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Abstract. A one-way preset Turing machine with base L is a nondetermiistic on-line Turing
machine with on: working tape preset to a member of L. FINITEREVERSAL(%) (FINITE-
VISIT(Z)) is the class of languages accepted by one-way preset Turing machines with bases in ¥
which are limited to a finite number of reversals (visits). For any full semiAFL £, FINITERE-
VERSAL(Z) is the closure of ¥ under homomorphic replication or, equivalently, the closure of
%" under iteration of controls on linear context-free grammars while FINITEVISIT(Y) is the
result of applying controls from & to absolutely parallet grammars or, equivalertly, the closure of
Z under deterministic two-way finite state transductions. If ¥ is a fuli AFL with ¥#
FINITEVISIT(Y), then FINITEREVERSAL(Y)# FINITEVISIT(Z). In particular, for one-
way checking automata, k + 1 reversals are more powerful than k reversals, k + 1 visits are more
powerful than k visits, k visits and k + 1 reversals are incomparable and there are languages
definable within 3 visits but no finite number of reversals. Finite visit one-way checking automa-
ton languages can be accepted by nondeterministic multitape Turing machines in space log; n.
Resvits un finite visit checking auomata provide another proo¢ that not all context-{ree languages
can be accepted by one-way nonerasing stack automata.

1. Introductior:

Onc of ti*e complexity measures studied for both genera’ Turing machines ard
partic:lar types of machines such as checking automata and pushdowu store
machines is the so-called reversal complexity [1, 7, 14, 18, 21,27, 28]. There are
differer.> measures which are sometimes lumped together under this term—the
number of times the working tape head changes direction, the nuinber of times the
boundary between working tape squares is crossed or the number of visits to a
square. For nondeterministic machines with more than onc working tape (not
counting the input tape), the question is irrelevant unless time restrictiors are
mpos~d (see [33]) because even restriction to two reversals per tape vields the full
power of a Turing machine [1]. It was shown in [20] ihat for nondeterministic
machines with a two-way input tape and one working tape and any bounding
function T'(n), a bound of T(n) on reversals, crosses or visits yields the same power
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up tp a linear factor—the power of a T'(z:) iog, n space bounded mul!titape Turing
machine.

Tn this paper we concentrate on studying the application of a finite bound on
reversals, crosses or visits to machines with a one-way input tape and one working
tape. The model we use is a generalization of a checking automaton [16] called a
preset Turing machine. A (one-way) preset Turing machine with a base language L
is a machine with a one-way input tape and a working tape whose initial contents are
“preset” to any member of L. If L is regular the machine is regular-based, while if L
belongs to a family of languages %, the machine is #-based. The machine is
nonwriting if it is not allowed to write on its working tape. Clearly a nonwriting
regula--based machine can be regarded as a checking automaton. We always
assume that the base % is a full semiAFL."

If a preset Turing machine is restricted to a finite number of reversals, crosses or
vicits, we call it a finite reversal, finite cross or finite visit automaton. Here we show
that finite cross and finite visit automata are equivalent in power but finite reversal
automata are less powerful. In both cases, the writing and nonwriting variants are
equivalent in power.

In Section Z we give our basic definitions and study the relationship among
reversals, crosses and visits and writing and nonwiiting machines. We let k-
REVERSAL(¥) be the family of languages accepted by ¥-based k-reversal
bounded machines and

FINITEREVERSAL(Z) = k-REVERSAL( #);
- :

the other families are defined similarly. We show that k-REVERSAL(Y) is equal
to the family of languages accepted by £-based k-reversal bounded nonwriting
machincs and k-VISIT(ZX) = k-CROSS(¥) is equal to the family of languages
accepted by ¥-based k-visit bounded nonwriting machines. Thus in particular
k-reversal or k-visit bounded on-line one tape Turing machines are equivalent to
one-way checking autcmata with the same bound.

Section 3 concentrates on FINITEREVERSAL(Z). We give two characteriza-
tions of FINITEREVERSAL(Y) which show that i: is (as one would ezpect) an old
friend, tie closure of £ under homomorphic replication (cf. [11, 19]) and,
equivalently, the closure of £ under iteration of controls on linear context-free
grammars (cf. [17]). These characterizations yield the decomposition theorem

k-REVERSAL(r-REVERSAL(%))= kr-REVERSAL(¥)

which s2rves as a “padding” or “translational” lemma for hierarchy results. We
conciude the section with the general hierarchy theorem that whenever ¥ #
FINITEREVERSAL(Y) then k+1 reversals are strictly more powerful than k
reversals. The same arguments show that FINITEREVERSAL(Y)# FINITE-
VISIT(Z) for any full AFL % such that % # FINITEVISIT(¥). So in particular,

! Formal definitions of full semiAFL’s and AFL’s appear in Section 2.
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finite visits on a one-way checking automaton yield more than finite reversals,
unlike the situation in the two-way case.

in Section 4 we concentrate on finite visit automata. We first show that
FINITEVISIT(Z) is an icempotent operator on £ by demonsirating that

k-VISIT (r-VISIT(®)) < kr-VISIT(Z).

Next we establish a grammatical characterization of FINITEVISIT(Y) in terms of
control scts on absolutely parallel grammars {25] as well a< an operato: charac-
terization, and as a consequence show that if ¥ has the Parikh or semilinear
property [23] then so does FINITEVISIT(%). Finally we give a strong hierarchy
theorem for finite visit checking automata—=#k + 1 visits are strictly more powerful
than k—and two weak general hierarchy theorems for FINITEY/ISIT(¥). App:. -
cation of these techniques gives an alternative proof that not all context-free
languages are one-way nonerasing stack languages.

In Section 5 we give various complexity results for FINITEVISIT(REGL) and
FINITEVISIT(CF). Some are drawn directly from the two-way case—e.g.,
languages in FINITEVISIT(REGL) can be accepted nondeterrainistically in space
log; n and langnages in FINITEVISIT(CF) deterministically in polynomial time.
Others use the fact that one-way finite visit automata can be made to accept in
linear sime and space; thus, e.g., languages in FINITEVISI [(CF) can be accerted
nonde .erministically in realtime. These ideas can be combined with the charac-
terization of the two-way case via multihead automata, to show that languages in
FINITEVISIT(CF) can be accepted in polynomial time by nondeterministic multi-
head pushdown store automata and hence deterministically by Turing machines in
space (loga 1) .

Section 6 summarizes the results and gives some open problems.

2. Visits, crosecs and reversals

In this secdon we present our formal de finitions and establish some of the bas'c
connectioas among finite visit, finite reversal, and finite cross automata. Since we
are inter :sted here only in the one-way case, we modify slightly the definitions in
[20] to 1aake them more convenient for our present purposes.

First we define one-way (on-line) preset Turing machines and their compu-
tations.

Definition 2.1. A one-way preset Turing machinz is a tuple A = (K 2 178, g4, FL 1)
wheie X is a finite set of states, X is a finite inpus alphabet. {15 a finite working
alphabet, g in K is the initial state, F < K is the set of final or accepting states, L is

2 For a set of strings 8. $* iv the monoid generated by § under concatenation with identity - the
empty string, and §* = S§*.
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a language contained in I and called the base of M and the transition function 6
maps K X (2 u{e})x I into the subsets of K X I'x{(, 1, —1}.% A transition (q', B, j)
in 5{(g, e, A) is called an e-rule or e-transition and if M has no such transitions it is
e-free. A transition (q', B, j)in 8(q, a, A) with A # B is a write and if M has no such
transitions it iS nonwriting. A transition (q', B, 0) ‘n 8(g, a, A) is a standstill tran-
sition and if M has no such transitions it is nonresting. If foreachqin K and Ain I
either #6(q, e, A)<1 and &(q, a, A)=0 for every a in 2 or 8(q,e, A)=90 and
#6(q, a, Ay<1 for every a in X, then M is deterministic.®

Informally, (¢', B, r) in 8(q, a, A) means that for state g, working tape symbol 4
and input a, M can change state to q', overprint A with B, advance the input for
a # e, and move the working tape head in direction r, where as usual 0 means no
move, 1 means right and —1 means left. During an e-rule, M neither consuits nor
advances the input tape. Computations start in the initial state with the input head
on the ieftmost symbol and working tape set to some string in the base with the
head on the leftmost square.

