
Theoretical Computer Science 6 (1978) 175-22 1.
@ North-Holland Publishing Company

C;NE WAY FINITE

S.A. GREIBACH
Czpartment of System Science

VISIT AUTO

‘9 / U:ziversity of California, Los Angeles, CA 90024, U.S.A.

Communicated by Rona!d Book
Received October 1976
Revised July 1977

Abstract. A one-way preset %ring machine with base L is a nondeterml,listic on-line Turing
machine with on5 working tape preset to a member of L. FINITEREVlzRSAL(2’) (FINITE-
VISIT(=!Z’)) is the class of languages accepted by one-way preset Turing machines with bases in 5!?
which are limited to a finite number of reversals (visits). For any full semiAFL 2, FINITERE-
VEWSAL(Z’) is the closure of 2’ under homomorphic replication or, equivalently, the closure of
9’ vender iteration of controls on linear context-free grammars +vhile FWITEVISIT(2’) is the
result of applying controls from 2’ to absolutely parallel gram mars or, equiva!er.tly, the closure of
tip under deterministic two-wav finite state transductions. If 2’ is a fuii _4FL with Z#
FINITEVISIT@?), then FINITE!REVERSAL(Z’) # FINITEVISIT(In particular, for one-
way checking automata, k + 1 reversals are more powerful than k reversals, k + 1 visits are more
powerful than k visits, k visits and k + i reversals are incomparable and there are languages
definable within 3 visits but no finite number of reversals. Finite visit sne-way checking automa-
ton languages can be accepted by nondeterministic multitape Turing machines in space log2 n.
Results sn finite visit checking au:omata prdvi& a another proof that not all context-free languages
can bc accepted by one-way nonerasing stack automata.

1. Irrtroduction

One; of t!*e complexity measures studied for both genera’ Turing mar:hines ard

partic.ilar types of machines such as checking automata and pushdow;l store

machines is the so-called reversal complexity [1,7, 14, 18, 2 1,27, 2X]. There are

differea,: measures which are sometimes lumped tngethc-r under this term-the

number of times the working tape head changes directitin, rhe number of time% t/~

boundary between working tape squares is crossed or the: number of visits to a

square For nondeterministic machines wi;h more than one working tape (not

countiilg the input tape), the question is irrelevant unless time rc”stricti:v :, art‘
.
,dnposi:d (see [33]) because even restriction to two rcvt’rwk px t,~qc +_Ms the full

power of a Turing machine [l]. It was shown in [_< Vj f hat for nondeterministic

machines with a twa-way input tape and one w0rkir.g tape and any hounding

function T(n), a bsun of T(n) on reversb?Is, crosses 0~ visits yiel e siarns power

17s

176 S.A. m?ibdl

up tP a linear factor-the power of a T(Z) iogz n
machine.

space bounded nir;!titape Turing

In this paper we concentrate on studying the ; application of a finite bound on
reversals, crosses or visits to machines with a one-way input tape and one working
tape. The model we use is a generalization of a checking automaton [161 called a
preset Turing machine. A (one-way) preset Turing machine with a base language: L
is a machine with a one-way input tape and a working tape whose initial contents axe
“preset” to any member of L. If L is regular the machine is regular-based, while if L
belongs to a fan1 ly of languages 2, the machine is .Z’-based. The maclGne is
nonwriting if it is not allowed to write on its working tape. Clearly a nonwriting
regula=based machine can be Tegarded as a checking automaton. We always
assume that the base 2’ is a full semiAlFL.’

If a preset Turing machine is restricted to a finite number of reversals, crosses or
vieits, we call it a fmite reversal, finite cross or finite visit automaton. Here we show
that finite cross and finite visit automata are equivalent in power but finite reversal
automata are less powerful. In both casts, the writing and nonwriting variants are
equivaIent in power.

In Section 2 we give our basic definitions and study the relationship among
reversals, crosses and visits and writing and nonwiiting machines. We let k
REVERSAL@?) be the family of languages accepted by Z-based k+eversal
bounded machines and

FINITEREVERSAL(2) = u K-REVERSAL, 2);
k

the other families are defined similarly. We show that k-REVERSAL(2Z) is equal
to the family of languages accepted by Z-based k-reversal bounded nonwriting
machines and k-VESIT(.Z) = k-CROSS@‘) is equal to the family of languages
accepted by s-based k-visit bounded nonwriting machines. Thus in particular
k-reversal or k-visit bounded on-line one tape Turing machines are equivalent to
one-way checking automata with the same bound.

Section 3 concentiates on FINITEREVERSAL(2’). We give two characteriLa.-
tions of FINITERE\‘ERSAL@?) which show that i: is (as one would expect) an old
friend, tSze closure of .J? under homomorphic replication (cf. [11, 191) and,

One way finite visit automata 177

finite visits on a one-way checking auto aton yield more than finite reversa

unlike the situation in the two-way case.

In Section 4 \ve concentrate on finite visit automata. WC first s

FINlTEVISIT(2Z) is an i<empotent operator on 2 by demclnsrr3ting that

k-VISIT (r-VISIT(Z)) 2 kr-VISIT(9).

Next we establish a grammatical characterization of FINITEV!SIT(.JZ) in terms of

control sets on absolutely parallel grammars [X] as well ar: an operator charac-

terization, and as a consequence show that if Y has the Pa.rikh or semilineat

property [E3] then so does FINITEVISIT(Finally we give a strong hierarchy

theorem for finite visit checking automata- k + 1 visits are strictly more powerful

than k-and two weak general hierarchy theorems for FINITEWSIT(2’). App,:-

cation of these techniques gives an alternative proof t at not all context-&e

languages are one-way nonerasing stack languages.

In Section 5 we give various complexity results for FIN1) and

FINITEVISIT(Some are drawn directly from the two-way case-e.g.,

languages in FINITEVISlT(REGL) can be accepted nondeterr,rinistically in space

log, n an8 langnages in FIKITEVISIT(CF) deterministically in polynomial time.

Others use the fact that one-way finite visit automata can be made to accept in

linear r;mt;: and space; I ̂hus, e.g., languages in FlNITEVISl l’(W) can be accel ted

nonde_erministically in realtime. These ideas can be combined with the charac-

terization of the two-way case via multihead automata, to show that languages in

FINITEVISIT can be accepted in polynomial time by nondeterministic rnulti-

head pushdown store automata and hence deterministically by ‘1 ring machines in
.

space (log* PJ;-.
Section 6 summarizes the results and gives some open problems.

In this set cion we present our formal definitions and establish some of

connectio;as among finite visit, finite reversal, and finite cross autom

are inter :sted here only in the one-way cas

[20] to make them more conve

First tie define one-w,q (o

fations.

178 S.A. Greibach

a language contained in r’ and called the base of M and the t’ransition function 8
maps kK x (2 u {e}) x r into the subsets of .K x J’ x {@,I, -l}.2 A. transition (q’, B, j)
in G(q, e, A) is called an e-rule or e-transition and if has no such transitions it is

e-free. A transition (q‘, B, j) in S(q, a, A) with ,4 # 1# is a write a.nd if M has no such
transitions it is nonwriting. A transition (q’, B, 0) :in S(q, a, A) is a standstill tran-
sition and if M h&s no such transitions it is nonresting. If for each q in K and A in r
either #S(q,e,A)sl and S(q,a,A)=@ for every a in C or S(q,e,A)=@ and
#S(q, a, A)% 1 for every a in Z, then M is degerministic?

Informally, (q’, B, r) in S(q, a, A) means that for state q, working tape symbol
and input a, .A4 can change state to q’, overprint A with B, advance the input for
a # e, and move the working tape head in direction r, where as usual 0 means no
move, 1 means right and -1 means left. During an e-rule, M neither consults nor
advances the input tape. Computations start in the initial state with the input head
on the Ieftmost symbol and working tape set to,some string in the base with the
head on the leftmost square.

Acceptance means entry into a final state wit21 the input head fall& &JR the right
of its tape and the working head falling off either the right or the left of its tape.
This is formalized in the next definition.

2.2. An instantaneous description (ID) of one-way preset Turing
machine M=(K,Z,&3,qo,F,L) is a tupfe (q, w,y,i) with qEK, wLX*,yeI”,
O~t~lyl+l.“. It is initial if q=qo, y& and i-l and accepting if ~EF, w=e
sm3 either i = 0 (left exiting) or i = 1 y [+ 1 (fight exiting). If (q’, B, j)e 8(q, a, A)
and w = aw’, adu(e}, y=y’Ay”, i=ly’Al, and OG+j~ly!+l, then we
write

(4, w y, i) C- (4’, w’, Y’By”, i i-i)-

We let c be the transitive reflexive closure of the relation F. We call a sequence of

reiations among ID’s lo F I1 I- l . - I- I,, a computation for input w with working tape
U, w, yf 1); if In is 3tccxz ‘ng computation, Ze,ft exiting of
g as In is. The langu

)=-(WE.ez*I accepting computation for w with w-;;.P:.L~~~ tape y in k]

ust er of visits, reversals crosses of a co utation
well as some useful additional technical rer

One way ,i’nite visit automata 179

Let IO I- I1 t l - .
i, Wi. yi, S:)

I- I,t be a computation ii--i machine wio,h eat
and m = [)Jol= lyll= ’ * ’ = Iynl. For 1 s j s m, tht? Ylh1 eg_ of t.isits

to squarej is

#{i 1 Si = I’),

while the number of crosses of boundary 4 is

#{i 1 Si 2j,~i+l=j+1}+#{i)Si=j+l,s,- 1=i1-

The computation is k-visit bounded if no square is visited more than k ti
strictly k-visit if every square is visi tcti exactly k times; it is k-crossing bounded if no
boundary is crossed more :han 1. times and strictly k-crossirrg if ery boundary ’

for l<jGnj-- I is crossed exxtly k times. A re?Tersnl occurs at if Si # Si+] all

there is a is i - 1 such that su = si for i + 1 s u s i and Si-tl= si. The number of

reversals during the cznputation is

I + #{i 1 a reversal occurs at Ii},

If this numlxr is less t!lan or equal to k, the computation is k-reversal bounded. A
bounce occurs at Ii if Si = si+z but Si+ 1# sI ; if there are no bounces then the
compy:ation is bounce-free. The computation is full sweep if whenever a reversal

OCCUIY at Ii, Si = 1 or si = m. The computation is right touching if for some i, s, = m.

The number of reversals is set !z Definitix 2.2 at 1 more than the number of

times the working head changes .%s direction: this is done so that we count sweeps

through the working tape, a count more compatible with visits and crosses. A full

sweep computation reverses the working head only at the ends of the working tape.

A right touching computation must visit the rightmost working tape square and

hence must visi; eixh square at least once. A bounce-free co utation does not
shuttle S)ack 2nd forth between adjacent squares which could make the number ad

crosses large r than the number of visits.

A preset Turing machine is k-visit bourtded (res

crossing bounded, k-reversal blended) if for eat ere is a k-t+siP

t is strictly k-visit

180 $A. Greibach

Now we can define the classes of languages accepted by these machines. The
classification specifies the bound involved and the family of languages to which the
base language belongs. That is. if L is the base of preset Turing macinine M, then we
call A4 “L-based” and if L belongs to a family of languages 9, we extend the
notation to call A4’ ‘5?-based”. All our machines below are assumed to be one-way_

Definition 2.5. For any family of languages 3’ and integer k zz 1, let
k-VISIT(9) = {L(M) 1 A4 is Z&based and k-visit bounded},
k-CROSS@‘) = {L(M) f M is Z&based and k-crossing bounded}, and
k-REVERSAL(3?) = {L(M) 1 M Es s-based and k-reversal bounded}.

When we take the union over all finite bounds k, we use the designation FINITE.

Definition 2.6. For any family of languages 3,
FINITEVISIT = {L(M) 1 M if an s-based fva},
FINITECROSS(5?) = (L(M) 1 Al is an Z-based fca}, and
FINITEREVERSA.L(ZZ) = {L(M) ! M is an g-based fra}.

Sometimes one also wants to restrict attention to nonwri:.ing or deterministic
machines. This is done by adding NW or DET to the family name. Thus k-
DETVISIT(~) is the class of languages accepted by k-visit bounded Z-based
deterministic machines; k-NWREVERSAL(9) is the family of languages accepted
Oy k-reversal bounded J&based nonwriting machines while DETNWFINITE-
CROSS@?) is the class of languages accepted by s-based deterministic nonwriting
finite crossing automata,

We shall also have occasion to regard a preset Turing machine as an operator on
its base and thus families like k-VISIT(Y) as operators on 3’. We shall indicate
iteration of this operator by a subscript. So

k-VISIT,-&?) = 3,

k-VISIT&Z) = k-VISIT@?)

andfornal,

-VISIT,,&,?) = k-VISITIk-VISIT,(~)).

