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We consider dark matter (DM) that interacts with ordinary matter exclusively through an electromagnetic
anapole, which is the only allowed electromagnetic form factor for Majorana fermions. We show that
unlike DM particles with an electric or magnetic dipole moment, anapole dark matter particles annihilate
exclusively into fermions via purely p-wave interactions, while tree-level annihilations into photons are
forbidden. We calculate the anapole moment needed to produce a thermal relic abundance in agreement

with cosmological observations, and show that it is consistent with current XENON100 detection limits
on the DM-nucleus cross-section for all masses, while lying just below the detection threshold for a mass

~30-40 GeV.

© 2013 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Roughly 20-25% of the total energy content of the universe is
in the form of non-baryonic dark matter (DM). The exact nature of
the dark matter remains a mystery. Recently, a variety of authors
have explored the possibility that the dark matter might interact
electromagnetically with ordinary matter, via an electric or mag-
netic dipole moment [1-14]. Direct detection experiments strongly
constrain such dipole moments for particle masses > 10 GeV.
In particular, electric and magnetic dipole moments sufficiently
small to evade direct detection limits cannot provide the correct
thermal relic abundance for the dark matter unless m < 10 GeV
[2,4,11].

Although most of the interest in electromagnetic form factors
has been concentrated on the electric and magnetic dipole mo-
ments, Pospelov and ter Veldhuis [1] considered several other pos-
sible forms of electromagnetic coupling to the dark matter, includ-
ing the electric quadrupole moment and the anapole moment. It
is the latter which we consider in more detail here. The anapole
moment was first proposed by Zel'dovich [15]. Unlike the elec-
tric and magnetic dipole moments, the anapole moment has no
classical analog, as it does not correspond to a multipolar distribu-
tion. It is related to the toroidal dipole moment, which corresponds
to a solenoid with the ends joined into a torus, producing an
azimuthal magnetic field (for an explanation of the difference be-
tween the anapole moment and the toroidal dipole moment, see,
e.g., Ref. [16]). The first experimental measurement of an anapole
moment in atomic nuclei was noted by Woods et al. [17].
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Here, we consider a DM particle that interacts with ordinary
matter entirely through an electromagnetic anapole moment. For
Majorana fermions, the anapole is the only allowed electromag-
netic form factor, making it particularly interesting. Anapole dark
matter coupling to a dark photon was previously considered by
Fitzpatrick and Zurek [18], but our model differs from theirs in
that we have direct coupling to the Standard Model (SM) photons,
with a correspondingly different Lagrangian. In the next section,
we begin with the interaction Lagrangian for anapole dark matter
and explain the general properties of the anapole moment. In Sec-
tion 3, we use the anapole moment operator to derive the total
annihilation cross-section. We show that it leads, at tree-level, to
pure p-wave annihilation into fermions. We then use this total an-
nihilation cross-section to calculate the relic density of the anapole
dark matter. In Section 4, we calculate the cross-section for scatter-
ing of the anapole dark matter particle off of nuclei, and compare
this result to the recent XENON100 limits. We find that, unlike the
case of the electric or magnetic dipole, anapole dark matter with
an arbitrary mass can provide the correct thermal relic abundance
for dark matter and evade current direct detection limits. Our re-
sults are discussed in Section 5.

2. Dark matter anapole moment

A Majorana fermion, by definition, is a CPT self-conjugate par-
ticle. Since the interaction energies for both electric and mag-
netic dipole moments are CPT-odd, a Majorana fermion cannot
acquire any of these dipole moments (although transition elec-
tric and magnetic dipole moments are still possible [4]). In fact, it
has been proven that for a massive spin-S Majorana fermion, the
only electromagnetic form factors allowed are the anapole moment
and higher multipoles of it [19]. The maximum number of these
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Table 1
Transformation properties of the interaction energies for electric dipole
moment, magnetic dipole moment and anapole moment under C, P, T.
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multipoles is 2S. This theorem has been generalized and shown to
be valid for any CPT self-conjugate massive particle with spin-S, be
it fermionic or bosonic [20]. For CPT self-conjugate massless par-
ticles, except the spin-half fermions, no electromagnetic couplings
are allowed.