Acceptance means entry into a final state wita the input head fallirg ff the right
of its tape and the working head falling off either the right or the left of its tape.
This is formalized in the next definition.

Definition 2.2. An instantaneous description (ID) of one-way picset Turing
machine M =(K, 3, T, 8, qo, F, L) is a tuple (q, w, y, i) with ge K,we X* yel",
Osgs§y|+l.4. It is initial if q=qo, yeL and i =1 and accepting f ge F, w=e¢e
and either i =0 (left exiting) or i =|y|+1 (vight exiting). If (¢, B, j}€8(q, a, A)
and w=aw', ae3Zule}, y=y'Ay", i=|y'A|, and 0</+j<|y|+1, then we
write

(g.w,y,iY-(q',w',y'By", i+)).

We et & be the transitive reflexive closure of the relation . We call a sequence of
relations among ID’s Iy I, - - - - - I, a computation for input w with working tape
y if Io=(qu, w, y, 1); if I,, is accepting, it is an accepting computation, left exiting or
right exiting as I, is. The language accepted by M is

L{M)={weZ*|3 accepting computation for w with w::ie tape y in L}

Now we must define the number of visits, reversals and crosses of a computation
as well as some useful additional technical ierms.

* For a finite set S, #S is the number of members of §.
4 i .
For a word w, {w| is the length of w.
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Definition 2.3. Let Iy~ ;- -+ I, be a computation in machine M with each

I; =(61i, Wi ¥i, 5i) and m = IYO| = |Y1| == |yn|- For 1 <j<m, the number of visits
to square j is

#{i l §i = .’}7
while the number of crosses of boundary j is
#lilsi=j,sia=j+ 0+ #{i|s;=j+1,s. =]}

The comgputation is k-visit bounded if no square is visited more than k& times and
strictly k-visit if every square is visitca exactly k times; it is k-crossing bounded if no
boundaryv is crossed more ‘han % times and strictly k-crossing if every boundary j
for 1<j=m- 1 1s crossed exactly k times. A reversal occurs at I; if s; # s;+1 and
there is a j<i—1 such that s, =s; for j+1<u </ and s;.;=s; The number of
reversals during the computation is

1+ #{i | areversal occurs at [;}.

If this numter is less than or equal to k, the computation is k-reversal bounded. A
bounce occurs at I; if s;,=s;.> out s;4,#s;; if there are no bounces then the
compr.tation is bounce-free. The computation is full sweep if whenever a reversal
occurs at I, s; = 1 or s; = m. The computation is right touching if for some i, s, = m.

The number of reversals is set i Definitic: 2.5 at 1 more than thc number of
times the working head changes ..s direction: this is done so that we count sweeps
through the working tape, a count more compatible with visits and crosses. A full
sweep computation reverses the working head only at the ends of the working tape.
A right touching computation must visit the rightmost working tape square and
hence must visit each square at least once. A bounce-free computation does not
shuttle back and forth between adjacent squares which could make the number of
crosses large r than the number of visits.

Definition 2.4. A preset Turing machine M is k-visit bounded (respectively, k-
crossing bounded, k-reversal bounded) if for each w in L(M) there is a k-uvisit
bounde1 (respectively, k-crossing bounded, k-reversal bounded) accepting compu-
tation ior w. It is strictly k-visit (respectively, strictly k-crossing, strictiv k-reversal
bounded) if every computation is k-visit bounded {respectively, k-crossing boun-
ded, k-reversal bounded) and every accepting computation is strictly k-visit
(respe: tively, strictly k-crossing, has reversal number k). If for any k= 1L M s
k-visit bounded (respectively, k-crossing bounded, k-reversal bounded) then M is a
finite visit automaton, (respectively, finite crossing automaton, finite reversal
automaton) abbreviated foa (respectively, fra, fra). If every accepting computation
of M is right touching (respectively. bounce-free. fu'l sweep). then M ois righ
touching (respectively, bounce-free, jull sweep).
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Now we can define the classes of languages accepted by these machines. The
classification specifies the bound involved and the family of languages to which the
base language belongs. That is. if L. is the base of preset Turing machiine M, then we
call M “L-based” and if L belongs to a family of languages £, we extend the
notation to call M “%-based”. All our machines below are assumed to be one-way.

Definition 2.5. For any family of languages % and integer k =1, let
k-VISIT(¥)={L(M)| M is ¥-based and k-visit boundedy},
k-CROSS(ZL)={L(M)| M is £-based and k-crossing bounded}, and
k-REVERSAL(Z)={L(M)| M is ¥-based and k-reversal bounded}.

When we take the union over all finite bounds k, we use the designation FINITE.

Definition 2.6. For any family of languages %,
FINITEVISIT(L)={L(M)| M is an ¥-based fva},
FINITECROSGS(Z)={L(M)| M is an ¥-based fca}, and
FINITEREVERSAL(Z)={L(M)!| M is an ¥-based fra}.

Sometimes one also wants to restrict attention to nonwriiing or deterministic
machines. This is done by adding NW or DET to the family name. Thus k-
DETVISIT(Y) is the class of languages accepted by k-visit bounded #-based
deterministic machines; k-NWREVERSAL(Y) is the family of languages accepted
oy k-reversal bounded £-based nonwriting machines while DETNWFINITE-
CROSS(&) is the class of languages accepted by £-based deterministic nonwriting
finite crossing automata.

We shall also have occasion to regard a preset Turing machine as an operator on
its base and thus families like k-VISIT(Z) as operators on £. We shall indicate
iteration of this operator by a subscript. So

k-VISIT(Z) =%,
k-VISIT(£)= k-VISIT(Z)

andforn=1,
k-VISIT, .1(£)= k-VISIT(k-VISIT, (£)).

We define k-REVERSAL, (¥) and k-CROSS,,(.#) similarly.

We will be particularly interested in the regular-based machines. A regular-
based machine is equivalent in power to an on-line one working tape Turing
machine; the simulations involved preserve the number of visits crosses or rever-
sals [20]. Similarly, a one-way checking automaton (see [16] for definition of a
checking automaton) can be simulated by a one-way nonerasing regular-based
machine without affecting the number of visits, crosses or reversals. The obvious
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simulation of a nonwriting regular-based machine by a checking automaton ap-
pears to increase the number of visits or crosses by one, but can be modified to
preserve the number of reversals. Further discussion appears ir. [20]. Thus results
for k-visit or k-reversal regular-based machines transiate inty results for k-visit or
k-reversal on-line (one working tape) Turing machines while those for correspond-
ing nonwriting machines translate into facts about checking automata. Notice that
k-reversal bounded checking automata in this sense are strictly more powerful than
those of Siromoney [28] which only sweep from left-to-iight on the working tape.

We shall usually restrict our families of base languages to those having certain
closure properties.

Definition 2.7. A full semiAFL is a family of languages containing at least one
nonempty e-free language and closed under union, homomorphism and inter-
section with regular sets’; a full semiAFL closed under Kleene + is a full AFL°
For a family of languages %, the least full semiAFL (full AFL) containing % is
designated M (£) (#(2L)); if £ ={L}, we write .M (L) (¥(L)) and call it a full principal
semiAFL (full principal AFL).

Two additional classes of operations we shail have occasion to use are the
a-transductions and the substitutions. :

Definition 2.8. An a-transducer is a tuple M =(K, X, A, H, q,. F) where K is a
finite set of states, goe K, F < K, X is a finite input alphabet, 4 is a finite output
aiphabet and H is a finite subset of K x X *x 4 *x K. An ID of M is any member of
KxI*xa* 1If (quw,y) is an ID and (q,u,v,q')e H, then we write
(g, uw, y) = (gq', w, yv). The relation & among ID’s is the transitive reflexive ex-
tension of . For v e 2 7,

M(:)={v |3 € F, (@0, w, ) (g, €, )},
and for a la \guage L,
M{L)={v|3weL,ve M(w)}.