PJc define k-REVERSAL, (3’) and k-CROSS, (9) similarly.
will be particularly interested in the regular-based machines. A regular-
machine is equivalent in power to an on-line one working tape Turina

machine; the simulations invt\lved preserve the number of visits. crosses or rever-
S]. Similarly, a one-way checking automaton (see [Xi] for definition of a

one-way nonerasi

One wry finite visit mtornata 181

simulation of a nonwriting regular-based machine by a checking automaton ap-

pears to increase the number of visits or crosses by one, but can be nrcdified to

preserve the number of reversals. Further discussion appexs ir! [2Ol. Thus results

for k-visit or k-reversal regular-based machines transiate into results for k-visit a)r

k-reverTa on-line (one working tape j Turing machines while those for correspond-

ing nonwriting machines translate into facts about checking automata. Notice that

k-reversal bounded c:lecking automata in this sense are strictlv more powerful than _I
those Df Siromoney [28] which only sweep from left-tc?-1 ight on rhe working tape.

We shall usually restrict our families of base languages to those having certain

closure properties.

Definition 2.7. A full semiAFL is a family of languages containing at least one

nonempty e-free language snd closed under union, homomorphism and inter-

section with regular sets”; a full semiAFL closed under Kleene + is a full AH?

For a family of languages 3, the least full semiAFL (full AFL) containing 3’ is

designated & (3 j ($$Z’~J; if 9 = {L}, we write d(L) (g(L)) and call it a full principal
semiAFL (full principal AFL).

Two additional classes of’ operations we shall have occasion to use are the

a-transductions and the subs,titutions. 0

Definition 2.8. An a-transhier is a tuple A4 = (K, C, A, H, qo, F) where K is a

finite set of states, qoE K, F c K, C is a finite input alphabet, d is a finite outpur

alphabet and H is a finite subset of K x E * x 3 * x K. An HI3 of A4 is any member of
_KxC*xA*. If (4, uw, y j is an ID and (q, u, C, q’)~ H, then we write

(q, uw, y) t- (q’, w, yu). The relation ?- among ID’s is the transitive reflexive ex-

tension of I-. For I+ E 2 ‘,

WC j= (v I3q E F. (40, w, 4 f (q, e, vN,

and for a Id lguage L,

M(L) = {v 13 w E E, u E kf(W)}.

If for each (9, 24, v, 4’) in I-6, I++/. then is rlofiirlcr, .tsiilg. It’ F-I G

K~,X>.A*~K,F=K,andforeachq~K,a~ E, there is cxtly ow (q. tl, I’, ~1’) in

H, ther M is a general sequential machhe (gsm).

Intui:ive!y, an a-transducer is a non e~erministic o-l&* .Wil)’ flrh.! ‘+l:hlt trar-ddL:L~i

with axepting states: output is “legal” only when rhe imc‘hriw is in dn accqXing

state.

l-82 S.A. Greibwh

We shall use tlwfact that every full semiAFL is closed under ,z-transducer
mapping and, more strongly, is clxaracterized by union and a-transducer mapping
[S, 101, That is, for any famil:v -if languages 2, containing at least ona: nonempty
language,

1 _ I I

J&~)={JK(wJ %L!?&?,(LqI~~L~, l . . ,L,Gz,

Ml , . . . , M, are a-transducers}

and for a language L,

&L)=ML)IM is 8~ . a- ’ ix&f fax}.

Properties of semiAFL’s and 243, s cm L z ,t ,nund in [8, lo]; a-transducers are also
de&bed in [d].

DeUtion 2.9. A s~lb,M~ti~v r cn Q Mite al@ *bet 2 takes each a in C into a
language ~(a). We er:rnC 7 to words by

and

anti to languages L by

7(L)={u pwEL,uET(W)},

If 7(a) is in .2? for each a in .Z, then 7 is a:’ ” svbF;ti~“!~~ion. For families of languages
Z1 and 2’2 the family of languages obf&6:4j by su.bs:Ituting members of 22 into P1
is

.J&%& = {7(L) 1 LE91, 7 is in 2&st?bstittition}.

If 2Z&Z~ G 2, then 9 is closed under substituhm by 2’1, and if 2?&2 z 2, then 2 is
closed under subsMution into 21. If Z’&Z G 2, then 2 is closed under substitution.

Full semiAI?L’s are closed under regular sv&titution (substitution by regular
la:lguages) while full AFL’s are also closed unt-‘;er substitution into regular sets [8,
101.

Standard a?guments show that our far;% I. 3s reflect properties of the base family
and also possess a few more. The proofs follow lines in [lo, 16, 181 and will be
omitted.

2 1 ar rd any f& se&AFL 2,
(1) k-RE-aRSAL(S) and k-VISIT@?) are full SEPGAFL’S,

L(Z) cand FINITEVISIT&%‘) are full semiAFL’s and are
n if 2? is so e!c~d, and

One way finite uisit autorna ta 183

(3) if 2) is a full AFL SO is FINITEVISIT anQ if S? is closed under substitzdtiorz
so is FINITEVISIT(

Now we want to see that for these finite bounds there is no lifference bt:tween

the writing and nonwriting variants, so that all our results are really results on

checking xttornata.

First notice that if 44 is k-reversal bounded we cnn add endmarkers to the

working tape and imagine the tape as divided into k tracks. Track i contains the

working tape alphabet symbol and the action to be taken on a square during sweep

i. Also track i contains a little mark indicating the rightmost (for i odd) or !eftmost

(for i even) symbol seen during sweep i. This nondeterministic alter&x-i of the

working tape can obviously be done by an u-transducer dnd so we car1 get a new

base language within the szme full semiAFL. Then INe can simulati: M by a

machine which first reads track 1 from left-to-right, attemptirlg to perform the

operations inscribed therein; if any are illegal it blocks. If it reztls the r,ght mark it

runs down to the right endmarker, reverses and returns to the special mark. Now it

reads track 2 from right-to-left again performing the indicated djperations and

blocking if this cannot be done. This time the special mark in track 2 tells it to run

to the lefi. endmarker and reverse and return to the mark and start on t:-ack 3. This

continues until either a block occurs or a whole computatio1.1 h~.s bee:? simulated

and the machine can accept or reject as appropriate. Details are left to the reader;

we state the relevant result.

Lemma 2.11, Let 9 be a full semiAl% _ Let M be J k-reversal bounded, -Y-based fv.
There is a ssrictly k-reversal full sweep nonwritiszg determirtistic Y-basecc’ frrr n? with
L(M) = L(Ic?j.

Observe that if M is a nonresting k-crossing bounded fca it is automatically

k-visit b$runded sf nce every new visit to a squxe means crossing some boundary to

the squa: 2. BIT padding out the working tape with dummy symbols we CXI force the

machine :o lx nonresting while by adding end.markers and a special mark it can be

made right touching. This is discussed in j207 for two-way machirles but. since input

head mo:‘.on does not affect the construction, the proof carries over for on-line

machines

If a machine has bounces, each bounce f re i 40 square i + ?I!1

increxse he nu her Lb,Bf visits to i by 1 bh~t Of cI-O!GSc‘s of bOLKIC

This is the only way the nu her of crosses can exceed t k‘ ~wnf-m- of +A~ ()[a-:dL

184 S. A. Greibach

Ifen= a bounce-free k-visit sounded machine is also k-crossing bounded. Again
the conversion to a bounce-free machine mentioned in [2O] for the two-way case
applies to the on-line case a?so?

Lemma 2.13, Let 9 be a full semiAFL. Let M be a k-visit bounded, g-based fva.
There is a k-crossing bounded, Z??-basea’, bounce-free fca i@’ with L(M) = L(a),

The canversion from k-visit bounded to nonwriting (k + 1)-reversal bounded
machines in [20] definitely does not go over for on-line ma&ines. Indeed, we shzll
see in the next section that

FINITEREVERSAL(5P) # FINITEVISIT

for any full AFL .Z’ not closed under the finite visit operator (B‘XNITE-
VISIT(Z)). However the construction in the proof of Theorem 2.1 of [20] of a
nonwriting deterministic strictly k-visit machine from a nonresting right-touching
k-visit machine does not involve input head motion and so still works. The idea is
again to divide the working tape into k tracks; the trick is to slhow that the k-visit
machine can find its right track-i.e., know which visit to a square it is simulatiug. A
similar construction appears in Section 4 where we show that

FINITEVISIT(FINITEVISIT(~)) = FINITEVISIT(6P).

Leanma 2.84. Let 3 be a fu?l semi AFL. Let M be a k-visit bounded, Z-based,
nonresting right touching fva. T~PW is a strictly k-visit, P-based, n80n writing deter-
ministic fva I@ with L(M) = L(u).

We can summarize our relationships as follows.

Thmrem 2‘15. Let 3’ be a full semi AFL. For any k ‘2 1,
(1) k-REVERSAL@‘) = k-DETNWREVERSAL(Z’), and
(2) k-VISIT(P) = k-CROSS(A?)

= k-DETNWVISIT(P’j = k-DE’TNWCROSS(3).

Using this theorem as our justification we shall speak of just k-REVERSAL(Y)
(3’) and let our machines be writing or nonwriting as convenience

e shall not bother to restate results for k-NWREVERSAL(P’), etc., or
for tltze crossing bounded families like k-CROSS(Z). The conversion to a deter-
ministic machine is of less significance than it might seem: since a preset Turing
machine always has a choice of working tapes, the restriction to determinis?ic actioc
on one of these tapes is valuezss.

REVERSAL(Y) as most facts on this family can b
own results on homomorphic replication [11, 191, an’

.

In this section we characterize FINITEREVERSALlY) a!, the c!o~re of ._Ip

under homomorphic replication and also as the result oi’ iicr;dihng controls WI linear

context-free grammars starting with control sets in 5?. We establish a decomposition

theorem

kr_REVERSAL(%‘) = k-REVERSAL(r-REVERSAL(Y)).,

which is useful m providing padding or translation techniques for our hierarchy

results. Finally we give some syntactic lemmas and conclude the section with the
general hierarchy theorem that whenever .Z’ f FIMITEREVERSBL(~), then

k + 1 reversals are strictly more powerful than k reversals and ihat if 2 is r; fi;41

AFL not c3,osed under FINTEVISTT, ihen

FINITEVI~I?‘(Z’) # FINITEREVERSAL(9’).

First we give an “algebraic”, i.e., operation-theoretic, characteri7etion of k-

REVERSAL(9) in terms of replications.

Defhihm 3.1. For k 2 1, a language L and a symbol c not appearing in 2:~ word of

L, le;:

fc(L, I)= Lc,

f&L, 2k)= {(wcw%)” 1 w E L),

ancl

f,(L, 2k + ~)={(wcw~c)~wc 1 w E L).’

For most purposes the identity of the symbol c is irrelevant so wt: simply drop 3

and write f(L, k) rather than fC(L, k). This operation is similar t0 the operatir,ns of

homom xphlc replication and of duplication.

3.2. Let p be a function from { 1, . . . , n) to { 1, R), L he a language and

h 1, ” l ’ 1 l&n homomorphisms. The operation

dP 5 ,L,r l,.. _ , h,)={hl;w”“‘)’ r * h;,<P!) / SI’E L}

is a homomorpkiz replicatio p{c) = 1, II is a draplic~crior~. if

p(i)- 1 for i odd and p(i)=
tion of degree n; En this PO._,’ ‘Ix,?- L&&Se, ‘..W caiso :‘Yrrte p = j?,, and call &Of, %

repk-xi ,on of degree YE. OP a family of languages Y, let

’ We write e’ = e and for a symb~ 1 :L, cl R = Q; this notation is extrndd to wortl~ hv (xv JR 7 K ’ Al *~.1 \’ .h’

to languages I, by LR ={wR 1 CB’ E 1,: ” ma5 opmtion is callt?tP t,.;: t’FStF/

Clearly, if p is of degree n, ZP c 2Zenr so U, -‘eP = U, ZP,.
Obviously, k-REVERSAL(9) contains every altcrnsting homomorphic repli-

cation of degree k of members of 2’. Now we observe that this characterizes
k43EVERSAL(9).

* Let 9 be a full semiAFL and k 2 1. Then

k-REVERSAL@?) = 5?,,k = .& ({ f (L, k) 1 L E ZZ}).

Clearly f(L, k) E k-IREVERSAL whenever L E 2 and
hk) can be obtained as an a-transducer mapping of f (L, k) for at;~’

alternating replication. Thus it remains to express members of k-REVZRSAL(3’)
as alternating replications of members of or%: The proof follows lines of one in [171.

Let M = (K, 2, ZY, 6, qo, r”. L1) be k-reversal bounded for L1 in 2. We can assume
that M is nonwriting, deterministic and full sweep. By padding the base language,
we call rzlso assume that M is nonresting. Further, we can assume that each word in
L1 is of size at least 3.