In this Letter, we consider the dark matter to be a Majorana
fermion with spin 1/2. According to the theorem mentioned above,
the only electromagnetic form factor allowed is the anapole mo-
ment. The interaction operator for this anapole moment is of the
form )Zy/’“ysxa“FW where x is the dark matter and Fy, is the
electromagnetic field strength tensor. (We remark that the corre-
sponding anapole interaction operator for a Dirac fermion takes
exactly the same form.) Since this is a dimension-6 operator, the
interaction Lagrangian density is given by

E,:%Xy"ys)(a”ﬂw, (1)

where g is the coupling constant and A is the cut-off scale. This
interaction operator breaks charge conjugation symmetry C and
parity symmetry P, but is invariant under time-reversal symme-
try T. In contrast to the electric and magnetic dipole moments
which interact with external electromagnetic fields, the anapole
moment has the unique feature that it interacts only with exter-
nal electromagnetic currents [, = 3" Fyy.

The interaction operator for the anapole moment is related to
but different from that for the toroidal dipole moment, which
has the form )Zly“ysxza”ﬂw. One can visualize the idea of the
toroidal dipole moment as follows: a solenoid is folded to join the
ends into a torus and so the current configuration is such that an
azimuthal magnetic field is generated. The toroidal dipole vector
then points in the direction dictated by the curl of the magnetic
field. Obviously, the toroidal dipole moment reduces to the anapole
moment in the limit x; = x2 [16]. In other words, when the in-
coming and outgoing particles are the same, the toroidal dipole
moment coincides with the anapole moment. This means that we
can visualize the idea of the anapole moment in a similar way as
that of the toroidal dipole moment. For instance, if neutrinos are
Majorana in nature, they can acquire both a toroidal dipole mo-
ment and an anapole moment formed from the various neutrino
fields in the mass basis. It has been shown that if neutrinos (Dirac
or Majorana) indeed have a toroidal dipole moment, it will lead
to transition radiation when the neutrino crosses the interface be-
tween two media [21].

The transformation property of the anapole moment operator
under C, P, T is perhaps more transparent in the non-relativistic
limit, at which the interaction energy takes the form

Hi=——56"1], (2)

where ¢ are the Pauli spin matrices and ]: V x B is the elec-
tromagnetic current. This is consistent with the intuitive picture
we described above by visualizing the folded solenoid, namely we
need a non-zero V x B to generate an anapole moment. In Ta-
ble 1, we compare the transformation properties of the interaction
energies for the electric dipole moment (FZ - E ), magnetic dipole
moment (& - B) and anapole moment (o - J) under C, P, T in the
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Fig. 2. t-Channel x i — yy.

non-relativistic limit. As one can easily read off from Table 1, the
interaction energy for the anapole moment violates C and P indi-
vidually but preserves T. This is consistent with the transformation
properties of the anapole interaction operator itself in (1) under C,
P, T

A similar but different anapole interaction operator has been
considered by [18] and takes the form jy*y°x A;L. If we assume
that A;L is the SM photon, then in order to maintain gauge invari-

ance, the field x is required to transform as x — e*iyséx simul-
taneously when the photon transforms as A;L — A;L — 9. Indeed,
the kinetic operator plus the interaction operator, Xiy"d,x +
xy"y>x A, is invariant under the gauge transformations: A, —

AL —9u& and x — e‘st’fx. So the field x acquires a chiral sym-
metry. However, this is impossible unless x is massless because
the mass term my x x breaks the chiral symmetry. Since a dark
matter particle must be massive, A;t cannot be the SM photon.
Nevertheless, it could still be possible that A;L represents a dark
photon which kinetically mixes with the SM photon through the
operator eF“”F,’w [22-25].