If for each (g, u,v,q9') in H, |u|=|v|. then M is nonincrcasing. 1f H<Z
KXx3I>»A*xK,F=K, and for each g K, a e X, there is cactly one {g. a, r, g') in
H, ther M is a general sequential machine (gsm).

Intuiively, an a-transducer is a nondeterministic o~ -way fimte state transducer
with a~cepting staies; output is “‘legal”™ only when the machine is in an accepting
state.

A language is e-free if it does not contain the emnpty string e.
® The cveration taking L intc L" is called Kleene +.



182 . . . SAGreibach

“We shall use -the fact that every full semiAFL is closed under a-transducer
mapping and, more strongly, is characterized by union and a-transducer mapping
[8, 10]. That is, for any familv ~f !anguages ., containing ai least onc nonempty
‘lan‘guage, , ;

@ =MLY UML) L., LeZ,

S " ‘ M, ..., M, are a-transducers}
and for a language L,

ML)={M(L)| M is z.. a-'rinscicer}.

Prop_prties of semiAFL’s and AFJ. s a1« 2 {ound in [8, 10]; a-transducers are also
described in [6].

Definition Z.9. A substitur»» r cn = rinite alpkabet I takes each a in I into a
language 7(a). We eriend 7 to words by

7(e)={e}

and

T(xy)=r(x)r(y)
and to languages L by
r(L)={u|3weL,ucr(w).

If r(a)is in & for each a in X, then 7 is a:- ©° sub;sirntion. For families of languages
£ and &% the family of languages obtainzd by substtuting members of &, into &,
is

£16%,={r(L)| Le%, 7 is an F,-substitution}.

If Y62, <%, then £ is closed under substituiion by ¥, and if £,6.¥ < %, then £ is
closed under substitution into &£,. If L6 < &, then 2 is closed under substitution.

Full semiAFL’s are closed under regular svistitution (substitution by regular
ianquages) while full AFL’s are also closed untier substitution into regular sets [8,
10].

Standard a-guments show that our far- | :s reflect properties of the base family
and also possess a few more. The proofs foliow lines in [10, 16, 18] and will be
omitted.

Theorem 2.10. For any k =1 aiud any full semi AFL %,

(1) k-REVERSAL(Z) and k-VISIT(Z) are full semi AFL’s,

{(Z) FINITEREVERSAL(.?) and FINITEVISIT.¥) are full semi AFL’s and are
closed under concatenation if £ is so cleszod, and
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(3) if Lis a full AFL. so is FINITEVISIT(Y) and if ¥ is closed under substitution
so is FINITEVISIT(%).

Now we want to see that for these finite bounds there is no difference between
the writing and nonwriting variants, so that all our results are really results on
checking automata.

First notice that if M is k-reversal bounded we can add endmarkers to the
working tape and imagine the tape as divided intoc k tracks. Track / contaius the
working tape alphabet symbol and the action to be taken on a square during sweep
i. Also track i contains a little mark indicating the rightmost (for i odd) or leftmost
(for i even) symbol seen during sweep i. This nondeterministic alteration of the
working tape can obviously be done by an a-transducer and so we can get a new
base language within the same full semiAFL. Then we can simulate M by a
machine which first reads track 1 from left-to-right, attempting to perform the
operations inscribed therein; if any are illegal it blocks. If it reads the r.ght mark it
runs down to the right endmarker, reverses and returns to the special mark. Now it
reads track 2 from right-to-left again performing the indicated operations and
blocking if this cannot be done. This time the special mark in track 2 tells it to run
to the lef: endmarker and reverse and return to the mark and start on track 3. This
continues until either a block occurs or a whole computatior has been simulated
and the machine can accept or reject as appropriate. Details are left to the reader;
we state the relevant result.

Lemma 2.11, Let &£ be a full semiAFL  Ler M be a k-reversal bounded, S -based fra.
There is a sirictly k-reversal full sweep nonwriting deterministic £-based fra M with
L(M)=L(M,.

Observe that if M is a nonresting k-crossing bounded fca it is automatically
k-visit baunded since every new visit to a square means crossing some boundary to
the squa: 2. Bv padding out the working tape with dummy symbols we can force the
machine o bc. nonresting while by adding endmarkers and a special mark it can be
made right touching. This is discussed in [20] for two-way machines but. since input
head mat'on does not affect the construction, the proof carries over for on-line
machines.

Lemma 2.12. Let £ be a full semi AFL. Let M be a k-crossing bounded, 2#'-based fca.
There is a k-visit bounded, k-crossing bounded, ¥-based, nonresing and right
:ouching fva M with L(M)=L(M).

If a machine has bounces, each bourice from square / to square i + and back will
increase the number of visits to i by 1 but the number of crosses of boundary 7 by 2.
This is the only way the number of crosses can exceed the number of visits overall.
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Hence a bounce-free k-visit bounded machine is also k-crossing bounded. Again
tire conversion to a bounce-free machine mentioned in [20] for the two-way case
applies to the on-line case also.

Lemma 2.13. Let £ be a full semi AFL.. Let M be a k-visz‘t bounded, ¥-based fva.
There is a k-crossing bounded, £-based, bounce-free fca M with L(M)=L(M).

The conversion from k-visit bounded to nonwriting (k + 1}-reversal bounded
machines in [20] definitely does not go over for on-line machines. Indeed, we shzll
see in the next section that -

FINITEREVERSAL(Z) # FINITEVISIT(¥)

for any full AFL. £ not closed under the finite visit operator (¥ =FINITE-
VISIT(Z)). However the construction in the proof of Theorem 2.1 of [20] of a
nonwriting deterministic strictly k-visit machine from a nonresting right-touching
k-visit mackine does not involve input head motion and so still works. The idea is
again to divide the working tape into k tracks; the trick is to show that the k-visit
machine can find its right track—i.e., know which visit to a square it is simulating. A
similar construction appears in Section 4 where we show that

FINITEVISIT(FINITEVISIT(Z)) = FINITEVISIT(¥).

Lemma 2.14. Let & be a full semiAFL. Let M be a k-visit bounded, ¥-based,
nonresting right touching fva. There is a strictly k-visit, £-based, nonwriting deter-
ministic foa M with L(M)=L(M).

We can summarize our relationships as follows.

Theorem 2.18. Let £ be a full semi AFL. Forany k =1,
(1) k-REVERSAL(%)= k-DETNWREVERSAL(Y), and
(2) k-VISIT(ZL)=k-CROSS(¥)
=k-DETNWVISIT(Z; = k-DETNWCROSS(%).

Using this theorem as our justification we shall speak of just &-REVERSAL(Y)
or k-VISIT(Z) and let our machines be writing or nonwriting as convenience
dictates. We shall not bother to restate results for i-NWREVERSAL(¥), etc., or
for the crossing bounded families like k-CROSS(¥#). The conversion to a deter-
ministic machine is of less significance than it might seem: since a preset Turing
machine always has a choice of working tapes, the restriction io determinis*ic action
on one of these tapes is value.ess.

We first turn to FINITEREVERSAL(Y) as most facts on this family can be
obtained by playing with known results on homomorphic replication [11, 19], and
control sets on linear coniext-free grammars [17].
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3. Finite reversal autounaia

In this section we characterize FINITEREVERSAL{¥) as the closure of ¥
under homomorphic replication and also as the result oi iicraung controls on linear
contex*-free grammars starting with control sets in .. We establish a decomposition
theoreni

kr-REVERSAL(Z) = k-REVERSAL(-REVERSAL(%)),

which is useful in providing padding or translation techniques for our hierarchy
results. Finally we give some syntaciic lemmas and conclude the section with the
general hierarchy theorem that whenever ¥ # FINITEREVERSAL(Y), then
k +1 reversals are strictly more powerful than k reversals and that if 27 is = fuli
AFL not closed unider FINTTEVISIT, then

FINITEVISIT(Z) # FINITEREVERSAL(Y).

First we give an ‘‘algebraic”, i.e., operation-theoretic, characterization of k-
REVERSAL(¥) in terms of replications.

