \leq |A| - p^b - 1. \]

If \(m \geq \max\{2i^* - 2, \ i^* + 1\} \), then \((m - i^* + 1) p^b - 1 \geq (i^* - 1) p^b - 1 = U\text{-degree} \ w(m) \), so
\[U\text{-degree} \ w(m) = |A| - p^b - 1 \leq (m - i^* + 1) p^b - 1 = V\text{-degree} \ w(m). \]

These observations imply that if \(2 \leq m \leq i^* \) or \(m \geq 2i^* - 2 \), then the monomial \(w(m) \) satisfies the hypotheses on \(\prod_i U_i^{d_i}V_i \), stated in Proposition 5 and the corresponding bound for \(d_1 + \cdots + d_m \) is attained.

4. The following example shows that the degree hypothesis in Proposition 10 cannot be weakened when \(|A| > 1 \) and \(m \geq 2p - 1 \). Assume that \(|A| > 1 \) and let \(w = (U_1U_2\cdots U_{p-1})^{(|A|/p)\cdot \prod_{i=2}^{p-1} V_i^{A_i/p}}. \) Define \(B_m \) as in Proposition 1 and note that \(w \in B_m \). Note also that \(U\text{-degree} \ w = |A| - |A|/p < (\deg w)/2 \); therefore
\[w \text{ does not appear in an element of } [U_i, N_A(V_i), U_iV_j - U_jV_i : 1 \leq i, j \leq m]. \tag{12.10} \]

Let \(A' \) denote a subgroup of \(A \) of size \(|A|/p \); such a subgroup exists because \(A \) is a vector space over \(F_p \) and \(|A| > 1 \). Define \(h \) as in Proposition 12, with \(m = 2p - 1 \). Proposition 12 implies that \(w \) appears in \(h \); this observation and statement (12.10) imply that \(h \) does not lie in \(K[U_i, N_A(V_i), U_iV_j - U_jV_i : 1 \leq i, j \leq m] \). Proposition 12 also implies that \(h \) is an invariant of \(UT(A) \). Thus, if \(m \geq 2p - 1 \), then \(K[U_i, V_i : 1 \leq i \leq m]^{UT(A)} \) contains a polynomial of degree \(2|A| - |A|/p \) (namely \(h \)) which does not lie in \(K[U_i, N_A(V_i), U_iV_j - U_jV_i : 1 \leq i, j \leq m] \).

Recall from the introduction that \(\{C_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\} \) denotes a set of commuting indeterminates.
Proposition 13. Let F denote a finite field and let b, m, and n denote positive integers. Let

$$h = \sum_{(t_1, \ldots, t_n) \in F^n} \prod_{i=1}^m (t_1 C_{i1} + t_2 C_{i2} + \cdots + t_n C_{im})^b.$$

Then h is a vector invariant of $GL(n, F)$, i.e., $h^g = h$ for every $g \in GL(n, F)$.

Let d denote a positive integer such that bd is divisible by $|F| - 1$, and assume that $m \geq nd$ and bm is divisible by $|F| - 1$. Define

$$w = \left(\prod_{j=1}^{n-1} \prod_{k=1}^d C_{jd} - d + k \right) \left(\prod_{k=\{n-1\}d+1}^m K C_{kn} \right);$$

then the coefficient of w^b in h is $(-1)^n$.

Proof. Let $L = FC_{11} + FC_{12} + \cdots + FC_{1n}$. If $i \in \{1, \ldots, m\}$, let H_i denote the K-algebra homomorphism from $K[C_{ij} : 1 \leq j < n]$ to $K[C_{ij} : 1 \leq j \leq n]$ such that $H_i(C_{ij}) = C_{ij}$ for $j = 1, \ldots, n$. Suppose that $g \in GL(n, F)$ and observe that

$$h = \sum_{x \in L} (H_1(x))^b (H_2(x))^b \cdots (H_m(x))^b = \sum_{x \in L} (H_1(x^g))^b (H_2(x^g))^b \cdots (H_m(x^g))^b$$

because the map $x \mapsto x^g$ permutes the elements of L

$$= h^g,$$ because $H_i(x^g) = H_i(x)^g$ for every i and x.

This establishes the first assertion of the proposition.