Therefore, for a fermionic dark matter to couple directly to SM
photons, the interaction Lagrangian density in (1) gives the unique
interaction operator for the anapole moment. At tree-level, this op-
erator allows for the annihilation process x x — ff where f is
a kinematically allowed SM fermion. (See the Feynman diagram
in Fig. 1.) If we assume that the mass of the dark matter m, is
smaller than My, then the process x x — WTW™ is not kine-
matically allowed. The process x x — yy is kinematically allowed
but forbidden. (See, for instance, the Feynman diagrams in Fig. 2
and Fig. 3. The two similar diagrams with crossed fermion lines for
Majorana dark matter are not shown.) The reason for x x — vy
being forbidden at tree-level is that 8 F,, = 3, (3" Ay) — 8%Ay,
and for on-shell photons, both 9VA, and 82AM are zero. A more
intuitive way to understand this fact is as follows. The anapole
dark matter only couples to the external electromagnetic current
that generates the electromagnetic fields. But the on-shell external
photons do not constitute such an electromagnetic current. This is
in sharp contrast to dark matter with electric and magnetic dipole
moments, both of which allow for the process x x — yy at tree-
level.
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3. Cosmological relic abundance of anapole dark matter

As mentioned in the previous section, for my, < Mw, the only
annihilation channel for anapole dark matter is x x — ff where
f is a kinematically allowed SM fermion. The thermally averaged
annihilation cross-section for this channel is found to be purely
p-wave (see Appendix A for the details of the calculation):

4g2am§( T
(Uxxﬁfj‘/reﬁ = A (E) (3)

where o« = e?/4m ~ 1/137 (note this convention differs from that
in Ref. [1]) and T is the temperature.

Using this annihilation cross-section and the methodology of
Refs. [26,27], we now derive the thermal relic abundance of y.
(See also the more recent discussion in Refs. [28,29].) We will con-
fine our attention to masses in the range 10 MeV <m, < 80 GeV.
The lower bound satisfies the requirement that the annihilations
of the dark matter particles as they become non-relativistic in the
early universe not heat the photons relative to the neutrinos and
thereby violate CMB observations constraining the number of rel-
ativistic degrees of freedom [30]. The upper bound comes from
the requirement that my < Mw. Although larger masses are not
necessarily excluded, we choose to explore that possibility else-
where.

We ignore the possibility of an asymmetry between particles
and antiparticles and also neglect the possibility of coannihila-
tions [31]. Since we have a pure p-wave annihilation, we can write
the total cross-section as

T
Z <GXX—>fTVr31> :U()(m_)’ (4)

mf <mX X
where oy is given by

4g%am?
X

and Ny counts the effective number of annihilation channels with
mass my < my. For each annihilation channel, the contribution to
Ny is given by the square of the corresponding fermion charge
(Q?) multiplied by the color factor whenever applicable. For our
mass range of interest, N can range from Ny =1 (for x y — eTe”
only, if m, <100 MeV), up to Ny =20/3 for my > mj (annihi-
lation into 3 charged leptons and 5 quark flavors, with each of
the latter given by 3Q? for the color factor and charge). Following
Refs. [26,27] and assuming pure p-wave annihilation, we can write
the contribution of the anapole dark matter to the density in the
form

oo

x% (Gev)!
Quh? = (214 x 10%) Lo (6)
2./ *Mpiog

This equation is valid as long as x drops out of thermal equilib-
rium before e*e~ annihilation, which is clearly the case for m, >
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Fig. 4. The anapole moment, g/A2, as a function of the mass, my, needed to account
for the observed relic abundance of dark matter.

10 MeV. In Eq. (6), £2, is the density of x relative to the critical
density, h is the Hubble parameter in units of 100 kmsec—! Mpc~!,
g, is the number of relativistic degrees of freedom in the universe
when x drops out of thermal equilibrium, Mp; is the Planck mass,

and xy is given by [26,27]

g
Xp= 1n[0.076(g1—)/<2)1\/1p,mxoo]
*

3
- ilnln|:0.076<g]—)/(2)Mp1mX00:|, (7)
8«

with g, =2 being the internal degrees of freedom for the Majo-
rana x x pair. If we assume that x x accounts for all of the dark
matter, then we can substitute the observed value of £2puh? =
0.11 [32] into Eq. (6) and use Egs. (6) and (7) to solve for op as a
function of my. Then Eq. (5) gives the anapole moment, g/A%, as a
function of m, . This is plotted in Fig. 4. Note that the step discon-
tinuities are an artifact of the approximation used here (in which
g+ changes sharply as a function of temperature and Ny changes
sharply as a function of mass). Nonetheless, the results shown in
Fig. 4 would not change significantly with a more detailed calcula-
tion.