Definition 3.1. For k = 1, a language L and a symbol ¢ not appearing in a3 word of
L, let

fe(L,1)=Le,
f-(L, 2k)={(wewRc)* |w e L},
and

foll, 2k + 1) = {(wewRc Y we | we L}

For most purposes the identity of the symbol ¢ is irrelevant so we simply drop it
and write f(L, k) rather than f.(L, k). This operation is similar to the operations of
homom orphic replication and of duplication.

Definitior: 3.2. Let p be a function from {1, ..., n} to {1, R}, L be a language and
hi, ..., %, homomorphisms. The operation

glo, L ke, . b)) ={hiw® ™y b ) we L)

is a hormomorptic replication of degree n; if each pli)=1, 1t is a duplication. If
p(i)=1for i odd and p(i)= R for i even, it is an alternating howomorphic replica -
tion of degree n; in this casc, we aise write p =p, and call p, the alternating
replicai .on of degree n. For a family of languages 7, let

&L,={gln, L hy,...,h.)|Le% hy,...,h, homomorphisms}.

R _ R R
)

. R . . . 5
" We write e = e and for a symba! ¢, a = a; this notation is extended to words by (xy)” = v x" and

to languages L by L® ={w® | w = L. This operation is called reversal.



186 S.A. Greibach

Clearly, if p is of degree n, &, %,,,,s0 U, % =U, %,.

Obviously, k-REVERSAL(Y) contains every altzrnating hogpmomorphic repli-
caiion of degree k of members of £ Now we observe that this characterizes
k-REVERSAL(%).

Theorem 3.3. Let £ be o full semi AFL and k =1. Then
k-REVERSAL($)=%,, = M{f(L, k)| Le ¥}).

Proof. Clearly f(L,k)ek-REVERSAL(Y) whenever Le¥  and
g(pw, L, hy, ..., he) can be obtained as an ag-transducer mapping of f(L, %) for auy
alternating replication. Thus it remains to express members of <-REVERSAL(Y)
as alternating replications of members of . The proof follows lines of one in [17].

Let M =(K, 2, T, 8, qo, F, L,) be k-reversal bounded for L; in £. We can assume
that M is nonwriting, deterministic and full sweep. By padding the base language,
we ca1 also assume that M is nonresting. Further, we can assume that each word in
L, is of size at least 3.

For our new alphabet we use special symbols calied sigma symbols which
describe all the information needed about M’s actions on its k visits to a square.
For this proof, a sigma symbol is a new symbol of the form o =(A, a;y, ..., ax)
where Aer, each «;=(q; ai, qi, ;) and 8(q;, ai, A)=(qi, A, r;). Thus o encodes k
visits to a square with contents A. It is a middle sigma symbol if , = 1 for odd / and
r; =--1 for even i. It is an initial sigma symbol if q; = qo, @; = @;+1 for each even
i,r;=1 for each odd / and if k is even, r. =—1 and qi€ F. This represents the
leftmost working tape square. A last sigma symbol has a; = ;. for each odd i, and
for k even, r;=—1 and q; € F; this represents the rightmost working tape square.

Let Qi(s)=gq;, Qi(s)=qi and W(s)=A. For a middle sigma symbol o, let
hi(r)=a. For o initial, let h;(c)=a; for i =1 or i even, and h;(0’) = € elsewhere.
For o last, let h;(¢)= a; for i odd and h;(c)=e for i even. If we assume that M can
be in g, only initially, and can never leave a state of F, then the sets or middle,
initial and last symbols are mutually disjoint and hence the #4; are well defined.

We must also make sure that two sigma symbols can encode adjacent squares.
Call (o, o') consicternt if for each oid i, Q/(0)= Qi(c') and for each even i, Q(c') =
Qi{c). Then the language

R={oy - 0,|m=3, 0, initial, 0., last, o; middle sigma
symbol, 2<i<m -1, and (0, 0;+,) consistent, 1 <i<m —1}

is regular. We can consider ¥ as a homomorphism on the vocabulary of sigma
symbols. Thus L, = W' (L;)nR is in &£ Likewise, each k; defines a homomor-
phism acting on L, and morecver one which is nonincreasing so h:(w™)= (h:(w))*.
A string in L, corapletely encodes a computation of M so if we “unfold” the string
is represent all & sweeps and decode the inputs read at each move, we get a word in
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L(M) and all words of L(M) can be obtained in this fashion Thus ! (A)=
g(pk’L2$h19"~7hk)‘ D

Corollary 3.3.1. Let £ be a full semi AFL and k=1. Then every member of
k-REVLRSAL(Y) can be expressed either as g(pi, L, hy, ..., hi) where L € ¥, and

each h; is a nonincreasing homomorphism or as M(f(L,k)) for Le ¥ and M a
nonincreasing gsm.

Proof. In the construction above, the h; were obtained as nonincreasing. Then
gl L hy, ..., h)can be obtained from f(L, k) by a nonincreasing gsm. [

Corollary 3.3.2. For any jui ;emi AFL &, FINITEREVERSAIL{Z) is the closure of
L under homornorphic repiication.

Corollary 3.3.3. The family of finite reversal checking automaton languages is the
closure of the regular sets under homomoithic replication.

Remark:. Corollary 3.3.3-was roted without proof in ['9] where it was observed
that the equal matrix ianguages or finite turn checking automaton languages of
Sirom« ney [28, 29] are actually the closure of the regular scts under duplication,
not replication. It was also showi by Klingenstein [40].

Theorem 3.3 gives us at once a “‘translational” or ““decomposition’ thcorem.

Theer .m 3.4. Let &£ be a full semi AFL and lei k, r = 1. Then
kr-REVERSAL(Y) = k-REVERSAL(-REVERSAL(¥)).

Proof. rirst rnntice that f.(L. kr) can be obtained from L' = f;(f.(L, r), k) by simply
turning aca block cdc, cd or each d alone (not adjacent to -'s) into a ¢. Hence
Theoren: 5.3 yields

kr-REVERSAL(¥)< k-REVERSAL(-REVERSAL(L)).

On the other hand, any member of i-REVERSAL(~REVERSAL(Y)) can be
represen-ed as

for u,...., u, vo,..., Ux—; nonincieasing homomorphisms. and L, in . For 0=
i<k-—-1and 1<j=<r, define the hcmomorphism 4, .; by h;,.; = v, for [ even and
hirs; = vilty+—jy for i odd. This def nes kr nonincreasing homemorphismes. Notice

. . . . R (S
that since u; and v, are nonincreasing homomorphisms, ¢ (00 )7 )= o (e, 0w 7)),
Thus L=glow» L1, Ay, .o By So Lis in A-REVERSAL(Y )
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Corollary 3.4.1. For any full semi AFL % and any k =2,

S FINITEREVERSAL(,Z’) = U k—REVERSAL,(;’f )-

Theorem 3 3 also gives us a grammatlcal characterization of FINITEREVER-
SAL(E) in terms of control sets on linear context-free grammars. Let us give the
formal definitions for future use.

Definitior 3.5. A context-free graﬁimar is a quadruple G =(V, X, P, S) where Visa
finite vocabulary, ¥ < V,Se V —Z and P is a finite set of productions of the form
Z->y,ZeV--X,yeV* For a productlon p: Z—>y in P, uve V*, we write
uZv=>uyv and if ueX*, uZv =>uyv and uZv => uyv. We let =>(==>) be the
transitive reflexive closure of = (@) and extend = by letting u, ——# u3 whenever
Uy > uz and u, = u3. The language generated by G is

LUG)={weZ* SDw),
and the language gencrated by G with control C is

L(G, C)={weZ*|3yeC, S>w).

For a set § of symbols we shall let #s(w) be the number of occurrences of
members of § in w; if S ={a}, we write #,(w).

Definition 3.6. A context-free grammar G =(V, X, P, S) is regular if every pro-
duction of P is of the form Z->y for y in I*(Vule}). It is linear if every
production of P is of the form Z -» v for #v_s(y)<1. It is nonterminal bounded if
there is a k such that whenever .7 =y, then #y— > (y)<k. It is left derivation
bounded if there is a k such that whenever Z =L@y then #v_s(y)<k and
derivation bounded if there is a k such that for each w in L{G) there is a derivation
$=>yi1=>- =y, =>w with #y_5(y;)s k for 1<i=r. Each subtype of contexi-
free grammar generates a language of the same typ=. We denote the families of
context-free (respectively, regular, linear context-free, nonterminal bounded, left
derivation bounded, derivation bounded) languages by CF(REGL, LINCF, NTB,
LDB, DB) anrl denote the cor:espondiag families of grammars by adding G to the
end of the name.