Assume now that $m \geq nd$ and bm is divisible by $|F| - 1$. The definitions of h and w imply that

the coefficient of w^b in h

$$= \sum_{(t_1, \ldots, t_n) \in F^n} \left(\prod_{j=1}^{n-1} t_j^{bd} \right) t_n^{(m - nd + d)h}$$

$$= \left(\sum_{t_1 \in F} t_1^{bd} \right) \left(\sum_{t_2 \in F} t_2^{bd} \right) \cdots \left(\sum_{t_{n-1} \in F} t_{n-1}^{bd} \right) \left(\sum_{t_n \in F} t_n^{(m - nd + d)h} \right)$$

$$= (|F| - 1)^n,$$ by Eq. (7.11) and the fact that bd and bm are divisible by $|F| - 1$

$$= (-1)^n,$$ because $|F|$ is a multiple of the characteristic of F. ■
6. Vector Invariants over Finite Fields

Let \(I \) denote the identity matrix.

Proposition 14. Let \(F \) denote a finite subfield of \(K \) and let \(G \) denote a subgroup of \(\text{GL}(n, F) \). Assume that there is an element \(g \) in \(G \) such that \((g - I)^2 = 0\) and \(\text{rank}(g - I) = 1 \). Let \(A \) denote the set of elements \(x \) in \(F \) such that \(I + x(g - I) \in G \). Let \(d \) denote the smallest integer such that \(d > 0 \) and \((|A| - 1)d \) is divisible by \(|F| - 1 \). If \(m \geq (n + 1)d \), then every set of \(K \)-algebra generators of \(K[C_{ij}: 1 \leq i \leq m, 1 \leq j \leq n]_G \) contains a generator whose degree is greater than or equal to \((\lfloor m/d \rfloor - n + 2)(|A| - 1)/p\); here \(\lfloor \cdot \rfloor \) denotes the greatest-integer function.

Proof. If \(n \geq 2 \), let \(E_{n-1,n} \) denote the \(n \times n \) matrix whose \((n-1, n)\)th entry is 1 and whose other entries are zeros. The assumptions about \(g \) imply that \(n \geq 2 \) and \(g \) is similar to \(I + E_{n-1,n} \). Therefore, after a linear change of coordinates, one may assume that

\[
C_{i1}, C_{i2}, \ldots, C_{in-1} \text{ are each fixed by } g \quad \text{and} \quad C_{in}^g = C_{in} \quad \text{for every } i.
\]

(14.1)

Let \(m' \) denote the biggest integer such that \(m' \leq m \) and \(m' \) is divisible by \(d \). Suppose that \(m \geq (n+1)d \); then \(m' \geq (n+1)d \). Define

\[
w = \left(\prod_{j=1}^{n-1} \prod_{k=0}^{d} C_{j, d}, \ldots, C_{i, n-1} \right) \left(\prod_{k=(n-1)d+1}^{m'} C_{kn} \right).
\]

Proposition 13 (with \(m \) and \(b \) replaced by \(m' \) and \(|A| - 1 \), respectively) implies that the monomial \(w^{(|A| - 1)} \) appears in an invariant of \(G \). Let \(S(m) \) denote a set of \(K \)-algebra generators of \(K[C_{ij}: 1 \leq i \leq m, 1 \leq j \leq n]_G \). Note that \(w^{(|A| - 1)} \) appears in an element of the \(K \)-algebra generated by \(S(m) \), so one can write

\[
w^{(|A| - 1)} = w_1 w_2 \cdots w_r, \quad \text{where each } w_i \text{ is a non-constant monomial which appears in an element of } S(m).
\]

(14.2)

If \(x \) and \(y \) denote elements of \(A \), then

\[
I + (x + y)(g - I) = (I + x(g - I))(I + y(g - I)), \quad \text{because } (g - I)^2 = 0
\]

\[\in G, \quad \text{because } I + x(g - I) \text{ and } I + y(g - I) \text{ both lie in } G \text{ and } G \text{ is a group.}
\]

Therefore \(A \) is closed under addition and \(\{I + x(g - I) : x \in A\} \) is a subgroup of \(G \). Define the \(U \)-degree of a monomial \(\prod_{i=1}^n \prod_{j=1}^m C_{ij}^{c_{ij}} \) to be
e(1, n - 1) + e(2, n - 1) + \ldots + e(m, n - 1) and define its V-degree to be $e(1, n) + e(2, n) + \ldots + e(m, n)$. Let w_1, w_2, \ldots, w_t be as in Eq. (14.2). Condition (14.1) implies that the group $\{1 + x(g - I) : x \in A\}$ can be identified with $UT(A)$ (where the indeterminates U_i and V_i correspond to $C_{i,n-1}$ and $C_{m,i}$, respectively, for every i). Therefore Proposition 5, with $p^b = |A|$, implies that

$$U\text{-degree } w_i \geq \min\{|A| - |A|/p, V\text{-degree } w_i\} \quad \text{for every } i. \quad (14.3)$$