In any sensible model, we require g <1, and my < A. This is
the case for the range of masses displayed in Fig. 4. If we set g =1
for naturalness, then as m, is varied from 10 MeV to 80 GeV,
A varies from 2.2 GeV to 340 GeV. Here, A characterizes the scale
above which a new physics, presumably a new particle, should ex-
ist. This new particle, which acts as the mediator, must couple to
the photon to generate the anapole operator. We remark that for
masses near the lower end of our range of interest (my ~ 10 MeV
and A on the order of a few GeV), it is possible that existing ex-
perimental data already rule out this model, and we are currently
investigating this question. However, near the upper end of the
mass range considered here, where A is several hundred GeV, it is
likely that any additional new physics would have thus far escaped
detection.

Finally, while it is not shown in Fig. 4, we remark that anapole
dark matter with mass in the range m, < 10 MeV could also
generate the correct relic abundance. As we have noted, m,
5-10 MeV is excluded by CMB measurements in the standard cos-
mological scenario [30], but smaller masses are possible if the
cosmology is modified [33].
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Fig.5. YN — xN.
4. Direct detection limits

In this section, we consider the direct detection limits on the
DM-nucleus scattering cross-section. The Feynman diagram for this
scattering process is shown in Fig. 5. According to the derivation in
Appendix B, this scattering cross-section is found to be

2 2
1/¢g 2,270,212 2MYy N
J:E<F) Z%e* My v 1+ w2 ) (8)

where my and Z are the nuclear mass and charge, v is the ve-
locity of x in the lab frame (i.e., the nuclear rest frame) and
Myn =mymp/(my +mpy) is the reduced mass of the y-nucleus
system. A similar expression for o has been previously computed
in [1], but our result differs from that expression by a factor
of 14 2M?2, /my. However, if my <« my, then Myy ~m, and
ZMiN/mf\, <« 1 reducing our expression to the result of Ref. [1].
On the other hand, when m, ~ my or my, >» my, the factor
2M?, y/my; could become significant. In limit where m, > my, we

have 1+ 2M?2  /my — 3.
A more useful quantity for the direct detection experiments is

do 1/¢g\ 22
—=—=) Z%¢“m
dEg 2n<A2> N

2M? mnE
x {1 - (1 - ;‘”)%}UC(ER)

my /) 2My yv
where Eg is the nuclear recoil energy, with a typical value
~1-100 keV, and F.(Eg) is the nuclear form factor, which ac-
counts for the loss of coherent scattering at large momentum

transfer.
The differential scattering rate is then

2

(9)

Vmax
dR % / do
— =Nr—~ d _— 10
dEr VT, Vf(V)vdER (10)
Vmin(ER)

where N7 is the number of targets in the detector, p, is the local
dark matter density, and f(v) gives the velocity distribution of the
dark matter in the lab frame. The lower limit of integration is the
minimum velocity needed to produce a recoil energy of Eg:

Vinin = (1 + %)\/ER/sz, (11)
X

while vpax is the maximum dark matter velocity in the lab frame,

given by the sum of the halo escape velocity and the velocity of

the earth through the halo.

Egs. (9) and (10) must be convolved with the detector effi-
ciency for any given experiment to determine the overall detection
rate for dark matter. Here, however, we will take a simpler ap-
proach (loosely modeled on that of Ref. [12]), comparing the pre-
dicted detection rate for anapole dark matter to the detection rate

for “standard” WIMP dark matter with a nuclear contact interac-
tion (CI). This provides additional insight into the behavior of our
model compared to WIMP dark matter, but with the drawback that
the resulting limits on anapole dark matter are less precisely de-
termined.