. . L* » . . .
A derivation u == v is a left-to-right derivation; we place controls only on
left-to-right derivations. The various restrictions in Definition 3.6 are restrictions
on the number and placement of nonterminals. Linear context-free grammars have
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at most one nonterminal in any word derived from 5 while regular grammars are
linear ones in which the nonterminal must appear rightmost. Nonterminal bounded
grammars put a uniform limit on the number of nonterminals in any derived word
while left derivation bounded grammars limit only left-to-right derivations and
derivaticn bounded means that each word in the generated larguage has some
dzrivation obeying the nonterminal limit. Further properties of these families can
be found in [2, 13, 14, 18, 25, and 31].

We now give a general notation for the result ot applying controls from a family
& of languages to grammars from a family ¥ and for iterating the process.

Definition 3.7. For a family of grammars ¢ and a family of languages Z, let
CONTROL(Y, £)={L(G, ()| Ge ¥ Cc ¥}

Let
CONTROLy(Y, $H)=4¢

and for n =0, let
CONTROL,.1(¥%, £)= CONTROL(Y, CONTROL,(%. ¥))

and

CONTROL (%, ¥)= CONTROL, (¥, %).

Thus CONTRGL(LINCFG, CF) is the family of languages obtained by using
context-free languages to control left-to-right (i.c.. =) derivations in linear
context-free grammars and CONTROLL(LINCFG, CF) is the result of iterating

this process.

Theorem 3.%. Ler & be a full semi AFL. Then
2-REVERSAL(¥)=CONTROL(LINCFG, .¥)

and

FINITEREVERSAL(Y)=CCNTROL(LINCFG, .¥)
= CONTROL ((NTBG, 7).

Proof. In |17] it is shown that
CONTROL(LINCFG, ¥)=#({f(L.2)| Le #})= ¥,.
and

CONTROL (LINCFG. )= CONTROL ((NTBG, /)



190 S.A. Greibach

so iterating comtrols on linear context-free grammars is as powerful as iterating
controls on moni.ominal bounded grammars. The result is immediate from
Theorems 3.3 and 3.4. [

Corollary 3.8.1. The family of finite reversal checking automaton languages is

CONTROL(LINCI'G, REGL)= CONTROLL(NTBG, REGL),

the family of languages obtained by iterating controls on linear context-free or on
nonterminal bounded grammars starting with the regular sets.

We now wish to establish cur general hierarchy theorem for finite reversai
automata. We shall use established results on CONTROL,(LINCFG, %) and two
translational results, the following lemma and Theorem 3.4.

Lemma 3.9. Let £ be a full semiAFL. For any s=1,r=1, if f.(L,k+5s) is in
t-REVERSAL(Y), then

f(L,k+s+r)e(k+r+1)-REVERSAL(Y).

Proof. Let f.(L, k +s5)=L(M) for a strictly k-reversal nonwriting full sweep fra M.
Since s =1, in every accepting computation on wew=c. .., at least one w or w®
must be processed in one sweep without any reversal of the working tape head.

We construct a (k +r + 1)-reversal bounded fra M from M to accept f.(L, k +s +
r) as follows. The key is to get some copy of w or w " printed during the simulation
of M ; this copy can then be used to check off as many copies of w or w® as desired.

At the start of a computation, M guesses that sweep i of M will entirely process
w',te{l, R} and records (i, ¢) in its finite state control. It starts simulating M.
keeping track in its finite state control of which sweep M is on, the number of ¢’s
read as input to date and thus the number of w’s or w®’s, and whether w or w*® is
being read at each step. When sweep i arrives, M waits until w' is started and then
writes w’ on a second track in specnai “colors” surrounded by special barrier
symbols as it is processing w'. If w' is not completelv processed in sweep i, M
blocks. Otherwise it succeeds in writing down w' in correct order, though perhaps
with differently colored symbols in between (because there may be transitions on ¢
input); later, symbols not in w' can be ignored. Now A4 continues the simulation
until it finishes sweep k of M in an accepting state of M, having read k +s ¢’s and
no further symbols. If it gets this far without a block, M does not accept. Instead it
goes and finds the special colored copy of w' and locates the working tape head in
such a position that it now cav. read w if k +s is even and w® if k +s is odd. This
may at worst take an extra sweep. Then M simply sweeps back and forth r times
over w or w”, checking off the input. Thus M takes at most k +r+1 sweeps and
accepts f(L,k+s+r¢). O
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In view of Theorem 3.3, we can draw the following conclusion.

Lemma 3.10. Let & be a full semi AFL. If

k-REVERSAL(#)=(k +s)-REVERSAL(Z")
forany ", s =1, then forallr=1,

tk +r+1)-REVERSAL(#)= (k +s+r)-REVERSAL(%).
Proof. If

k-REVERSAL(Y) = (k +s)-REVERSAL(Y),

then by Theorem 3.3, f.(L, k +s)is in k-REVERSAL(¥) for all L in ¥. Hence by
Lemma 3.9, f.(L,k+s+r;is in (k +r+1)-REVERSAL(¥) for all L in . Since
k+r+1=k+s+r by Theoreun 3.3,

(k +s+r)-REVERSAL(Y) - (k +r+ 1)-REVERSAL(Y) U

Now we have the general hierarchy theorem.

Theorewa 3.11. Let £ be a full semi AFL with ¥ # FINITEREVERSAL(Y)
(1) For every k =1, k-REVERSAL(¥) < (k + 1)-REVERSAL(¥).
(2) %orevery k =2,n=1,k-REVERSAL,(¥)< k-REVERSAL, . ,(¥).
(3) For every k =2,n =1, k-REVERSAL, (%) is not closed under concatenation
and does not contain the closure of 2-REVERSAL(Y) under concatenation.
(4) FINITEREVERSAL(Y) is not a full AFL and does not contain the closure of
2-REVERSAL(Y) under Kleene +.
Proof. State:ments (2), (3) and (4) are shown in [17] for & = 2, since
2-REVERSAL(Y)= CONTROL(LINCFG, ).
By Theorem 3.4, if ¢t = Log, k then
2 -IKEVERSAL,,(¥)< 4&-REVERSAL, (&)< 2-REVERSAL s ().

Hence k-REVERSAL., (¥) cannot contain the closure of 2-REVERSAL(Z') under
concatenation and so is not concatenation closed. If

E-REVERSAL, (:#) = k-REVERSAL, . (¥),
then by Corollary 3.4.1,

FINITEREVERSAL(#)=k-REVERSAL (/)
= 2-REVERSAL 1)

a contradiction. This establishes {?) and (?).

e i . .
For a real numbcer r, 1r] =Max{{n <r | n is an integer}).
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Suppoese that
k-REVERSAL(Y) = (k +2)-REVERSAL(Y).
We claim that for all p =2,
k-REVERSAL(Y)== (k +p)-REVERSAL(Z).

It is true by hypothesis for p = 2. Suppose we have shown it for p. In L.emma 3.10,
let k +(p —2) play the role of k, s =2 and r=1. Then

(k+p+1)-REVERSAL(¥)=(k +p)-REVERSAL(Y)
= k-REVERSAL(Y).

Hence, by Corollary 3.4.1,

FINITEREVERSAL(Y)=\ p-REVERSAL(¥)
14
= (k+p)-REVERSAL(¥) = k-REVERSAL(Y),
4

contradicting (2).
Thus kREVERSAL(%)# (k +2)-REVERSAL(Y) for all Xk =1. Now suppose
that k-REVERSAL(Y) = (k +1)-REVERSAL(¥). By Theorem 3.4,

2k-REVERSAL(Z)=2-REVERSAL(k-REVERSAL(Y))
=2-REVERSAL((k + 1}-REVERSAL(Z3)

=(2F +2)-REVERSAL(Y),

a coatradiction. This establishes (1). [

Corollary 3.11.1. For one-way checking automata, k + 1 reversals are more powerful
than k reversais for each k = 1.