For our new alphabet +X use spccia! symbols ca!led sigma symbols which
describe all the information needed about M’s actions on its k visits to a square.
For this proof, a sigma symbol is a new symbol of the form c = (A, al, . . e , ak>

where A E I’, ez& ctyi = (qi, ais qf, ri) and S(gi, ai, A)= (qf, A, ai). Thus (T encodes k
visits to a square with contents A. It is a middle sigma symbol if ri = 1 for odd i and
ri = -4 for even i. It is an initial sigma symbol if 41= 40, ai = ai+l for each even
i, ri = 1 for each odd i and if k is even, rk = -1 and s: E %;: This represents the
leftmost working tape square. A 6ast sigma symbol has ai = cyj+l for each odd i, and
for k even, r, = - 1 and sh E F; this represents the rightmost working tape square.

Let Qi (s) = qi, C?:(s) = sf and W(s) = A. For a middle sigma symbol cr, let
hi(m) = c~. For Q initial, let hi (a) = ai for i = 1 or i even, and hi(o) - e elsewhere.
For c last, let hi(tr) = ai for i odd and hi(u) = e for i even. If we assume that M can
be in qo only initially, and can never leave a state of F, then the sets oi middle,
initial and Iast symbols are mutually disjoint and hence the Izi are well defined.

e must also make sure +hat two sigma sy 01s can encode adjacent squares.
(a’) and for each even i,

= [o-l * * l 0-m (2 3,0-l initial, Go last, ci middle sigma

1, and (O-j, Oi+ 1) consiste

One way finite visit nlatomcrta

L(M) and all words of L(M9 can be obtained in

g(#k, z2, h, l - + ,

1x7

ct 2% be a full semikFL and k 2 I. Then every member of
can be expressed either as g (Pk, h ,, . . . , hk) where I_ E 2, and

each hi is a nonincreasing homomorphism or as (f(k., k 99 for E E L@ and
nonincreasing gsm.

roof. In the construction above, the hi were obtained as uroni;icreasing.

g+,L,hl,..., hk) can be obtained from f(E, k) by a nonincreGng gs

.X2, For any ~34:; .+w%WL 9, FINITE is 6&k6- clfxrr~~ of
.Z’ under hwwnorphic : qiica tion.

3 The family of finite reversal checking automaton languages is the
regular sets under homomtx~hic replication.

emark Corollary 3.3.3Ga s mted without proof in [I 91 where it was observed

at the equal matrix languages or finite turn checking automaton languages of

Sirom ney [28, 291 are actually the closure of the rd, 4ar s& under duplication,

not replication. It was also show;~ by Klingenstein [JO].

Theorem 3.3 gives us at once a “tramlational” or “deco1 gositioC theorem.

3.~ Let 3 be a full semi AFL and /et k, r 2 1. Tkti

EVE!WYL(5?) = k-REVEl?SAL(r- SA&(46)).

roof. First mtice that fC(L, kr) can be obtained fro L’ = fd(f,(L, r), k) by sira~ply
turnitig .zach block cdc, cd or each d alone (not adjasent to ‘s) into z-i L’. Mete

Theorem 5.3 yields

, FIPJITEREVERSAL&?) = iJ k-REVERSAL&Z’).
I

‘”

1 ‘Theorem 3:3 also gives us a grammatical characterization of FINITEREVER-
SAL(2?) in terms~ of control sets on linear context-free grammars. Let us give the
formal definitions for future use.

DefMiom 3.5. A conte;r,t-jkee grammar is a 41 uadruple G = (V, C, P, S) where -v is a
finite vocabulary, C c V, S E V 4 and P is; a finite set of productions of the for-
Z+y,ZE V--2,yEV *. For a production p: 2 + y in P, u, v E V*, we write

uZv=$uyv and if u&Z*, uZv % uyv and UZV &+ uyv. We let 3 (&) be the

transitive reflexive closure ob =+ ($) and extend 3 by letting ul =% u3 whenever

uI$ u2 and ~2 $ ~3. The language generated by G is

and the language gemxz~d try G with control C’ is

For a set S of symbols we shall let #S(W) be the number of occurrences of
members of S in w ; if S = {a}, we write #*(w).

Mtion 3.6. A context-free grammar G = (r/; 2, P, S) is regular if every pro-
etion of P is of the form Z + y for y in Z*(V u {e}). It is linear if every

production of P is of the form Z + !j for # v_r: (y) < 1. It is nonterminal bounded if
there is a k such that whenever 1T & y, then #V-S (y) s k. It is left derivation

bounded if there is a k such that whenever Z =& y then #v-2- (y)s k and

derivation bounded if there is a k sur;:h that for each w in L(G) there is a derivation
s*yl***e =+ y), + .w with # v-x (yi)s k for 1~ i s r. Each subtype of context-.
free grammar generates a language of the same typ”. We denote the families of
context-free (respectively, regular, linear context-free, nonterminal bounded, left
derivation bol:, nded, derivation botjnded) languages by CF(REGL, LINCF, NTB,

an4 denote the coa:cspondiag families of grammars by adding G to the
name.

L*
erivation u => v is a left- to-hght derivatio

at most one nonterminal in any word derived frDrn :5 while regular grammars are
linear ones in which the nonterminal must appear rightmost. Nonterminal bounded
grammars put a uniform limit on the number of nonterminals jn any derived word

while left derivation bounded grammars limit only left-to-right derivations and
derivaticn bounded means that each word in the generated lar_guage has some
derivation obeying the nonterminal limit. Further properties of these families can
be found in [2, 13, 14, 18, 25, and 31).

We now give a general notatiola for the result ok applying controls from a family
.A? of languages to grammars from a family 59 and for iterating the process.

Definition 33. For a family of grammars 9? and a family of langtiages Y, let

CONTXOL(%, 9) = (L(G, c) 1 G E %, C E 9).

Let

CONTROL&!& 9) = 9

and for n 3: 0, let

e’ONTROL,+,(%, 9) = CONTROL(%, CWJTROL,(%. 2’))

CONTROL&Z, 2’) = u CONTROL, (St 2’).

n

Thus COIY I’RC&(LINCFG. CF) is the family of languages obtained bv using

context-free languages to control left-to-right (i.c.. ‘_;‘I derivations in linear

context..free grammars and CONTROL,(LINCFG, CF) is the result cf iterating

this process.

Theorem 3.8. Ler 9 be a full semi AFL. Then

?-REVERSAL@‘) = CONTROL(LINCFG, 7Y’)

and

roof. I:1 [17) it is shown t

CONTIdlDL(LINCFG, 2) = c.& ((f(L, 2) 1 L E Y)) = .q,_

190 S. A. Greibach

so iterating controls on linear context-free grammars is as powerful as iterating
controls on noz?zninal bounded grammars. The result is iznmediate from
Theorems 3.3 and 3.4. Cl

* The family of finite reversal checking automatun languages is

CONTROL,(LINCI;‘G, REGL) = CONTROL,(NTBG, REGL),

the family of languages obtained by iAfefating controls on linear context-free or on
nonterminal bou,rded grammars starting with the regular sets.

We now wish to establish our general hierarchy theorem for finite reversal
automata. We shall use established results on CONTROL,(LINCFG, 22’) and two
translational results, the following lemma and Theorem 3.4.

Let 2? be a full semiAFL. For any s a 1, T 2 1, if f,(L., k +s) is in
k=REVERSAL(9), then

fe(L, k + s + r) E (k + r + l)-REVERS4L(.&?).

roof. Let fC (L, k + s) = L(M) for a strictly k-reversal nonwriting full sweep fra M.
Since s 2 1, in every accepting computation on WCW% . . . , at least one w or WR
must be processed in one sweep without any reversal of the working tape head.

We construct a (k + r + 1)-reversal bounded fra m from M’ to accept _&(I.+ k + s +
r) as follows. The key is to get some copy of w or h ’ printed during the simulation
of M; this copy can then be used to check off as many copies of w or wR as desired.

At the start of a computation, a guesses that sweep i of M will entirely process
w’, t E ii, Rj and records (i, t) in its finite state control. It starts simulating M
keeping track in its finite state control of which sweep M is on, the number of c’s
read as inprlt to date and thus the number of w’s or wR’s, and whether w or wR is
being read at each step. When sweep i arrives,, M waits until w ’ is started and then
writes w ’ on a second track in special “‘colors” sur,*ounded by special barrier
symbols as it is processing we. If wr is not completely processed in sweep i, A?
blocks. Otherwise it succeeds in writing down wf in correct order, though perhaps

1s in between (because there may be transitions on e

in an accepting state of
is far without a block,

In view of Theore

\k + r + 1)-XZV RS 4L(5?) = (k -I-S + r)-

ro . If

k-REVEWSAL(5?) f- (k + s)-

then by Theorem 3.3, f,(L, k -ts)
Lemma 3.9, f=(L, k +s C r; is in (

k+r+lz=k+s+r, by Theoreui 3.-J,

RS.\L(Y) -- (k + p’+ ..(.Y, G

Now we have the general hierarchy t

. Let Ybe a fur/ semiAFL with 23 f FINITE
(1) For* every k 2 1, k-REVERSAL(Y) 5 (k + I)-
(2) C;br every k s 2, n > 1, k-REVE

(3) For ezjery k 22,rtzl,k-REVE Hot ~lOS4ti Ml&r CO~lC’(11~7pli;I than

and does not contain the clowre of) wd4r corrcatew~~tio~~.

(4) FINITEREVERSAL@‘) is not a fur/ AFL arad doe7 net contair7 t/Y4 closl.!w of

2-REVERSAL(Y) under Met-xe + .

a&. State:nents (2), (3) and (4) are shown in [for k = 9. since

EVERSAL = CON

By Tlubrern 3.4, if t = Log? k then

;EVERSAL,&?) c k-

Hence <PC- AL,(Y) cannot

concate: latlon a

k- L,,(Y) = k-

192 L”i. A. Greibach

Suppose that _ .

k-REVERSAL(P) = (k + 2).REVERSA?$Z’).

We claim that for all p a 2,

k-REVERSA.L(iZ’) == (k + p)-REVERSAL@?‘).

It is true by hypothesis for p = 2. Suppose we have shown it for p. In Lemma 3.10,
let k + (a - 2) play the role of k, s = 2 and t = 1. The,n

(k +p + l)-REVERSAL(z%‘) = (k +&-REVERSAL(Z)
= k-REVERSAL(P).

Hence, by Corollary 3.4.1)

FINITEREVERSAL(9) = u P-REVERSAL(~)
P

contradicting (2).

= u (k ++REVERSAL(9) = k-REVERSAL(Z),
P

Thus kREVERSAL(Z?) tk (k + 2).REVERSAL@‘) for ali k GZ 1. Now suppose
that k-REVERSAL(Z) = (k + l)-REVERSAL@‘). By Theorem 3.4,

2k-REVERSAL@‘) = 2-REVERSAL(k-REVERSAL(Z))
= 2-REVERSAL((k + 1)-REVERSAL&Y:)

= (21~ + 2)-REVERSAL@?),

a contradiction. This establishes (1). Cl

. For one-way checking automata, k + 1 reversals are more powerful
than k reversals for each k a 1.

If 9 is a full AFL, then FIiWTEVISIT(.5?) is also a full AFL, but if 9 Z
FINXTEREVERSAL(5?), FINITEliYWERSAL(ZZ’) cannot be a full AFL. Hence
finite reversals are strictly less powerful than finite visits for on-line machines.

9 IT a full AFL and 2 f FINITEVISIT(thert

1NHTEREVERSAL.Y) 5 FINITEVISIT(

7’he class of finite reversal checking auto
onfained in the class qffinite visit checking auto

ial cases of the main results of this section have

193

reversal bounded mat s. For exanhple, Klingenstein [40] estabhs ed a version of

Theorem 3.3 for .5?= CL, and a muc version of ‘I’heor 3.1 l(l)
involving the precise form of a replication p:(I.. . . (f?}‘(l. for the
cases 2 = REGL and 2 = CF. Th ill germ-alise to arbitrary full

semiAFL’s and it seems plausible t t do w A,o F%tc CL Theorem

3.11 were shown by Ginsburg and Spanier [II] ard Rodriguez [27] and, for

.Z = CF, by Ibarra [3”lj.

Both Erni [35] and Sudborough [41] have noticed the connection betwee

CQNTRQL~(IJNICFG, Y) and homomor lication (proven for general full

semiAFL .Z in [175) for the special case of 2 = CF. habbdz 138, 391 established

CONTROLJLINCFG, 2) 5 CONTROLk +, (LJNCFG, 5?)

for the special cases d% = LINCF and 2 = CF.

It was shown in [19] that if 9 is a concatentation closed full semik

Jnder homomorphic replication, then the closure of 5? under homomorphic repli-

cation-call it U, JZ& is not a full principal semiAFL nor an AFL, S(U,, Y,J is

not closed under homomorphic replication and is not full principsl and the smallest

full AFL containing .Z and closed under homomorphic replication is not principal;

the assumption of concatenation closure is unnecessary. Similar obserx, ations were

made by Ginsburg and Spanier [1 l] for 2 =I RFGL and for Y = CF by lbarra 1371.