This inequality implies that

if $U\text{-degree } w_i + V\text{-degree } w_i > 0$, then $U\text{-degree } w_i > 0. \quad (14.4)$

Equation (14.2) implies that there is a number J in $\{1, \ldots, t\}$ such that $U\text{-degree } w_J + V\text{-degree } w_J > 0$ and

$$U\text{-degree } w_J/(U\text{-degree } w_J + V\text{-degree } w_J) \leq U\text{-degree } w^{[d]}/(U\text{-degree } w^{[d]} + V\text{-degree } w^{[d]}) = d/(m' - (n - 2)d). \quad (14.5)$$

This relation and the fact that $m' \geq (n + 1)d$ imply that $U\text{-degree } w_J/(U\text{-degree } w_J + V\text{-degree } w_J) \leq \frac{1}{2}$; hence $2(U\text{-degree } w_J) \leq V\text{-degree } w_J$. This inequality and statement (14.4) (with i replaced by J) imply that $U\text{-degree } w_J > V\text{-degree } w_J$. This inequality and statement (14.3) imply that $U\text{-degree } w_J \geq |A| - |A|/p$. Observe that

$$\deg w_J \geq U\text{-degree } w_J + V\text{-degree } w_J \geq (m' - (n - 2)d)(|A| - |A|/p)/d, \quad \text{by (14.5) and the fact that } U\text{-degree } w_J \geq |A| - |A|/p$$

$$= ([m/d] - n + 2)(|A| - |A|/p), \quad \text{because } m'/d = [m/d].$$

This observation and the fact that w_J appears in some element of $S(m)$ imply that the degree of some element of $S(m)$ is greater than or equal to $([m/d] - n + 2)(|A| - |A|/p)$. \hfill \Box

Proposition 15. Let F, G, and g be as in Proposition 14. Assume that $I + x(g - I) \in G$ for every $x \in F$. If $m \geq n + 1$, then every set of K-algebra generators of $K[C_{ij} : 1 \leq i \leq m, 1 \leq j \leq m]_G$ contains a generator whose degree is greater than or equal to $(m - n + 2)(|F| - 1)$.

Proof. Assume that $m \geq n + 1$ and define w (with $d = 1$) and $S(m)$ as in the proof of Proposition 14. Note that the conditions of Proposition 14 are
satisfied with $A = F$ and $d = 1$; therefore the statements derived in the proof of Proposition 14 are valid here.

Let $K' = K(C_i : 1 \leq i \leq m, 1 \leq j \leq n - 2)$ and let $U_i = C_{i,n}$ and $V_i = C_{i,n}$ for every i. Condition (14.1) and the hypothesis that $I + x(g - I) \in G$ for every $x \in F$ imply that the invariants of G are also invariants of $UT(F)$ (here $UT(F)$ is a group of automorphisms of $K'[U_i, V_i : 1 \leq i \leq m]$). Therefore

$$S(m) \text{ is a set of invariants of } UT(F). \quad (15.1)$$

Note that the monomial $w^{[F]-1}$ appears in an invariant of G (by Proposition 13), so it appears in an element of $K[s : s \in S(m)]$. Note also that

$$w^{[F]-1}/(C_{1,1} C_{2,1} \cdots C_{n-2,n-2})^{[F]-1} = (U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1}. \quad (15.1)$$

Therefore $(U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1}$ appears in an element of the K'-subalgebra of $K'[U_i, V_i : 1 \leq i \leq m]$ generated by $S(m)$. Since $(U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1}$ appears in an element of this subalgebra, statement (15.1) and Proposition 6 (with an appropriate relabelling of the subscripts of $U_1, ..., U_m, V_1, ..., V_m$) imply that it also appears in an element of $S(m)$. Let s^* denote an element of $S(m)$ in which $(U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1}$ appears. Note that

$$\deg s^* \geq \deg (U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1},$$

because $(U_{n-1} V_n V_{n+1} \cdots V_m)^{[F]-1}$ appears in s^*

$$= (m - n + 2)([F]-1).$$

This establishes the proposition.

ACKNOWLEDGMENT

I am grateful to Professor Ian Hughes for telling me about his work with Campbell and Pollack [1] and encouraging me to investigate the invariants of $UT(F_p)$.

REFERENCES