If & is a full AFL, then FINATEVISIT(Y) is also a full AFL, but if £#
FINITEREVERSAL(¥), FINITERE:VERSAL(¥) cannot be a full AFL. Hence
finite reversals are strictly less powerful than finite visits for on-line machines.

Theorem 3.12. If £ s a full AFL and & # FINITEVISIT(Z}, then

FINITEREVERSALY) ¢ FINITEVISIT(Z).

Coroilary 3.12.1. The class of finite reversal checking automaton languages i:
properly contained in the class of finite visit checking automaton languages.

Remark. Various special cases of the main results of this section have been noticed
repeatedly under different formulations: homomorphic replications, control sets,
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reversal bounded machines. For example, Klingenstein [40] established a version of
Theorem 3.3 for ¥ =REGL, and a much stronger version of Theorem 3.11(1)
involving the precise form of a replication function p:{1..... nt-={1, R} for the
cases £ =REGL and ¥ = CF. The former result will generalize to arbitrary full
semiAFL’s and it seems plausible that the latter might do <o aso Parts oi Theorem
3.11 were shown by Ginsburg and Spanier [11] ard Rodriguez [27] and, for
& =CF, by Ibarra [37].

Both Erni [35] and Sudborough [41] have noticed the connection between
CONTROL, (LLINCFG, ¥) and homomorphic replication (proven for general full
semiAFL £ in {17]) for the special case of &= CF. Khabbaz [38, 39] established

CONTROL, (LINCFG, ¥) ¢ CONTROL,.(LINCFG. ¥)

for the special cases ¥ = LINCF and ¥ =CF.

It was shown in [19] that if & is a concatentation closed full semiAFL not closed
onder homomorphic replication, then the closure of ¥ under homomorphic repli-
cation—call it {_J, &,— is not a full principal semiAFL nor an AFL, #(U, %) is
not closed under homomorphic replication and is not full principal and the smallest
full AFL containing £ and closed under hoinomorphic replication is not principal;
the assumption of concatenation closure is unnecessary. Similar obseryations were
made bv Ginsburg and Spanier [11] for ¢ = REGL and for ¥ == CF by Ibarra [37].

4. Finite Visit Automata

Now we concentrate on firite visit automata. We first establish a weaker (but
harder to prove) variant of Theorem 3.4, namely k-VISIT(r-VISIT(%)) is contained
in kr-VISIT(Z). This shows that FINITEVISIT(Y) is an idempotent operator on
families of languages. Next we establish a grammatical characterization of
FINITEVISIT(X) in terms of control sets of absolutely parallel grammars and as a
consequence show that if £ has the Parikh property so does FINITEVISII(Y).
Then, two svatactic lemmas allow us to establish a strong hierarchy theorem for
k-VISIT(RF GL) and a weak general hierarchy theorem. Finally, we use these
ideas to show that not all contcxt-free langrages are one-wav nonerasing stack
languages.

First ve show that

k-VISIT(r-VISIT(¥)) < kr-VISIT(Y).

The ke is to take the working tape of the r-visit machine, fold in the input accepted
by that machine, and then use this as the base for a kr-visit machinz.

Theorem 4.1, Let & be a full semi AFL, k,r=1. Then

k-VISIT(-VISTi(#)) < kr-VISIT(¥).
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Proof. We wish to show that L(M)e kr-VISIT() if M= (K, 3, T, 8,90, F,L,) is a
strictly k-visit nopwriting fva with a base L; in r-VISIT(Z). We can assume that
L, =L(M;) for M, =(K,, 21, I'1, 81, po, F1, L2) a strictly r-visit nonwriting deter-
ministic fva with base L; in &. We can also assume that M, is e-free for otherwise
we can substitute for an e-rule 6(q, e, A)={(g', A, i)} a rule reading a dummy input
d, 8(g,d, A)={(q’, A, i)} and then have M simply skip over any d’s read in its
working tape. We construct a new machine M, which will be Z-based and kr-visit
bounded and will accept L{M).

The general idea is that working tapes of M, will consist of working tapes of M,
with the input of M; wrapped around with suitable pointers for unwrapping.

As in the proof of Theorem 3.3 we use special “sigma” symbols to encode the
behavior of A, during its r visits to a square. However our coding is more
complicated. Here a sigma symbol is a symbol of the form

U=<A3 dls 122 PRI 1dra ar)

for Aely, each d;e{0,1,—-1}, each a;=(qy,asqi, ji)) for &i(q,a,A)=
{(qi, A, j:}}, a; € 2, with the additional restrictions that d, = —1, j, 5¢0, each d;.1 =;
and if j;=0, then gi+1=q;. If j,=1 it is a right sigma symbol (to encode a right
exiting computation) and if 7. =: —1 it is a left sigma symbol. Let 7(0)= A and for
1<i<r, Dio)=4, Qi(o)=q, Ci(o)=qi, gi(o)= a;, Ji(c) = j.. Let I'. be the set of
left sigma symbols and I' the set of right sigria symbols.

Cali a sigma ~vmbol o initial if Q:1(c)= po and each J;(c)€ {0, 1}, final if Q/(c)¢e
F; and last if Ji(o)e{0, —1} for each i #r.

In a sigma symbol o, h(o) indicates the contents of a square (which does not
change since M, is assumed to be nonwriting), £;{v) indicates the direction from
which the square was entered at visit i {1 for entry from the right, O for standstill,
—1 for entry from the left), g;(c) indicates the inpu: symbol read and Q;(o’) the state
at visit i, and Q/(o’) and J;(o) give the state change and working head change during
visit i. An initial symbol encodes a leftmost square, a last symbol encodes a
rightmost square, and a final symbol encodes the last square seen during an
accepting computation

Now we must define consistency of pairs of sigma symbols. Roughly speaking,
(o, o) is consistent if the iisted behaviors are consistent with o’ encoding the square
to the right of the square coded by o. Thus each right exit listed in o must agree
with each ieft entry in ¢’ and left exisis from o’ with right entries to o. First, the two
symbols must be either both right or both icft sigma symbois. Let 1 <j,< -+ <
Ju<v list exactly those i with Ji(o)=1and 1=<i;< -+ <, <r list exactiv those /
for which Ji(o')=-1. We must also have u=#{i|D;(g")=~-1, aud z-—
#{i | Di(a)= 1} and for right sigma symbols ¥ = v+ 1 aud for left sigma symbols
u =v. Then we need Qi(c")=- Q) (o) and Q,..{g")=C} , {o) for ISsp<u-1to
line up right exits from o, and Qj +.1(0’)= Qi(o’) for 1< p=<w to handle left exits
from o',
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Let ¢ and $ be new symbols. The sets
Ri={¢to, -+ 0.9% | each o; € I'r. o initial, o, last and final,

(o, o 1) consistent, 1 <is<m—1}
and

R,={¢o, " -+ 0% | cach o;€ I, o; initial and final, o, last

(i, oiv1) consistent for 1 <i<sm —1;
are regular. Hence L3 = ¢h ' (L2)$ N (RyUR,)isin &

The language L; is the base for M,. It contains the complete encoding of all
accepting ccmputations of M, aud no other computations. All M> need do is follow
these computations, simulating the actions of M on the input of M- and working
tape symbols which are the input symbols of M, encoded into the strings of L. Right
moves on the working tape of M will be simulated by advancing M,’s computation
one step and left moves by going back one unit of time in M,’s computation.

Let us sketch how this s accomplished. Suppose M, has a working tape y =
¢o1 - om3, each o; a siz ma symbol. In its finite state control M, has registers
containing the sigma symbol of y examined and the visit o that square of M,’s
comp .tation as weil as the current state of the computation of M. Initially M. starts
on o; with visit number 1 and simulates state q, of M.

At some point in time, let M, have its working tape head on ¢, with visit number
j simulating state g of M. It selects (if possibie) an action {g'. gj(0,), d) in
8(q, a, gi{(o)) for input symbol a (if @ €2 or without consulting its input tape if
a=e¢e), as it M were scanning working symbol g;(c;). Next M, will simulate M in
state ¢'. But first M, must find the next working tape symbol of M. If ¢ = 0, M docs
not alter its working tape head so M, remains in o; with visit number j =j+d.