,

Now we concentrate on fir.ite visit automata. We first establish a weaker (but

harder to prove) variant c?f Theorem 3.4, namely k-VISIT@VISIT(Y)) is contained

in kr-VISIT&Zj. This shows that FINITEVISIT is an idempotent operator on

families of languages. Next we establish a grammatical characterization of

FINITEVISIT in terms of control sets of absolutely paral!el grammars and as a

consequence show that if 2 has the Parikh property so does FINITEVISIi(~).

Then, two s!Flltactic lemmas allow us to establish a strong hierarchy theorem for
&VISIT@5 GL) and a weak general hierarchy theorem. Finally, we use these

ideas to !,how that not all context-free langllages are one-way nonerasing stack

languages.

First we show that

k-VISET(r-VIS T(Z)& kr-VIS

S.A. Greiback

We wish to show rhat L(M)E kr-VISAT(9) if M = (K, 2, 17, Is, 40, F, L1) is a
strictly k-visit n(jnmiting fva with a base L1 in r-VISIT(JZ). We can assume that
L1 := l,(Ml) far Ml = (K1, &, IJ, 61, po, Fl, L2) a strictly r-visit nonwriting deter-
ministic: fva with base Lz in 2’. We can also assume that Ml is e-free for otherwise
we can substitute for an e-rule S(q, e, A) q’, A, i)} a rule reading a dummy input
d; 6(q, d, A) == ((q’, A, i)) and then have simply skip over any d’s read in its
work:ing tape. We construct a new machine & which will be 5%based and kr-visit
bounded and will accept L(M).

T.he general idea is that working tapes of M2 will consist of working tapes qf Ml
with the input of Ml wrapped arpund with suitable pointers for unwrapping.

As in the proof of Theorem 3.3 we use special “‘sigma” symbols to encode the
beha!vior of Ml during its r visits to a square. However our coding is more
complicatect. Here a sigma symbol is a symbol of the form

for A E r*, each di E (0, 1, -1)’ each ai = (qi’ ni’ qf, ji) for 2’1(qi’ a,, A)=
((qf, A’ ji)}, ai GE &’ with the additional restrictions that dl = -1, jr 76 0, each di+l= ji
and if ji=O, then ~i+~=~~~ If jr= 1 it is a right sigma symbol (to encode a right
exiting computation) and if .;P =: -1 ix is a lej? sigma symbol. Let !Z (a) = A and for
l<isr, Di(u)=& Qi(a)=qi, Q;(o)=qf, gi(c+)=ai, Ji(U)z ji. Let r~ be the set Of

left sigma symbols and J”’ the set of right sigma symbols.
Call a sigma symbol CF initial if Q&) = po and each Ji(c) E (0, l}, final if C?:(U) E

Fl and last if Ji(cj E (0, -1) for each I Z ,T,
In a sigma symbol a, h(a) indicates the contents of a sqluare (which does not

change since Ml is assumed to be nonwritingj, Di (cp_ j indicates the direction from
which the square was entered at visit i (1 far entry from the right, 0 for standstill,
-II for entry from the left), gi(o) indicates the inpu : symbol re:ad and Qi(o) the state
at visit i, and Qf(ll+) and J&F) give the estate change and working head change during
visit i. An initial symbol encodes a leftmost square, a last symbol encodes a
rightmost square’ and a final symbol encodes the last square seen during an
accepting computation

Now we must define consistency of pairs of sigma symbols. Roughly speaking,
(u’ u’) is consistent if the &ted behaviors are consistent with a’ encoding the square
TV the right of the square coded by u. Thus each right exit listed in u must agree

tries to clr. First, the fwo
ois. Let lQ< 0 l l <

ose i with Ji(a)= 1 and 1 G i1 < - l l < i, s r list exactSy those i

must al& have u = #(~;

One way finite visit automata

et 4 and $ be new symbols. The sets

Rl={$al l * * ~a,,$[each clri E &, cl’] initial, BP,,, last and final,

(a,, Vi-+ I) consistent, 1 S i S i% -. I}

and

R2={$ol’ l l ~~$1 each Gi E FL, U; initial and final, U’m la!3

(Ci, O;.+l) consistent for 1 S i S IT2 - 1 i

are regular. Hence L3 =&h-‘(Lz)$n(R1uR2)isinY.

The language L3 is the base for M 2. It contains the complete encoding of all

accepting computations of 24, alrld no other computations. All

these computations, simulating the actions of on the input of M2 and w

tape symbols which are the input symbols of .Ml coded into thr=
moves on the working tape of M will be simulated by advancing

one step and left moves by going back one unit of time in Ml’s computation.

Let us sketch how this ?s accomplished. Suppose M2 has a working tape y -1:

$ffl’ ’ * om$, each gi a si;_ma symbol. In its finite state control Mz has registers

containing the sigma symbol of y examined and the visit to

camp _,tation as well as the current state of the computation of

on cl with visit number 1 and simulates state q. of M.

At some point in time, let M2 have its wo~-kin~ 1 tape head on a, with visit number

j simulating state q of M. It selects (if possible) an action (q’. g,(tr, >, C-I) in

6 (q, a, g(u)) I’or input symbol a (if CT. E 2 or
a = CT>, as it M were scanning working symbol Sj(Ui). Next
state q’. But first M2 must find the next workin

not alter its working tape head so M2 remains

If d 7: 1, M moves its working tape head right and so sees th
3fter $J, .‘(Ti). ?,et u =Ji(ai); this is the action of
stays ix-2 Ui \I ith visit number j + 1 = j + d. If 14 # 0, let

196 S.A. Grdmch

exit) in the above formula. Here let u = Dj(cti). If EC = 0, M2 stays in ~if with visit
n~umber j + 1 = j + d. If u if. 0, let

Now Mz moves to t~i.+~ with visit number that unique v with

There is one other set of possibilities to mention.. It may not be possible for .Mz to
complete the action above because i + u = 0 or i + u = m + 1 in which case M2 either
moves left to 4 or right to $.. If the new state of 4’ is not in F, MS halts and rejects
because M falls off its working tape in a nonaccepting state. If 4’ E F there are tF~-ee

ssibilities, for all of which Mz will accept. To have i + u = m + 1, Mz must first be
a;, with a vi& number j’ such that either d = 1 and Jj(cm)= 1 or d = -1 anfr

Dj((9;n) = 1. The second case is impossiblr because a, is a last (rightmost) sigma
symbol and could never be entered from the right. In the first case we must for this
reason have j = P and a;, both right sigmia, and final. Thu?? Ml has an accepting right
exiting computation as does PA Now to have I f u = 9, Mz must be in cr1 with a visit
:rgmber j such that either d == 1 and Jj(al) = -1 or d = - 1 and Dj(o.1) = - 1. Since cl
is initial, in the second case J; = 1 so M has a ieft exiting accepting computation, and
left exits 08 the first symbol! input to Ml. In the first case o1 must be a left G yma

d j = r, so M and Ml have left exiting accepting computations. In all these
accepts.

Since M is strictly k-visit. the simulation of M takes Mz to each gi(ai) exactly k
times and there are r such symbols encoded per square of wcrking tape. Tnus M2 is
kr-visit bounded. Clearly Mz accepts L(M). c]

. For any full semiAFL 28,

ITEVISIT(FINITEVISIT(2’)) = FINITEVISIT(

The proof of Theorem 4.1 depends heavily on the fact that the input tape of Ml
was one-way but was independent of the input head motion of M. Thus if we let

NITEVISIT@?) be the family of languages accepted by Z&based finite visit
automata with a two-way input tape with endmarkers, we get the following corol-
lary.

r any fall semiAFL .2?,

ITEVISIT(~)) = N~TE~~ISI~ (Z=‘).

One way finite visit autorlata 197

roof. clearly a deterministic L-based f arded as a dete
two-way finite state transduction on L terrninistic two-w
state transducer can be regarded as finite visit (otherwise it qcles; see [k 25,

k]). El

We turn to a characterization of finite visit languages in terms of the absolutely

parallel gr ammars introduced by Rajlich [251.

niti .2. An absolutely parallel grammar (a g) is a quadruple G =
(V, C, P, S), where V is a finite alphabet, ,Z c V is the subalyhab
S 6, V-E is the initial symbol and P is a finhte set of rules of the for

such a rule is of degre*e r. If’ al; rules of P are of degree less than or equal to k, then G

is uf degree k and is called a k-apg. If p:(Y1,. . .,)-+(Yr, . . . , ~7~) is in

41, ~1,. . . , LJ~+~E~~*, w1 = uJ=, - - - u~YJ~~+, and NJ?= 71 . . . ?4a;,rr,+ I, then

we write wr % w2 and WI:+ ~2. The relation % is the transitive reflexive extension

of +. We extend $ transitive!y by letting VJ~ =% w2 ard w: =& wj for x. y ,E

wl=% w? The language generated by G is

L(G)=(wEY’*/S$w},

while for C G P+, the language generated by G r~i:ll; c,wtrol C is

Although our definition explicitly had productions name themselves and so

control words are in P+, WC: shall not be rigid on this point rand shall let productions

have any arbitrary names when that is more convenient. ince all familie5 of control *
sets used are closgtd under renaming, this is harmless.

We car now define the families of languages invokd

nttii~~ 4,X. The language generated bv an agg is an absolute/, pur&rl I:l;il;lYi;ge
(apl). The family of absolutely parallel grammars of

languages generate

198 S.A. Greiikxh

that CONTROL(APG, APL) = APL, so that controlling absolutely parallel
grammars by the languages they generate does not increase their power.

To show that FIXITI? ~ISIT(ZZ j = CONTROL(A.PG, 9) one can mer’ely observe
that Rajlich’s proof of the equivalence of APL with the ietiults OE two-way deter-
ministic finite state transductions of regular sets goes over to transductions of other
families of languages [as]. However, since we want to establish r.he precise result
that CONTROL(k-APG, 9) = 2k-VISIT(9) we must modify the constructions,
particularly the simulation of machines by grammars.

Definition 4.4. A k-apg G = (V, X, p, S) is in normal form if there is a symbc~! X in
(V-Z)- {S) such that all rules of P are of the forms

(1) 3 x-, X”,

(2) (Y1, . . . 3 yk)+ (yl, l l l Y Y&h

where Yi,..., Y& E V--c y {S} and either
(a) each yi=e, le%k,or
(bj for some i,yiCZw{e))(V-Z;-{S))(iih{e}), and y,c V--Z-(S) for r#i,

or
(c) for some i, j, y E(V-Z-{(S})(V-Z-{(S)), yi=e and Y~E V-X-(S) for

r f i, j.
The rule of type (1) is initial; rules of type (2a) are terminating and of type (2~) are
i-splitting and j-term&z ting.

We observe without proof sthat Befinitisn 4.4 actually gives a normal form for
k-apg’s. The constructions needed follov vv’ the usual lins for obtaining grammars in
Chomsky Normal Form, with suitable modifications in the control sets (cf. [4, 12,

171).
.

Lemma 4.5, Given LZ k-apg G we can construct a k-apg G’ in normal folsrn such that
L(G) = L(G) and for any control set C there is a control set W in J&(C) such that
L(G, C) = L(G’, Cl).

We use this normal form to go from controiled grammars to mxhines.

Let G be a k-apg in normal form and let C be a control set. Then
-VISIT(A(C)).

. Let G = (V, 2, P, 3) be a k-apg in normal form with P labeled by symbols of
C. We shall construct a 2k-vi,Yft bounded machine .M to accept L(G, C). Essentially
we organize a computation of M on a word of C to trace the derivation tree of the

erivation of trolled by that word from left-to-right.

One way finite vi.5 it al;tomd td 199

To simplify the construction of M, its base will be not all of C but C cut ckmn to

those words which actually control complete deriv‘itions of G. For a rule

p:(&, - -a, yk)-+(yl. - -. , yk),

let A(p)= Y1 l l l & while r(p) is either t! if /J is termina&lg or else lists the

nonterrr,inals of y 1 l l l yk in order of appearance. A pair of rules (~19 pz) ik zomis-
tent if A (p2) = r(pl).

The language

R ={POPI l l l
pt 1 pi rule of P, po initial, pi terminating, (pl, Pi+I)

consistent, 1 d i s t}

is regular so C n R E d(C), We take C n R as :he base of 34.

The state set of M will be K =: {f) u { 1, . . . , k} x {L, _R} for a new symbol f, with

initial state (1, R) and final sta t;: set F = If}. State f will be used only $0 accept when

M walks off the left end of the working tape and so no square will be visited in state

f Each working tape square will be visited at most once in any of the other 2k

states so the total number of visits per square will be at most 2k. !3ate (i, PC) means

the worki-ig tape head is moving left to right and is reading the derivation tree

downward, currently tracing the history of coordinatr i. State (i, L) means the

working tape head is moving right to left and so is reading the tree upwards. Since

each lzdel of the tree has exactly k nonterminal nodes, a finite slate machine can

simulate tree motion on a linear tape.