More specifically, we calculate the ratio

_ (dR/dER)anapole
(dR/dER)a

where (dR/dER)anapole is given by Egs. (9)-(10), while (dR/dERg)c
is the differential scattering rate for a spin-independent contact
interaction, derived from

do A2o,my 2
— =———|F.(E , 13
(dER)Cl 2v2M§(n| «(En)| (13)

(12)

where A is the total number of nucleons in the target nucleus,
on is the dark matter-nucleon cross-section, and My, is the re-
duced mass of the dark matter-nucleon system. Eq. (13) assumes
that the dark matter particle couples identically to neutrons and
protons. Generally speaking, Egs. (10) and (13) go into the standard
calculation for spin-independent dark matter interactions, with the
experimental results then used to place an upper bound on o;.
Using Egs. (9), (10), and (13), we find that

2 2
g 1 z 2
R=4a =) (=)=
() () (3)
I 1
x[—1+<—— it )ER], (14)
Io my - 2M;

where I and Ig are integrals over the dark matter velocity distri-
bution given by

Vmax
I = / dv f(v)v, (15)
Vmin(Eg)
Vmax
1
Ip = f dvf(v);. (16)
Vmin(ER)

To compare the limits on WIMP dark matter to the limits on
anapole dark matter, we select a particular value for m, and use
the value for g/A% shown in Fig. 4. For o,,, we take the bound-
ary of the excluded region for a given experiment, and examine
the value of R as Eg ranges over the values of the recoil energy
probed by that experiment. Then, if R < 1 over this entire range
in Eg, the given mass m, with anapole interaction sufficient to
account for the dark matter is not ruled out by the experiment
under consideration. On the other hand, if R > 1 over the entire
ER range, the experimental results do rule out this value for m,. In
the intermediate regime, where R changes from <1 to > 1 over
the detectable range in Eg, no conclusion can be drawn without a
more detailed calculation.

Eq. (14) shows the (Z/A)? dependence typical of compar-
isons between electromagnetically-interacting dark matter and
dark matter coupling identically to all nucleons. While Z/A is
larger for lighter target nuclei, the current XENON100 225 live
day results [34] are so much more restrictive than any other pub-
lished limits over much of the mass range of interest that we will
use them here as our standard of comparison. Taking Eg to lie
in the range from 6.6 keV to 43.3 keV, and using the truncated
Maxwell-Boltzmann velocity distribution for f(v) in Ref. [12] (ig-
noring the small seasonal contribution from the earth’s motion
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around the sun) we find that R <1 for all m, < 80 GeV, indicat-
ing that this mass range for anapole dark matter cannot be ruled
out by the current XENON100 results. (We have examined differ-
ent models for f(v) and included seasonal effects to verify that
this main conclusion is independent of our choice of f(v).) We
find that R reaches a maximum value ~ 1/4 for my ~ 30-40 GeV,
indicating that such a particle would lie just below the current
threshold for detection by XENON100. These anapole results con-
trast sharply with the results for electric or magnetic dipole dark
matter, which allow the lower mass range m < 10 GeV [2,4,11],
but exclude all masses above 10 GeV.

Although we restricted our freeze-out calculations to my <
80 GeV, the additional annihilation channels that open up at m, 2
80 GeV will increase the annihilation rate at a given value of
the anapole moment, so that the correct relic abundance will be
achieved for a smaller value of g/A2, with no effect on the DM-
nucleus cross-section. So we expect masses in this higher mass
range to be even less detectable, and we are justified in conclud-
ing that m, 2 80 GeV is also currently allowed by XENON100. The
main constraint on these heavier masses comes from the theoret-
ical requirement that m, < A, which is violated for sufficiently
large masses, as is apparent from the calculation in Section 3.

5. Discussions and conclusions

Electromagnetically-interacting particles provide a relatively
simple model for dark matter: once the magnitude of the inter-
action is fixed to provide the correct relic abundance for a given
mass, there is single unique prediction for the signal in direct de-
tection experiments at that mass. (We note in passing that these
models can be considered an example of isospin-violating dark
matter proposed by [35].) Unfortunately, for the case of electric or
magnetic dipole dark matter, the interaction is sufficiently strong
that direct detection experiments already rule out such models
for the entire range over which such experiments have reasonable
sensitivity (m > 10 GeV).