If d == 1, M moves its working tape head right and so sees the symbo! input to M,
after g, ‘o). Let u = Jy(o;); this is the action of M,’s working tape head. If v = 0, M-
stays in o; v ith visit number j+1=j+d. If u #0, let

s=#{<j|J 7)=u}.

h

This means that visit j was the 5™ right exit from o; for u =1 or 5" left exit for
u =—1. Now M, moves iis working tape head to 0., with vis:{ nurber that vnique
v with

s=#{t<sv | Dfoin)= -1}

i.e., the v'" visit to o7y, is the s lef cutry for u =1 or right entry for u = —1.
If d = —1, M moves its working tape head leit and so sees the symbol input 1o A7,
just betore g;(o). Thus one essentially exchanges the roles ¢f 2 and 4 (entry and
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exit) in the above formula. Here let u = D;(0;). If u =0, M, siays in o; with visit
namber j+1=j+d. If u#0, let

s= #{t<j | Di(o:)= 1.
Now M, moves to o+, With visit number that unique v with
s=#{t<v|J(0i+.)=~v}

There is one other set of possibilities to mention.. It may not be possible for M, to
complete the action above bzcause i +u =0 or i + u = m + 1 in which case M, cither
moves left to ¢ or right to $. If the new state of ¢’ is not in F, M, halts and rejects
because M falls off its working tape in a nonaccepting state. If g’ € F there are three
possibilities, for all of which M, wili accept. To have i +u = m + 1, M, must first be
in o, with a visit number j such that either d=1 and Ji(o.n)=1 or d =—1 ana
Dj(om)= 1. The second case is impossible because o, is a last {rightmost) sigma
symbol and could never be entered from the right. in the first case we must for this
reason have j =r and o, both right sigma, and final. Thus A has an accepting right
exiting computation as does M. Now to have { +u = 0, M, must be in o; with a visit
rumber j such that either d == 1 and J;(01) = ~1 or d = —1 and Dj(¢;) = —1. Since o,
is initial, in the second case j = 1 so M has a icft exiting accepting computatior. and
left exits off the first symbol input to M. In the first case o; must be a left si=ma
symbol and j =r, so M and M, have left exiting accepting computations. In all these
cases, M, accepts.

Since M is strictly k-visit. the simulation cf M takes M, to each g;(o;) exactly k
times and there are r such symbols enccced per square of werking tape. Taus &1, is
kr-visit bounded. Clearly M, accepts L(M). [

Corollary 4.1.1. For any full semi AFL <%,
FINITEVISIT(FINITEVISIT(Y)) = FINITEVISIT(Z).

The proof of Theorem 4.1 depends heavily on the fact that the input tape of M,
was one-way but was independent of the input hcad motion of M. Thus if we let
TWOFINITEVISIT(Z) be the family of languages accepted by £-based finite visit
automata with a two-way input tape with endmarkers, we get the following corol-

lary.
Corollary 4.1.2. For any full semi AFL %,

TWOFINITEVISIT(FINITEVISIT(Y)) = TWOFINITEVISIT(%).
Corollary 4.1.3. For any full semi AFL &, FINITEVISIT(Y) is a full semi AFL

closed under deterministic two-way finite state transducer mappings, and is the closure
of Z under determinisiic two-way finite state transducer mappings.
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Proof. Clearly a deterministic L-based fva can be regarded as a deterministic
two-way finite state transduction on L while every deterministic two-way finite
state transducer can be iegarded as finite visit (otherwise it cycles; see [5, 25,

26]). O

We turn to a characterization of finite visit languages in terms of the absolutely
parallel giammars introduced by Rajlich [25].

Definition 4.2. An absolutely parallel grammar (apg) is a quadruple G =
(V, X, P, S), where V is a finite alphabet, £ < V is the subalphabet of rerminals,
S < V —2X is the initial symbol and P is a finite set of rules of the form

(Y, .. s 9)=>01,..05v) Yi,...,.Y,eV-2y.. . .yeV*"

such a rule is of degree r. Ii ali rules of P are of degree less than or equal to k., then G
is uf degree k and is called a k-apg. If p:(Yi,..., Y,)—»(y,, ..., ¥ Is in
P ou,.. u,+1 eX* wi=uw Y. - u, Y. and Wa=1u,y, - UV U, then
we write wy = ws and w; = w,. The relation ::> is the transntwe reflexive extension
of => We extend = transitively by letting w, = w> and w: = wa for x. y € P” imply
Wi = w. The language generated by G is

LG)={weS*|S>w),
while for C < P*, the language generated by G witk control C is
L(G, C)={we3*|qxecC, S=>w}.

Although our definition explicitly had productions name themselves and so
control words are in P*, we shall not be rigid on this point and shall let productions
have any arbitrary names when that is more convenient. Since all families of control
sets used are closed under renaming, this is harmless.

We car. now define the families of languages involvad

Definitio: 4.3. The language generated by an apg is an absolutely paratiel [iiguige
(apl). The family of absolutely parallel grammars of degree k is denoted k-APG
and the family of languages generated is k-APL while APG ={_', k-APG and
APL =\_ , k-APL.

The us.aal arguments show that APL = CONTROL(APG. REGL) and k-APL =
CONTROL(k-APG, REGL)--that 1s applying regular control seis to lh“’s(‘?h”&i}
parallel grammars of degree k does not increase their power. We shall show
something stronger. A consequence of our characterization result for flivite visit
automata, FINITEVISIT(#)= CONTROL(APG, %) for any full semuAFL 7. is
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that CONTROL(APG, APL)=APL, so that controlling absolutely parallel
grammars by the languages they generate does not increase their power.

To show that FIINITEVISIT(Z )= CONTROL(APG, £) one can merely observe
that Rajlich’s proof of the equivalence of APL with the 1esults of two-way deter-
" ministic finite state transductions of regular sets goes over to transductions of other
families of languages [25]. However, since we want to establish the precise result
that CONTROL(k-APG, &)= 2k-VISIT(Z) we must modify the constructions,
particularly the simulation of machines by grammars.

Definition 4.4. A k-apg G =(V, X, P, S) is in normal form if there is a symbe: X in
(V —X)—{S} such that all rules of P are of the forms

(1) S>> X",

(2) (y’h cery Yk)—)()’h ey Yk)s
where Yi,..., Y e V-3 —{S} and either

(a) each y;,=e¢,1<i<k,or

(b) for some i, y;c 3 U{e}( V-2 -{SH(Z u{e}), and y,e V-3 ~{S} for r #i,
or

(c) for some i, j, y. e (V-2 —{SPY(V -2 —-{S}), yi=e and y, = V-3 —{§} for
r#i,j.
The rule of type (1) is initial; rules of type (2a) are terminating and of type (2¢) are
i-splitting and j-terminating.

We observe withcut proof that Definition 4.4 actually gives a normal form for
k-apg’s. The constructions needed follow the usual lin-s for obtaining grammars in
Chomsky Normal Form, with suitable modifications in the control sets (cf. [4, 12,
17)).

Lemma 4.5. Given a k-apg G we can construct a k-apg G' in normal form such that
L(G)=L(G’) and for any control set C there is a contro! set €' in ./ﬁ(C) such that
L(G, C)=L(G', C").

Ve use this normal form to go from controiled grammars to machines.

Lemma 4.6. Let G be a k-apg in normal form and let C be a control set. Then
L(G, C)e 2k-VISIT(A(C)).

Proof. Let G =(V, X, P, §) be a k-apg in normal form with P labeled by symbols of
C. We shall construct a 2k-vi,it bounded machine M to accept L(G, C). Essentially
we organize a computation of M on a word of C to trace the derivation tree of the
derivation of G centrolled by that word from left-to-right.
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To simplify the construction of M, its base will be not all of C but C cut down to
those words which actually control compiete derivations of G. For a rule

p:(Yi,....,Y)>(yi, ..., yi)s

let A(p)=Y:--- Y, while ~(p) is either ¢ if p is termina.ing or else lists the
nonterr.inals of y; - - - y; in order of appearance. A pair of rules (py, p,) is consis-
tent if A(p2)=r(p1).