We define the transition fupction of M as follows. For p. initial. M has trail-

sitions (we write 6(a) = (6) as 8(cy) = /3):

a&- 2), e, PO) = ((6 R), po, l), lsi<k ,

s(& L), e, PO) = ((i + 1, R), po, 1), 15isk-I,

6((k, L). 4, PO) = (f, PO, - 0

Now we Jive transitions for production p: (Yl, . . . , Yk) + (y 1, . . . + yk), by

examining the possibilities. First, for p terminating we just have

Wi R), e, p)= ((6 I-4, p, --I), lsisk .

If p is neither terminating nor sp!itting, then for eat

2 v (e), _7i E V -C -lS}. Then uown the tree we read (1, an .
hsve

and

200 SA, Greibach

Suppose, now p is i-splitting and j-terminating. If we are reading downwards, we
continue to do so, possibly changing coord’natc. First we have the transitions, for
(s,R)withsfj.

(6% m BY 1) for l=&ssi<j, lGsCj<iors>i, j,

((s-l,R),p, I) for j<s<i,

((sfl, R),p, 1) for i<s<j.

Since p is j-terminating, if M is reading the jfh coordinate downwards it must now
read upwards. Thus:

WV RI, e, P) = ((j, L), p, -1).

There are E-’ ~-- xxs to distinguish for states (s, L). First we have the cases in
which we are reacimg the +ht brarich and continue reading the right branch
upwards (leftwards), possibly iwitchkg coordinates.

‘!C& L!, p, -1)

I
fors<i<j9s<j<i,s3i>j

W, L), e, p)=
ors>j>i,

((s+l, L),p, -1) for jGsCi-1,

((s-l, L),p, -1) for iSs<j.

Now we have the two cases in which we are reading the left branch and must switch
to xading the right branch downwards (rightwards).

S((i-l,L),e,p)=((i,R),p, 1) for j<i,

S((i, L), %. p) =((i+l, R),p, I?) for i>i.

This complkte : the construction of M Clearly L(M) = L(G, C n R) =
L(G, C). U

The construction for going from machines to grammars is more complicated. We
shall define, as in the proof of Theorem 4.1, special sigma symbols to describe the
transitions of M and shall associate to each sigma symbol a rule which will give the
input symbols read during up to 2k visits to a working square. The nonterminals
will be located so that in the final word the input symbols appear in proper order.
Strings of sigma symbols representing accepting compuiations will form the control
set for the grammar. We impose the bounce-free condition on the machine in order
to go from a 2k-visit machine to a k-apg.

ma 4.7. Let 3 be a fuii semi AFL. Let M be a 2k-visit bounded non writing
ased fva such that every accepting computation is 2k-visit bounded, right toucning

) is in C

One way finire tlisit automata 201

Proof. Let A4 = (K, C, S, 8, qo, F, L) for LE 2. We construct a k-apg G =

(V, 2, P, S) and a control set C in h(L) such that L(G, C) = L(M).

Define the sigma symbols for M as in the pm-d of Theorem 4.1. In this case a

sigma symbol is a s;jmbol of the form

u=(A,dr,al,. . . ,dr,Cyl) for lcrs2k,

with A, di and cyi as before. We define 12, g,, Qi, Q,:, Di 2 nd Ji as before for I s i s r.

We let r = [CT]. We let [cr] vary from I to 2k because imposing the bounce free

condition means that we can’t be sure that each square is visted exactly 2k times

and r represents a guess as to the number of visits. The definitions of initial, last,

final, right and left sigma symbols are the same except that icr] plays the role of 2k.

We let I-‘= be the set of left sigma symbols and _& the set of right sigma symbols,

and let $ and $ be new. Consistency is defined as before.

Again, ~~hc set

R={a**- gt 1 each ci in &, ~1 initial and final, o1 last,

(c”i, OI+r) consistent, 1 s i S t - I} u

I lU’1 l l l a, 1 each ui in I’R. al initial, gt last and final,

(Ui, 0,--l) cm;istent, 1 S i S t - 1)

is regt”ar. The language L1 = h-‘(L)n R in &a(L) encodes accepting computations

of M. We take as control set

which is in .,fi (L).

Let S,XI,. . . , Xk be new and V = C u (s, JCl, . . . , Xk). We clef-he P, associating

to 4, $ and each sigma syrrbol a rule labeled by that symbol.

First we associG:e Q:S-+X1 and $:Xl+e.

To e3ch G \:#e associate a rule as follows. First, let M = #(1 \ D,(o) = -1) and

v = #{& 1 Ji(v) = 1). The rule CT will have left side (XI, . . . , X,) a.nd the right side

will co;tta;n nonterminals X1, . . . , Yc in that orc?~. so that the left hand side of the

rule alwp.ys has coordinates corresponding to all moves into the square from the

left. Sirl2e M is bounce-free we can assume that n;(cr: = - I implies

(or else we have a right bounce into a) and J,(G) = I iir:p!ieq .B &o) f 1 (c, else WC:

have a ‘eft bounce into cj. Thus

Let ’ SjI< _ 0 <jll+-] be

i, s [oj those i with Ji(g) = 1. Let

and

This gives the nuinber of right* exits between the sfh and (s -t r)“’ left en&y; there is
of cout”se just onk left exit. Let r(s) = 1+ Ci<$ t(i); this gives the number of the
correspodding coordinate.

Our rule u will have the form (X1? . . . , XU)-+ (y l, . . . , yU:). L#et us define ys by
casc:s. For convenience we use the convention that iU+l - 1 = [u].

(I) t(s)= 0. This means there are f:ome (at least one) standstill moves but no
right exits so no need for a nonterminal placeholder. Then we let

which simply gives the inputs between left entry and left exit.
(2) t(s);l 1. This means at least one right exit and maybe some standstill moves.

Now y, will iist all the inputs from visit is through is+1 and will insert a nonterminal
after the input for each of the t(s) right exits. So y, looks like:

The correspondence between derivations of G and computations of M can be
established by induction on the length of derivations and on the length cf working

tape read up to a point, as in Rajlich [26]. Then one can conclude that S “, w if

and only if x describes ;f$ accepting left exiting computation of M on M’ with
working tape h(x) and S i=+ w if and onljr if the same thing holds for an accepting

right exiting computation. Hence L(M) = L(G, C). *’ q

We can put these three lemmas together for our characterization theorem.

Theorem 4.8. -For any full se;niAFL Zsnd any k 2 I,

2l+YISIT(Z!?) = CONTROL&mAPG, 9)

and

FINITEVISIT(3?) = CONTROL(APG, 9).

. c T&e family of finite visit checking automata languages is the family
of a,bs~~ute~y parallel languages with 2k-visit automata corresponding precisely to
degree k grtirrtmars.

7Yhe family J/” absolutely parallel languages is closed under the
controlli;rtg absolutely parallel grammars. Formally,

, APL) = APL.

One way finite visit automata 203

Proof . Since APL is a full semiAFL,

CONTROL(APG, APL) = FINITEVISIT(A?L)
= FINITEVISIT(FINITEYCXI’(REGE))

= FINITEVISIT(WEGL) = AK. i--J

Another immediate corollary is that if 9 has the Parikh property so does

FINITEVISIT(

Definition 4.9. A set S of rz-turlzs of nonnegative integers is linear if there are

n-tuples of nonnegative integers c, pl, . . . , pr such that

S = {c + tl pi + l l l -t- trpr I tl, . . . , t, nonnegative integers}.

Such a set is semilinear if it is the finite union of linear sets.

Definition 4.10. Let LEE* and let II:={al,. . .,a,), and d=(a,,. . ..a,,). A

Parikh mcvping of L is a function j$ from L into n-tuples of non-negative integers

defined b?

fa(U= {(z%,(w), . . .) #,“(W)) 1 w EL].

A language L has the Parikh property or the semilinear property if f(L) is semilinear

for some Parikh mapping f; a family 2 of languages has the Parikh property or the

serniiinear property if every member of 3 does.

Theorem 4.1X. 1f 2 is a fdZ semiAFL with the Parikh property, so is FHNITE-

VISIT(2’). ’

Proof. 2 sufkes to conkkr L(G, C) for C in 2 and G an apg. Let G =

(V, X, P, S): 4 je can assum:: without ioss of generality that C E P’. For a rule p in P”

we can dehine A(p) and r(p) as in the proclf of Lemm? 4.6 and let r(p) be the

ten*4nals in the right hand side of p in order. Let [A (1~)] and [r(p >] be rrew symbols

ancj I = :[A (p)], [r(p)] 1 p E P}. We define a new rule ixith label II (p) as [h (p >I +

t(p)[r(p I] if r(p) # e and [A (p)] + t(p) otherwise. We regard Is 3s a ho~~4~rn~~~~~i~~~~

on P+. Thus G’ = (I v C, 2, h(P), [is a regular grammar and !z (C ? bs in Y.

Further. fol;, any Parikh maping f, f(L(G, C)) = f(L@‘, hgC))). Since G’ is a regular

coritext-free grammar, L(G’, ke (C)) is in 22 [121 rind so f(L[G’, /~cd~j)) is SL’IX~-

linear. q

e APL has the rikh property.

204 S. A. Greibach

We can give a characterization of FINITEVISIT akin to that characterization
of FINITERE~JERSAL(Z’) in Theorem 3.3; hog ever the languages involved are
much less attractive.

For an alphabet ,X = {al, . . . , a,,}, let 61, . . . , ciz, be n new matching symbols and
Z={a&..., (ii& For each w irr (X us)*, let p(w) be the minimal member of the
equivalence class of w in the congruence relation generated by aidi - e. For a word
T#* let Init be the set of all initial substrings of w. Let c be a new symbol. For
LG G * we can define a language

c(L) = { wcy 1 w G L, y E (2 CJ s)*, p (Init(c Init j},
and for each kr

ck(L)={wcyEc(L)(for 1-r , C= ’ S Iw I, #{y’ E Init 1 Ip(= i}G k}.

It is shown in [9] that the family of one-way dhccking automaton languages is
(c({czr, a2)*)). Rodriguez provides a characterization of X-reversal bound&

one-way checking autormaton langua,ges in terms of a restriction of ~({a 1, Q}*) [271.
By methods similar to those in [9] and [l.S] and in the proof of Theorem 3.3, one
can establish the foljowing result ; the proof is left to the reader.

eorem 4.12. For any full ser)aiAFL 9, and k 3 1

K-‘.‘YEIT(-Y) = &{:a, (2) 1 L E ..zq).

For the particular case 5e = iaEG% ont can sb~w the following corollary.

The family of k-visit o de-way checking automaton languages is

We proceed to establish two hierarchy theorems. First we give a lemma used in
proving the st rcng hiera.rchy theorem for finite visit checking automatn.