In contrast, we have shown that a particle interacting exclu-
sively through an anapole moment cannot currently be excluded
at any mass by direct detection experiments, while such a par-
ticle would be close to the XENON100 threshold of detection if
my ~ 30-40 GeV. (Although m, < 5-10 MeV is excluded by CMB
measurements.) Further, the anapole is the only allowed electro-
magnetic moment for Majorana dark matter. While we have not
examined collider signatures for this model, the electromagnetic
anapole is clearly an interesting new model for dark matter and is
worthy of more detailed study.
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Appendix A. The cross-section for x ¥ — f f

All of the calculations below will be done with 1/2 times the
anapole interaction operator in Eq. (1). This factor of 1/2 is a con-
vention invoked to take care of the self-conjugacy of Majorana
fermions. It will cancel out the 2! symmetry factor at any vertex
of a Feynman diagram involving a pair of Majorana fermions. _

The scattering amplitude for the process x (p) x (p')— f (k) f (k")
is given by

—ige

M= —=its(0yvs (K)o (p)y "y ur(p), (A1)

where the subscripts r, 1/, s, s’ are the spin indices of the cor-
responding fermions. Averaging over the initial polarizations and

summing over the final polarizations, we get
g%e2

IM]2 = mTr{@urmf)m(k’ —myg)n}

x Tef (B —my )y v (B +my)y'y°).

In the CM frame, we have p = (E, B), p’ = (E, —p), k = (E, k)

and k' = (E, —E), where E = /|p|? +m§. After some algebra, we
obtain

(A2)

2 2

—  4g%e%F*4 m m
|M|2=gvael{(l+E—2f>+< —E—;‘)cosze}, (A3)

where vy = 2v with v = |p|/E being the velocity of each annihi-
lating dark matter in the CM frame, and 6 is the angle between p
and k.

The differential cross-section is given by

2

d 1- 2
O, . 7 - 1 -
xxX—=ff E >
= M|?. A4

ds2 v 6472 (2E)2 M (A4)

It is then straightforward to calculate the total cross-section
2g%am?
X .2

Oy ffVrel = EEV O Viel> (A.5)

where o = e®/4m ~ 1/137 is the fine structure constant and we
have made the approximation my <« E ~my.

The thermally averaged relative velocity in the CM frame is
given by 1(Imy)(vZ,) = 3T where T is the temperature. This im-
plies that (vZ,) = 6T /m, and hence

4g2amf( T
(Uxxﬁffvrel) = A4<mx)

Appendix B. DM-nucleus scattering cross-section

(A.6)

The scattering amplitude for the process x(p)N(p) —

x (k)N (k') is given by

—igZe _ A =
s () v (p) 8 (07 My ur (). (B1)

where the subscripts r, 1/, s, s’ are the spin indices of the cor-
responding fermions and Z is the atomic number of the nucleus.
Averaging over the initial polarizations and summing over the final
polarizations, we get

M=

giz2e? :

1 Te{ (K +mn)yu (B +mn) v}
x Tr{(k +m )y "y (B +my)y "y},
where my is the mass of the nucleus.

In the CM frame, we have p = (Ex,D), p' = (En.—D), k=
(E" k) and k' = (E/,, —k). After some algebra, we obtain

M2 =

(B.2)

—  8g272e?
|M|2 = Tmim,z\,vz

2M2
X {(1 +cos6) + (1 —cos@)( 3 )}
m

N
where Myn = mymn/(my + my) is the reduced mass of the

x-nucleus system. Note that |p| = |E| = Mynv where is v is the
velocity of x in the lab frame.

(B.3)
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In the non-relativistic limit, we have the differential cross-
section

do 1 —
—_— 2, B.4
d2  64m2(my +my)>? M (B.4)

A more relevant quantity for direct detection is do/dEg =
(d$2/dER)(do /dS2) where Eg is the nuclear recoil energy. For
small momentum transfers, we have d2/dEg = 27rmN/(M§Nv2)
and so

d 1 2
g (£> Z%e%my

dEg _ 27 \ A2
2M? mnE
x{l_(1_ )7} (85)
my ) 2My \v
Finally, we have the total cross-section
2 2
l<g> 2,272 2( ZMXN>
o=—|—=) Z7e“*M;\yv|1+ . (B.6)
2 XN 2
2w\ A my
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