is not in

me to the contrary that Lk+l = L(M) for a strictly k-visit nonwriting
(KS .& p: 6, q0, r!, R) with regular base R. We use the followmg simple

~~~~~natorial fact which we state without 

There is no way to place k + 1 connected line segments on a strai 
ents t least one poitit but pE0 poim 8’9 



One way finite visit automata 205 

Consider any accepting computation C of M on ~(a’%)‘+’ with working tape y. 

We can regard as line segment i the porticn of y visited by 

fth block of a’s. Since the computation is h-visit bounded, there can be no point of y 

on which all k + 1 line segments coincide. Hence by the sublcxmla there must be at 

least one pair, say r and LC, 1 s r c s s k + 1, such that no square visited during the rlh 

block 01 u’s is also visited during block s. We can fxtx y as either y = yrys or 

y = ysyr such that during block r only y, is visited and only ys during block s. 

Since M is strictly k-visit there is some t such that every accepting computation 

of m is t-crossing bounded. So there is a list S of up to 2t states of n/a giving the 

states in order for the up to t crossings of the border between y, and y, 

regular, we can factor l-” into some finite number of congruence classes 

such that R is the union of some of these classes [ 221. 

Hence we can associate with 6,‘ a tuple fr, s, b, S, i,, i,) with b = left if y r= yry, and 

b = right if y = y,y, and y, E Ri,, ys E Ris. There are only finitely many such tuples but 

infinitely many words c (a m~)k+l accepted by A4 Hence there are 112 1 f m2 and 

accepting computations Ci for c(a m~~)k+l, i = 1,2 sscl: that Cl and C2 are asso- 

crated with the same tuple. The cases ar.: similar, so suppose they are associated 

with tuple (r7 5, l&, S, i,, i,). This means that Ci has working tape yiry,, E R, with 

yi, E Ri,, yis E Ris and visits only yir durirg block r and OII~~, yis during block S. 

i = 1,2. Thus y = ylryzs is also in R and M has an accepting computation C with 

1vorki.g tape y for some wore’ ui the form uca’nl cuca mast ; this computation follow% 

C,. while visiting ylr and Cz while visiting yl,. But this word cannot be in Lk+:, a 

contradiction. Cl t 

We can no*:L summarize our hierarchy results for reversals and visits in checking 

automata. 

Theorem J+7.Yeclchk~l, 

(1) k- REVERSAL(REGL) 2 i k + l)-REVERSAL(RLGL), 

(2) k- VISM’(REGL) 5 (k + 1. )- VISIT(REGL), and 
(3) (Ei + I;-REVERSAL(REGL) - k-VISIT(REGL) f 0. 

Fork8 
(4) k-REVERSAL(REGL) 5 k-VISIT(REGl_), 

(5) 3-VISPT(REGL) and ( 
3-VISI’T (REGL) and FINIT 



Notice that %REVERSAL&‘) = 2 -VISIT(3) always since a 2-visit bounded 
computation is necessarily 2-reversal bounded. Thus we cannot improve Theorem 
4.14(4). It also shows that while for any semiAFL 9,s f FINB’TEREVERSAL(9) 
if and only if 5% 2=REVERSAL(Z), we can have 

9 = 2,.VISIT # FINITEVlSIT(3). 

For sxarnple, take 9 = FINITEREVERSAL(REGL); then 

3 = 2-REVERSAL(3?) = 2-VISIT(.9) 

bui 

FlNITEVXSIT(3) = FIXiTEVISIT(REGL) # 9. 

Co&i- 4.14.1. ~?JF e&z k 2 L, k-APL E ((k -+ I j-APL; that is, degree (k + 1) 
absolutely parallel grammars are Mctly more yawerful than degree k. 

We now turn to a general hierarchy theorem for k-VISIT@‘). It is not a strong 
hierarchy theorem since it requires that 3’ be closed under substitution. We need 
3 syntactic lemma regarding special types of substitution. 

Defirtition 4.15. For languages L1 and L2 contuined in C *, let 

A proof that FINITEVISIT is closed under substitution whenever 9 is+ can 
readily be obtained from the proof that the family of one-way checking automaton 
languages is closed under substitution [16]. Since we want bounds on how many 
visits are needed, we indicate briefly how the construction works. 

Lemma 4.16. Let 2 be a full semiASL closed under substitution. 
ki-VISIT(JZ’), Li c XT, i = I, 2, El/7 22 = p). Then L= 7(L1, L2) is in 
VISIT@?). 

Let L, be in 
(kI + k2 + 2)- 

Proof, Lei Li = L(Mi), Mi a strictly ki-visit nonwriting fva with base Ri and working 
alphabet &, i = 1,2. We can assume without loss of generality that r: n f’2 = 0. We 
may as well also assume that each A4’;: is e-free since, by inserting dummy s:rmbols 
(di la Mi), we can get e-free strictly ki-visit nonwriting machines M/ accepr.ing L: 

that T(L~, L) is obtainable from 7(L\, L;) by an a-transducer mapping, and 
k2 + 2)-VISIT(3’) is a full semiAFL. Let et d, &, and $ be new symbols. 

e anstructiori of a (ka -I- k2 -t 2)-visit bounded Z&based fva _1f3 to 
accept r&l, b). The new machine will not be nonwriting. The base for M3 is 



One way finite kit automata 207 

Since 3 is substitution closed, R1 is in Y. Now M+‘s war king tapes are tapes of 

with tapes of IM;! surrounded by c’s interspersed everyw,jere. 

Machine A& switches between an M1 simulation and .in M2 simulation, starting 

with an Ml simulation and ending with an A& simulation. We h:ive assumed A& tr, 

be +free so during the Ml simulation 1M3 reads one input From C1 and executes one 

correspl)nding step ot Ml. To do so, it reads a working :a 3e sym!~! of rl. 

Next M3 gets ready for the Mz simulation. If the M1 step results in a right move, 

.A& moves right to find the first block cyc, y E &, turns the left c to d and starts 

simulating M:! Jsing y as its working tape and reading inputs only from _&. If it sees 

c or d in a nonfinal state it blocks. If it sees c in an accepting state it changes c to d 

and moves right to the first symbol of Fl to resume the M1 simulation while if it sees 

d in the accepting state it does the same thing except it changes the first c to the 

right to rl in the process (this is thle right c in cyc now dye and finally dyd). If the Ml 

step on ehc 9ihzr hand result& in a left move, 1MJ would move left to find the first 

cyc, y E W2, this time positioning itself on the leftmost s:vmbol of y and turning both 

c’s to d initially. Now it simulates Mz on y with input from Cz as in the previous 

case, When it finds itself in an accepting state of A& it moves left to the first rl 

symbol ard resumes the M1 simulation 

If M3 tiies to resume the Ml simulaclon in an accepting otate of lM1 and finds no 

symbol of rl in the direction in which it is moving it accepfs. 

Eat!, square containing a symbol from rl is visited only when simulating Ml for a 

total of k1 visits. A string cyc, y E RZ can be visited as 1M3 s\k/eeps over it from an M;! 

simulation to an Ml simulation. Since this corresponds to a visit of M1 to the rl 

symbols to the left and right of cyc, this situation occurs at most k! iimss. String cyc 

can also be used for one and only one simulation of pcriz since after this simulation it 

becomes d,d and is ignored; this means at most k2 more visits. However, if A47 

starts this 121: simulation moving right and the computation is left exiting one more 

sweep right over y will be needed. If M3 starts this Mz simulation moving left, it 

first passes over zyc, turning it to dyd, in order to be on the leftmost symbol of y at 

the start, and il” the simulated computation is righ. f exiting it will have to go over dyd 

once more. Ynis possible complication adds at most 2 extrn visits per square. enci- 

M3 is (k 1 -I- k2 + 2)-visit bounded. Cl 

> Lemma 4.16 implies that k,-VISIT(Y’) ci k,-WSIT(Y,z (k, + k2 + 2p- 

4) whenever 9 is closed under substitllrion. A ri-~)l p corn 

structiohl shows that (k, -I- k2 + l)-VI§IT(.Y) 5ufficcs 2nd if I id c!+~Li under rtdvtx- 

sal then (kl + kr)-VISIT(Y) works. However k 1 + k2 + 2 is 3 gcjc j cnou.,gil Ix~anrlaI tar 



208 S.A. Greibach 

within k-l visits. This is shown by the sort of dichotomy argument found in [ 15, 16 
and 191 and the proof will only be outlined. 

Lem.mh 4.17. Let L1 s C f, L2 c Z’,” wi& & A & = 8. Let 9; &e a new symbol. Let 9 
be a full semi AFL and let k 3 2.1f T(L~, L$$ is in k-VISIT(2’) then either L1 is in 9 
or L:! is in (k-l$-VISIT(+S). 

Proof. ‘We use the following two sublemmas which we state without proof. They 
can be proven by standard arguments for checking automata and stack languages 
(cf. [ 161); recall that 9 is a full semiAFL. 

Sublemma 1. Let M be an &based nonwriting preset Turing machine with inp*tr 
alphabet X. Suppose that for each w = al l 9 - a,, E L(M), al, . . . , a,, E Z’, there is an 
accepting computation C such that during C for each i, 1 G i G n - 2, no working ta,?e 
square read during the scanning of ai and subsequent e moves is read again after ai+ 
is input. Then L(M) is in 9. 

Soblemma 2. Let M be an Z&based nonwriting preset Turing machine with input 
alphabet C. Let s 21. Suppose thatforeach w=al*.=anEL(M),aI,...,a,,EX, 
there is an accepting computation C such that during the period from the input of a I 
through the input of a, -but not necessarily including any e-moves before al or after 
a -no working tape square is visited more than s times. Then L(M) is in s- 
&T@?). 

Now suppose that L = ~(LI, Lz)$ is accepted by a strictly k-visit nonwriting 
Z&based fva M = (K, 2, IT, 6, qo, F, R), R E 9’. We can define from M machines MI 
and Mz for L1 and k as follows. 

Let PK; = (K, 21, P: 81, qo, F, R) for &(q, a, A) = S(q, a, A), a E & and 

Mq, e, A)= u ~(~, h A). 
bdzu{!§,e) 

Thus Ml simply simulates M on inputs from X1 and uses e-rules tc, simulate M on 
other inputs. 

Let 

A42 = (x x {(Al, 2,31,2’2, f: 62, (qo, O), F x (319 R ), 

where S2 is defined as follows. For b E & we have 

&((q, I), b, A) = {((q’, l), A s)IW, A S)E &a lb, -4% 



One way finite visit auk mata 209 

Otherwise we have e-rulcz. For (4, 0) we have 

&((q, o), e, A) = {((q’, O), A, s) 1 (q’, A, sk 6(q, a, A), a E 21 V&J k)) 

u{((q’, 1). A s) 

For (q, 1) we have 

&((q, l), e, A) = {((q’, 1)) A s) 

u {((q’. 3, A s) 

(q’, A, S)E 6 (4, G_“, A), a E Cd. 

(q’, A $1~ Vqt e- 4) 

(q’, A, ,c, :‘ < S(q, a, A), a E 211 

for (4,2) 

u{C(q’e 3), A, s) 1 (q’, A, p‘ ‘I- s(q, $, A)}, 

&((q, 2), e, A)= {((q’, 2), A, s) 1 (q’, A, S?E S(q, a, 4 a E .& u J% u id) 

and for (q, 3) 

u{((q’, 3). A, s) 1 (q’, A S)E 6(q, & 41, 

&((q, _?), e, A) = {((q’, 3), A, S) 1 (& J% sbE s(% e- A)}- 

Essentially A& first uses e-rules to simulate M on any input, then, when 34 is about 

OR a Nerd in L2 switches to real input (states (q, I)) ad when M returns to 

input from X1 (or $) contjmlPs the simulation with e input, making sure that $ is 

read b *J M(states (q, 2) and (q, 2 )). 

Clexly Li = L(A&), i = 1,2. We want to show that eithcl !!& satisfies the hypo- 

theses of Sublemma 1 so L1 ~2 or Mz satisfies the hypotheses of Sublemma i with 

s = k - 1, so L2 is in (k - 1)-W-3?‘(9). 

Consider an accepting computation C for al w1 - . a ~JV,$, aI, . . . , a, E &, 

Wl, l l l 7 IV,: $7 L2. If no working tape square scanned during aiw, is scanned after 

Wi+l is through, for each i, 1 s k s r-2 - 2, cali C local1 t 1 -cisit m ci 1 - - . a,. Tf no 

square is scanned more than k - 1 times during the per;& from the input of the first 

symbol! of wi to the last, call C locally (k - I)-visit on (5, w;); if ~1 = wz = l * * = W, 

we just call 1s locally k-visit on some occurrence of’ w. Suppose C is not locai& - 

(k - I)-Gsit on (i, wi) for each i, 1 c i 6 n. During MQ some square is visited k times. 

This square can never be seen again since M is strictly k-visit, settirig up a 

“barrier”. Similarly some square is seen k times during wz, settin& ‘0 a new barriei. 

Thus nc square seen during aI w1 cm be seen after ~2 is through. \rgL.ing in this 

fashion, we see that for each i, 1 G i s II - 1, no square wen during a.~‘, con Ix xen 

after the scan of w;+~. Hence C i(; locally 1 -visit on LJ 1 * 9 . 62,:. 

IE pa3icular, if C is an accepting computation on 

then either C is locally l-visit on y (k - I )-visi; on WKTIC 

occw-~~ nce of [ xccpaing 



~myiutation for &z~ l l . a,, IV), wfh3ch is locally i-visit on al l . 0 a,, then clearly 
M1 satisfies the hywtheses of Strblemma I and Ll E 3’. Otherwise there is al l l - a, 

in L1 such that for each w in L2, no accepting computation of M on p (al 8 l l a,, w) 

is locally l-visit on aI. l l a, and so every accepting computation of M on 

I.L(a1. l l 
arr, w) is locally (k - Q-visit on some occurrence of w (and there is at least 

one such accepting computation). Hence Mz satisfies the hypotheses of Sublemma 
2 and L2 is in (k - I)-VISIT(9). a 

Now we can state our general hierarchy theorem for finite visit automata. 

Theorem 4.18. Let 9 be a substitution dosed full AFL. If 28 f FINITEVISITZP), 
then there is an ir&?od- 6Gr ko 2 4 such that for all k 3 1, 

k-VISIT(9) s (k -+ k&VISXT(LZ’). 

Proof. If 3 f FINITEVISIT then for some kl 2 2, 

.9 = l=VWT(.3?) 5 kl-VISIT(Z). 

Let ko = kl + 2. Clearly 

k-VISIT@?) s (k + kO)-VISIT(Z) for k = 1. 

Suppose k 2 2 1~~ the smallest integer such that 

NASIT(ZZ’) = (k + k&VISIT(5!?). 

Let L1 be in kl-VISIT(:.9)-9’. Consider any member L2 of k-VISIT@‘). Since all 
our families are closed under renaming we can asstume that the vocabularies of L1 
and b are disjoint and that $ is a new sy .mbol. By lemma 4.16, ~(LI, L2) and so 

(k + k 1 + 2)-VK3IT(99’) = (k + kO)-VISIT(.9) = k-VISIT(~). 

Since L1 is not in 9, by Lemma 4.17, L2 is in (k - l)-VISIT(3). As LZ was an 
arbitrary member of k-VlSIT(3) we see that 

k-VISIT@‘) c (k - l)-VISIT@?) 

and thus 

)-VISIT@?‘) = k-VISIT(9?) = (k c k. - l)-VISIT($?) 
= (k + k&VISIT(5?). 

This contradicts the minimality of k. Hence we conclude that 



One way fitzite uisit autcjmara 211 

coroil~ For any subs:itution closed fd! AFL Y, if 2 ti 
CONTROL(APG, dip), then there ic z kO 3 2 such that 

cONTROL(k-APG, 2) c, CONTROL((k -t k,,)-A!%, 9’) 

foreach kal. 

We can provide a somewhat different extension of Theorem 4.14 by considering 

iterative properties of languages. 

Definition 4.19. A language L is k-iteratzue if there is a kl 3 1 such that whenever w 

is in L and Iwl>kl, then :Y = ulol 9 - ’ u~u~u~+~ for LQ - 6 - uk “re and 

upr l l l U~V~U~+I is in L for al! n 20. A language L is weakly k-iterative if it is 

either finite or contains a k-iterative subset. A family of languages -sB is k-iterative 
(we&y k-iterative) if every mimber of 2 is k-iterative (weakly k-iterative). 

We shall sketch the proof that if 2 is a weakly k-iterative full semiA_FL, then 

r-VISIT(3’) is weakly kr-iterative. First we need an auxiliary definition and lemma 

which says in essense that finite visit automata can be made to operate in linear time 

and spat: in a strong way. 

Defini%n 4.20. Let C be a computation of fva _M’ with working tape y and iet 
I<iG~;~i_ We say that C skips i if every visit to square i results in an e-rule 

transition. If fcr every i, 1 G i c 1 y 1, C’ does not skip i, then C is nonskipping. Hf 
every accepting computation of M for nonempty input is nonskipping, then M is 

nonskipping. 

In a nonskipping computation, every working tape square: must be Gsited at least 

once while input is read and the input tape advanced. An 25based &visit bounded 

automaesn Can Oje made nonskipping, employing standard argumems of the type 

used fc. checking automata and stack automata. Essentially one can use an a- 
transducer c J replace a portion of working tape “skipped“ during ;I computation by 

a table summarizing the behavior of the machine in that portion for (>-input. The 

proof is ,ketched in Section 5. 

Now we sketch the proof of the weak itcratioun lem 

2. Let 2’ be 
weakly kr-iterative. 



212 . S. A. Greibach 

We need only considler a nonwriting, right touching, nonskipping, 2’-based 
r-visit bounded automaton M = (K, 2, H”, S, cpo, F: L), with LE 2Z, and every accept- 
ing computation of A&visit bounded. 

Define the sigma ryarrbr,!s and associated !unctkons and uets RI and R2 for M as 
in the proof Og Theorem 4.1 and let 

R ‘(X 1 &dw?luR*). 

Let L1 = h-‘(L)nR. ‘As before, Ll consists of encodings of working tapes of L 
a%~tlg with complete accepting computations using these tapes. Every accepting 
computation of M is encoded in I-2 t:3 d the corresponding input can be obtained by 
appropriate decoding, Further, R is regular and so L1 is in 2. 

Ir’ L1 is finite, L(M) certainly is finite. Otherwise L1 contains a subset I = 
(l&t$ ’ ’ l t$us+l 1 n 2 0) with 1 G s G K and every Q nonempty. Let 

& = (u#;+” l l l usv;+nU,+~ 1 It 3 1). 

We wish to argue that It encodes accepting computations for an rs-iterative (and 
hence &-iterative) subset of L(M). 

Notice that since vi encodes actions on h(vi), identical actions can be taken by A4 
on each repetition of /Z(Q) corresponding to repetitions of vi in words of IT. 
Consider the computation C on h(u& l l * u,v~%~+~) encoded by 

r+l 
UIV1 l l l UJVS ‘+‘us+l. Suppose h(vi) is first entered from the left in a state p. Thus 
the first entry into each repetition of /z(q) is also in state p and the same inputs and 
actions are involv/sd. Since M is right touching, M will eventually cross (h (vi))‘+‘. 

There are two p;yssibilities. If M crosses /Z(Q) directly, without going left of this 
subtape using input x1, then repetition of input x1 causes M tt3 cross all of (h (vi))‘+” 
for any n. Otherwise, M may have some wiggles left before crossing, and may 
repezaledly go left of h(u& But M is r-visit bounded. Hence there must be some 
rcaetition of h (vi) (before the r + 1”) such that C enters it in p and enters the next 
segment h(oi) in p under some input x1 without leaving (h.(vi))‘+*. Thus further 
iterations of h(q) can also be crosssed using x1 and so x1 is one of the iterative 
factors sought. Similar arguments apply to each left entry to the first h(ui j and e;;c% 
Zg:ht entry to the last one in C. Since there are at most .r such entries and crossings 

of ((~~Vi)~*+‘~ we identify at most r iterative factors. Since M is nonskipping, at least 
one is ~~nern~~. This holds for each i. Thus 6, describes an rs-iterative subset of 

at the Iangflage Lk+l of Lem a 4.13 is (k + I)-iterative but not 



One way finite kit autornntcl 

roof. 01 one hand, Lkr~+l is in 

213 

(kr + l)-REVERSAL(REGL) c (kr -t. 1 )- 

On the other hand, since L kr-+l is not weakly kr-iterative, tt cannot be in r- 

VZXiJY). This establishes (1) and (2). If Lk is in 9, t en llsing it as a base language 

we can certainly get Lkr-’ 1 using r + 1 reversaIs; this yields (3). n 

q If2 is arzy full sei&WL coPztained in CF, 

PVISIT(A!?) s (2r + I)-WSIT(2) for each r 2 i 

andif (anbn ~n~l)isinZ’, then 

r-VISTT(9) 5 (r + l)JQGT(Y) for each r 2 1. 

roof. Every context-free language is obviously Ziterative in a very strong way. 

Clearly Lzrcl can be obtained from {a%” 1 n 3 I] using r + 1 reversals. c3 

We conc!Uda, this section by observing that lLem a 4.17 can also he used to 

provide an alternative proof’ that not all context-free language; are checking 

automatpnn languages. Let CAL be the family of one-way checking automaton 

languages and NESA the family of one-way nonerasing stack languages. 

Lemma 4.17 tells us that any substitution closed full principal serii 

contained. in FINITEVKIT(5?) must be in Y: so Cl? cannot be contain 

FINITEVISIT(REGL). But every language in CAL-FINI EGL! mt\.:t 

be weakly l-iterative, while there are generators of CF which do not contair; an 

infinite regular set. 
More formally, we derive the next lemma from Lemma 3.17. 



Let I.,=: L(M), where M = (K, Z; i-‘, 8, qo, F, R) is a preset one-way d%t 
Turing machine. Let k = I+ #K. Since L is not in k-VISIT(g), there is a 

word w in L such that no accepting computation of M on input w is k-visit 
bounded. Let 6’ be the shortest accepting computation of M’ on input &, and let C 
have working talpe y. During C, M .must visit some square in y at least k times and 
thus twice in the same state q, Hence w =uavbz, a,bE&J(e~, y,=y&y&&r 
and C includes visits to A in state q at w and b. Since C is the shortest accepting 
computation, al) # e. Hence u(av)*Ez is an infinite regular subset of L. Cl 

6, There dare context-free languages which are not one- way nonerasin z 
stack languages. 

. Since CF is substitution closed, Lemma 4.1 of [ 161 allows us to conclude th? I 
CF E NESA if and only if CF c CAL. 

Now CF = &(L) for a parenthesis language L which is not weakly l-iterative [36J. 
y Lemma 4.25, L is not in CAL - FINITEVISIT(REGL). By Lemma 4.24, L is 

not in FINITEVISIT(REGL)~ Hence L is not in CAL, so L E CF-- CAL and 
L&F-N&4.. fll 

. ‘Ihe salme argument shows that some index languages cannot be expressed 
as nondeterministic two-way finite state transductions of stack languages’*. 

Upper bounds on the space or time complexity of FINITEVISIT can be 
obtained by applying the results for the two-way case and using special considera- 
tions pertinent F:O the one-way case. 

The space and time complexity of two-way finite visit automata was studied in 
1201. It wa shown in particular that 

TMQl~INITEVISIT(REGL) = NSPACE(log2 n). 

the class of lq.uage~ 9 3 Gccepted in space log2 n b;y off-line nondeternZstic multi- 
tape Turing mllchines and TWOFINITEVISIT@ZF) = 9, the class of languages 

me by deterministic o&line multitape Turing machines. 
zlraracterizations do not exist in the one-way case. For example, 

achines in space log2 12 since the 

a 4.25 in 2 different 



One way fide visit automat0 

FIPl7!ITEVISJ[T (GE) 5 9. 

The family of derivation bounded larzghag,es is cmtntned in 

of. Ciea~ly DB c APL [2S]. q 

Corollary S. 1.1 strengthens Sudborough’s observation t at all linear ce,ntext-free 

languages are in NSPACE(log2 n ) [30]. 

CONTRGL,(L BC;r, REGL) 5 NSPAC 

C@NTROL,(LPBC, DB) 5 NSPACE(lsg2 n ), 

C’DNTROL,(LDBG, CF) 5 9. 

roof. For a left derivation bounded grammar C and control set C one can clearly 

d an e>pg G and control set C’ in J&(C) with L(G, C) = L(3’, C’). rL! 

We can obtain further complexity results in the one-way d:ase fro 

one-way finite visit automata can be made to operate in linear time an 
k-visit bounder! computation on input MJ + Q and working iape _,T i 

then ly 1 s Irv, and the computation takes at most k Iy 1 s k /MI 1 steps. 

rephrase Lemma: 4.21 and sketch the proof. 

Le ,2. Let Y be a full sekAFL and let h, be in k-V ). Thm is a k-visit 
bounded non 1 I sriting 5% based a u toma ton is ~~oi~.~k~pp~~l~ 
and, fobr mpy w in L and every accepting computation C oj%?on w with workhg tape 
y, Cis.k-ui&&ounded, I s Iy)~Max(lwJ, I)and ~~takesatmostk - Max(\w/. 1 )sIep.s. 



216 S. A. Greibach 

where O(i j = 1 and d(R) = ] y I+ 1. The relation on r+, defined by x = y if and only 
if 7, = TY, is clearly a congruence relation of finite index” on r+ so, ,by Nerode’s 
Theorem [22], for each table T the set {y E r’ 1 TY == T; is regular. Let 

9={(T,i, j}\ T isa table, laiGk+l, lsjsk}, 

and 

Ye = ((710) 1 T is a table}. 

There is an a-transducer Ml taking r+ into subsets of 9:~ Ye, such that 
SI l l l Sr E Ml(y)n 9: if and only if y = y1 l l l y, and Tyi = Si, 1 G i G r and (S, 0) G 
MI(y) t-7 Fe if and only if TY = S. ?r?,e new machine a has base Lz = M1(LI) dnd 
tape vocabulary rl= ,Y u Fe. 

A tape (7: 0) in L2 is used only for input e, which is accepted if and only if, for 
some q in F’ and d in {L, R}, T(qo, e, d, L, q) = 1. Otherwise, @ has working tape 
symbols of the form (T, i, j) and states of the form (q, L) or (q, R). A symbol 
(T, k + I? j) causes a block. For i G k, I@ has a transition from s&e (q, d) to state 
(q’, d’) changing (T, i, j) to (T, i + 1, j) and moving in direction d’ on input b E 
C u {e} if and only if T(q, b, d, d’, q’) = 1 and if i = j9 then b # e. The start state is 
(40, L) and the final state set is {(q, L), <q9 R) 1 q E F}. 

is nonskipping sines the jth visit to (T, i, j) must be on nonempty input. 
The behavior of a on input w and working tape (S1, 1, jl) l l . (S, 1, jr) simulates a 
computation of M on input w and working tape uIA 1~11 . l - u,14,v,, Ai E P, such 
that the ui and vi (which may be empty) are “‘skipped” but nonempty input is read 
at least on the j;” visit to Ai. So L = L(M) = L(M). 

Machine a is not nonwriting. Hcwever, the conversion t9 a nonwriting machine 
can be accomplished without adding new e-rules. 0 

Now we observe that the one-way FINITEVISIT operator preserves non- 
deterministic time and space and deterministic space complexities for full semiAFL’s 
in a certain sense. Let us assr!tTe th-” as 21.1 bounding functions are monotonic functions 
from the nonnegative integers into the nonnegative integers (so, e.g., log2 t2 meal&s 

(T(,~E))(NSPACE(S(~)) be the family of language:; ac- 
eterministic multitape Turing machines in time T(n)(space S$z )); 

n))(DSPAGE(S(n))) be the family of languages accepted by deter- 
in&tic multitape Tu ma& 

’ A relation R c S X S is a congruence relation if it is an equivalence relation and for all x, y, 2, WI in 22, 
Italy (x2, yw ) in ; it is of firnile ir2de.u c?ra S if it partitions S into finitely many 



core . Let 2 be a full wni AFL. 
(1) If 9s NTIME(T(n)), and T(n)> pi for all 12, thm 

FINITEVISIT(9’) c NTIME(T(n >). 

(2) If 9 c NSPACEiS(n)) fior S(n j a n a.e., then \ 

FINITEVISIT(Z& NSPACE(S(n)). 

(3) If 9 c DSPACE(S(r5 jj 1%~ S(n) 2 n a.65 then 

FINITEVISI’I (9’) c DSPACE(S(n )). 

roof. For L in k-VISIT(Z), we let L = L(M*) for nonskippi 

in 9 satisfying the conclusions of Lemma 5 -2. If C E NTIM 

Turing machine 1M:! accep: C in time T(v). We constru 

machine ?& for L. On input w, M wrtes down on on f its tapes a guess at a. 

working tape y with Iyl G Max(lw I, 1). Next M simulates to determine whet 

is in C. If y is in C, M concludes by simulating lcfl for input w and working tape y. 

Hence if w is in L, some accepting computation of M takes at most 

T(~;?])s 02 +- 3)T(I w I) steps. Thus 9 is in NTIME((k + 3)T(n )). Since NT1 

has line;: speedup [3], L is in NTIME(T(n)). This establishes (1). The argument for 
(2) is similar. 

To c’~tain (3) we note that a determirlisi;~ ‘Yurir~ B .n-zrhirte M can cycle through 

all those con;putations of Ml on input w which use working sage hormded in length 
by Max(l w I, i) and ;akc it most k (w 1 steps: furl:hermore, I$/p needs at most 1 w / tape 

squares for this process (this is essentially the AC’E(S(llr )) is cloq;yrf 

under noneractlig homomorphism for S(n)> H ax.). U 

A few corollaries of Theorem 5.4 follow, letting ST~C be thr:: family of 

one-way stack languages. 

II L. FINITEVISIT 5 NTIME(n ). 

.2. FINITEVISIT(ST;;CK) c, NTIIvtE(n ‘). 

It was shown in [2@] that if 9’ is a full se 

ay (& t- 1 )4mLi (k-Iasatf ) 

km $3 a one -way k-visit 



218 S.A. Greibach 

meorem 5.5. if A? is a full semiAFL whuse members are accepted by one- way 
one-heed nondeterministic mac&nes of type 9 in time T(n) and space S(n), then 
every member of k-VIS’l’i‘@?) (k-REVERSAL(s)) can be accepted by a two-way 
(k -I- I)-head (k-head) nondetermiinistic machine of type 33 in time nT(lz) (time T(rt )) 
and space S(n). 

COB-OM 5.5.1. Every member of k-VISIT(REGL) (k-REVERSAL(Z)) can be 
accepted by a nondeterministic (a 1 3p A 1)” head (k-head) finite state acceptor in Time n 2 
(time n). 

CoroM 5.5.2. Every member of k-VISIT(CF) (k-R.EVERSAL(CF)) can ba 
Lzsplted by a nondeterministic k-head pushdown st@re acceptor in time n2 (time n ). 

Cool& [34] showed that all languages accepted by mu’ltihead pda in polynomial 
time are in DSPACE((log2 n)2). 

Corollrary 5.5.3. FINITEVISIT 5 DSPACE((log2 n)2). 

emark. Arora and Sudborough [32] showed that CONTROL,(LINCFG, CF)s 
DSPACE((log2 n)2), while Erni [35] extended this to s(FINITERE- 
VERSAL(CF)). 

We hztie seen that under both the finite reversal and the finite visit restriction 
writing and nonwriting preset Turing machines hai ; the same power. Ciaarac- 
terizations were provided for k-REVERSAL(9) and k-VISIT(9’) in terms of 
operations or1 languages (Theorems 3.3 and 4.12) and control sets on grammars 
(Theorems 3.8 and 4.8). Both FIMI’EREVERSAL and FINITEVISIT are idem- 
potent operators on families of languages (Theorems 3.4 and 4.1); the proof for 
reversal bounds gives us the decomposition theorem 

-REVERSAL@-REVERSAL@?) = kr-REVERSAL&Y). 

ally we established hierarchy theorems which state that under fairly general 
~~t~~~~, if 5!? is nut closed under FINITEREVE 
easing the wun,ber of reversals or visits increases 

fsu reversals this followed Err;,a esta 
ile different arguments were 

r reversals also showed that in general visit unds are more power 
s. 



Some of these results have co 
method employed but 
Theorem 3.12 we show 
FINITEVISIT for any full AFL ,Y with Y f F 
that 3 does not have to be an AFL and the result s 
For visits we showed that i 
VISITS), then there is an 
k for all k. We cmjec~u 
that one should always be able to take k. = 3. 

No decomposition or padding theorem 
reversals in Theorem 3.3 and Lemma 

techniques could not be used to further strengthen the hierarc 
exact analogs of Theorem 3.3 and Lemma 3.9 are pro 

that nature uould be useful. 
One curious open question is the relationship between C 

and CONTROL(APG, ol%) = FINITEVISIT( It is CI 
(LDBG, 2) is contained in CONTROL(APG, 2): are they equal? 

CONTROL(APG, COKTROL(APG, 2)) = CONTROEjA 

A similar result cannot hold for LDBG since obviously LDB = CONTROL 
(LDBC : , REGL) is properly contained in CONT OL,(LDBG, REGL). It can be 
shown that for any full semiAFE A9 with 9 C_ CF, dnd any k I=- 1, 

CONTROLk(LDBG, 2) 5 CONTROL/&LDBG, 2). 

However, is ihere a full semiAF1, and a k 2 2 such tkt~ .‘Pd 

CONTRQL(LDBG, 2) but 

CONTRULk(LDBG, 2) -- CONTROL,(LDBG, Y’)? 

In Secsion 5, we listed several complexity results fcr X4 :TEVISIT< ??) In 
particulap. we could establish sgme of the s&m 
VISIT(CF) ?..!: for CF, namely, membership in DSPACE((I 
We have FINITEVISIT 5 9. It seems plausible 
FINITEV:SIT(C can be accepted det 
whether ??NIT SIT(REGL) i 

>PACE(log2 M) = N 



220 S.A. &&back 

[3] R,V, Book and S.A.Greibach, Quasi-realtime latrguages, Math. Systims Theoty 4 (‘1970) 97-l 11. 
[4] N. Chomsky, On certain fogma properties of grammars, Information and, Control 2 (195gj 

137-167. 
[5] R.W. Ehfi& and S.S+ YN, Two-way se+rential transductions and stack automata, Information and 

Control 18 (1971) 404-446. 
[6] C.C. Elgot and J.E. Mezei, On relations defined by generaliyzd fir.ioe automata, IBM J. &s. 

Develop. 9 (1975) 47-68. 
[7] P.C. Fischer, Th d t ft I-R kc ion of tape reversal for o&tine orc;c-tape turing machines, J. Comput. 

Sys&.m Sci. 2 (196G 136-147. 
[8] S. Ginsburg and S.A. Greibach, Abstract families of languages, in: Ginsburg, Greibach, and 

Hopcroft, Studies in Abstract Families of Lrmguages, Mem. Amer. Math. Sot. 87 (1969) l-32, 
[9] S. Ginsburg and S. Greibach, On AFL generators for finitely encoded AFA, J. Comput. System Sci. 

7 (1973) l-27. 
[lo] S. Ginsburg and S.A. Greibach, Prinsi@ AFL, J. Comput. System Sci. 4 (1970) 308-338. 
[ll] S. Ginsburg and E.H.Spanier, AFL with the semilinear property, J. Comput. System Sci. 5 { 197 1) 

365-396. 
[ 121 S. Ginsburg and E.H. Span&, Control sets on grammars, Math Systems Theory 2 (1968) 159-1’78. 
[ 13] S. Ginsburg and E.H. Spanier, Derivation-bounded languages, J. Comput. System Sci. 2 (1966) 

228-250. 
(141 S. Ginsburg and %.K. Spanier, Finite-turn pushdown automata, SIAM J. Control 4 (1966) 429- 

453. 
[IS] S.A. Greibach, chains of full AFL’s Math. System Theory 4 (1970) 231-242. 
(161 S.A. Greibach, Checking automata and one-way stack languages, J. Cornput. System Sci. 3 (1969) 

196-217. 
Cl71 S.A. Greibach, Control sets on context-free grammar forms, J. Comput. System Sci. (to appear). 
[18] S.A. Greibach, An infinite hierarchy of context-free languages, .T. Assoc. Comput. Mach. 16 (1969) 

91-106. 
[19] S.A. Greibach, Syntztic operators on full SemiAFLs, J. Comput. $ysrem Sci. 6 (1972) 30-76. 
1201 S-A. Greibach, Visits, cro: ses and reversals for nondeterministic orline machines, Information and 

Control (to appear). 
[21] J. Hartmanis, Tape-re versa1 bounded Turing machine computati!jns, J. Comput. System. Ser. 2 

(1968) 117-35. 
[22] A. Nerode, Linear Aur:omata Transformations, Proc. Amer. Math. Sot. 9 (1958) 54i!-544. 

!23] R.J. Parikh, O;I conter.t-free bmguages, J. Assoc. Comput. Mach. 13 (1966) 570-58 1. 
[24] M.O. Rabin and D. &zott, Finite automata and their decision problems, [BM J, Res. .Deveiop. 3 

(1959) 114-125. _ 

[25] V. Rajhch, Absolutely parallel grammars and two-way finite-state transducers, >. Cclmput. System 
Sci. 6 (1972) 324-342. 

j26J V. Rajhch, Bounded-crossing transducers, Information and Control 27 (1975) 329-335. 
1271 F. Rodriguez, Une: double hierarchic infinie de Iangages verifiabtes, Reu. Franctzise Automat. 

Informat. l4!echer& Ophationnelk Ser. R-l 9 (1975’) 5-20. 
[23] R. Siromor,ey, Finite-turn checking automata, .I. Comput. System Sci. 5 (1971) 549-559. 
1291 R. Siromoney, On equal matrix languages, Information and Control 14 (1969) 135-15 1. 
[ZO] I. W. Sudborough, A note on tape-bounrfed complexity classes and linear context-free languages, .?. 

Asssc. Cbmput. Mach. 22 (1975) 499-500. 
iZZ] C f Wail&lxx, Left-derivation bounded O-inguages, J. Cumput. System Sci. $ (1974) 1-7. _ _ 
[32] A. Arora and IX. Suitborough, On languages log-tape reducible to context-free languages, P;roc. 

1976 Confi Information Sci. S:~ms.. 8a3timore, MD (April 1976) 27-32. 
1333 I%. Bo& SimpIe repzesentatioas o,i certain ciasses of languages, J. Assoc. Compw: Mach. (to 

Vpe~). 
E34j S. Cook, Path systems and language recfr.gr,rition, Proc. 2nd Ann. ACM Symp. Theory Com~ut., 

Northampton, MA (May 1970) 70-72. 
53% W. Emi, Some further languages log-taipe rs&<ible to corlt.ext -free languages, Report # 45, 

Lnstitut fur Angewandte Informatik und Formale Beschreibur ;sverfahren, Universit& Karlsruhe 
(November 1976); also Ph.D. dissertation, UC,; .zrsit$t Marfsruh#l. 



One way fbite visit automata 221 

[36] S. Ginsburg, J. Goldstine, and S. Greibach, Uniformly erasable AFL, J. Comput. System Sci. IO 
(1975) 165-182. 

[37] O.H. Ibarra, Controlled pushdown automata, Informatiort Sci. 6 (1973) 327-342. 
[38] N.A. Khabbaz, Control sets on linear grammars, information and Corrfrol 25 (1974) 200-22 1. 
[393 N.A. Khabbaz, ,4 geometrical hierarchy of languages, J. Comput. Sysivm SC,‘. 8 [!374) 142-157. 
[40] F. Klingenstein, Structures of bounded languages in certain families of languages, Ph D. thesis, 

University of California at Berkeley, CA (1975). 
[41] I.H. Sudborough, On the complexity of the membership problem for sor!~ extensions or context- 

free languages, Int. .7. Comput. Math. (to appear). 
[42] D.I. K’el, Two-‘way a-transducers and AFL, J. Comput. System Sci. PO (1975) 88-109. 
[43] J. Engelfriet, E.M. Schmidt and J. van Leewen, Stack machines nnd classes of nonnested maero- 

languages, Technical report. 