The language

R ={pop1- - p. | pi rule of P, py initial, p, terminating, (pi, pi~1)
consistent, 1 <j=<¢}

is regular so CNn R exfl(C), We take C " R as -he base of M.

The state set of M will be K = {f}u{l,..., k}x{L, R} for a new symbol f, with
initial state (1, R) and final staic set F = {f}. State f will be used only tc accept when
M walks off the left end of the working tape and so no square will be visited in state
f. Each working tape square will be visited at most once in any of the other 2k
states so the total number of visits per square will be at most 2k. State (i, R) means
the working tape head is moving left to right and is reading the derivation tree
downward, currently tracing the history of coordinatc i. State (i, L) means the
working tape head is moving right to left and so is reading the tree upwards. Since
each lcvel of the tree has exactly k nonterminal nodes, a finite state machine can
simulate tree motion on a linear tape.

We define the transition furction of M as follows. For p, initial. M has trai-
sitions (we write §(a)={B} as 6(a)=p):

8((i. R), e, po)=((i, R), po, 1), 1si<k,
8(.L),e,po)=i+1,R),po, 1), 1<i<k-—1,
8((k, L). 2. po)=(f, po, —1).

Now we zive transitions for production p:(Yi, ..., Yi)=(y., ..., Vi), by
examining the possibilities. First, for p terminating we just have
6((,R),e,p)=((i, L), p, —1), I<isk.

If p is neither terminating nor splitting, then for each i, v,=aZb.a.b. €
S uliel, Z;e V-3 —{S}. Then aown the tree we read a; and up the tree b,. so we
have

8((i, R), a. p)=((i, R). p, 1), l=i=k
and

8((i, L), bi. p)=((. 1), p, — 1), I=si<k
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Suppose ‘now p is i-splitting and j-terminating. If we are reading downwards, we
continue to-do so, possibly changing coord nate. First we have the transitions, for
(s, R) with s # .

(s, R),p, 1) forlss<i<jlss<j<iors>i,j,
8((s,R), e,p)={((s—1,R),p, 1) forj<s<i,
((s+1,R),p,1) fori<s<j.

Since p is j-terminating, if M is reading the j™ coordinate downwards it must now
read upwards. Thus:

8«]’ R)v ¢, p) = ((]a L)’ P _1)

There are m« - zases to distinguish for states (s, L). First we have the cases in
which we are reading ilic right branch and continue reading the right branch
upwards (leftwards), possibly switchung coordinates.

((s,L),p, 1) fors<i<j,s<j<i,s=i>j

ors>j>i,

8(sL).e:P)=\((s+1,L),p,~1) forj<s<i-1,
((s—1,L),p,—1) foriss<j.

Now we have the two cases in which we are reading the left branch and must switch
to icading the right branch downwards (rightwards).

8((i—1,L),e,p)={(i,R),p, 1) forj<i,
8(G.LY,-p) =(@+1,R),p :) fori>].

This complete: the construction of M. Clearly L(M)=L(G,CnR)=
L(G,C) O

The construction for going from machines to grammars is more complicated. We
shall define, as in the proof of Theorem 4.1, special sigma symbols to describe the
transitions of M and shall associate to each sigma symbol a rule which will give the
input symbols read during up to 2k visits to a working square. The nonterminals
will be located so that in the final word the input symbols appear in proper order.
Strings of sigma symbols representing accepting compuiations will form the control
set for the grammar. We impose the bounce-free condition on the machine in order
to go from a 2k-visit machine to a k-apg.

Lemma 4.7. Let £ be a fuli semiAFL. Let M be a 2k-visit bounded nonwriting
L-based fva suck that every accepting computation is 2k-visit bounded, right toucning
and bounce-free. Then L(M) is in CONTROL(k-APG, M (L)).
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Proof. et M=(K, X I,6,qo F,L) for Le¥. We construct a k-apg G =
(V, 2, P,S) and a control set C in M (L) such that L(G, C)= L(M).

Define the sigma symbols for M as in the proof of Theorem 4.1. In this case a
sigma symbol is a symbol of the form

o={(A,dy,ai,...,d,a,) forlsr<2k,

with A, d; and «a; as before. We define A, g, Q;, Q/, D; ¢nd J; as before for 1 =i=<r.
We let r =[o]. We let [¢] vary from 1 to 2k because imposing the bounce free
condition mear:s that we can’t be sure that each square is visted exactly 2k times
and r represents a guess as to the number of visits. The definitions of initial, last,
final, right and left sigina symbols are the same except that [} plays the role of 2k.
We let I'. be the set of left sigma symbols and 'k the set of right sigma symbols,
and let ¢ and $ be new. Consistency is defined as before.
Again, ihe set

R =10, 0, |each g, in I';, o, initial and final, o last,
(oi, o1 ) consistent, 1 <Sisr—1}u
{o1 - - 0¢ | each g; in I'g. o, initial, ¢, last and final,
(gi, ;1) consistent, I s | <71 —1}

is regi lar. The language Ly =h"'(L)n R in fL(L) encodes accepting computations
of M. We take as control set

C=¢L,nTHuEL,NTEHS,

which is in . (L).

TetS Xi,...,Xcebenewand V=X uU{S$, X,,..., Xi}. We define P, associating
to ¢, $ and each sigma symbol a rule labeled by that symbol.

First we associate ¢:S-> X and $: X, —>e.

To each o we associate a rule as follows. First, let u = #{i | D;(o)=—1} and
v =#{i | Ji(v)=1}. The rule o will have left side (X, ..., X,) and the right side
will conta’n nonterminals X, ..., X, in that order. so that the left hand side of the
rule alweys has coordinates corresponding to all moves into the square from the
left. Since M is bounce-free we can assume that Di(c, = =1 imphes D, . (o) # -1
(or else we have a right bounce into o) and Ji(o) = 1 linpliec J (o) # 1 (¢! else we
have a 'eft bounce into ¢). Thus u, v <k so the rule will have degree at most k.

Let ' <j,< - <j,<[o] be those i for which D(s)=-1 and 1=/ < - 7
i, <[o those i with Ji(g)=1. Let

t(s)= #{ip ‘]s = ip $j5+1} fors = u
and

t(u) = #i, | iy > ).



This gives the number of right exits between the s™ and (s + 1)™ left entry; there is
of course just one left exit. Let r(s)=1+Y,_,t(i); this gives the number of the
corresponding coordinate.

Car rule o will have the form (X1, ..., X.)=> (1, ..., yu). Let us define y; by
cascs. For convenience we use the convention that j,.1—1=[c].

(1) #(s)=0. This means there are some (at least one) standstill moves but no
right exits so no need for a nonterminal placeholder. Then we let

ys = 8,(0)g+1(0) - * - &, -1(0),

which simply gives the inputs between left entry and left exit.

(2) t(s)==1. This means at least one right exit and maybe some standstill moves.
Now y, will fist all the inputs from visit j; through j;.; and will insert a nonterminal
after the input for each of the #(s) right exits. So y, looks like:

£.(0) " 8w (T)Xo)* * * BiriayerlO) XKi(syr1 *
g"rts)-ms)-1(U)X'(S)+I(S)—1 e gjs+1—1(a)"

The correspondence between derivations of G and computations of M can be
established by induction on the length of derivations and on the length cf Y&orking
tape read up to a point, as in Rajlich [26]. Then one can conclude that § == w if
and only if x describes an accepting left exiting computation of M on w with
working tape h(x)and § == w if and only if the same thing holds for an accepting
right exiting computation. Hence LIM=L(G,C). O

We can put these three lemmas together for our characterization theorem.

Theorem 4.8. For any full seni AFL ¥ and any k =1,

2k-VISIT(£)= CONTROL(k-APG, %)

and

FINITEVISIT(Z)= CONTROL(APG, %).

Corollary 4.8.1. The family of finite visit checking automata languages is the family

of absolutely parallel lenguages with 2k-visit automata corresponding precisely to
degree k grummars.

Corollary 4.8.2. The family .f absolutely parallel languages is closed under the

operation  of  controlling  absolutely  parailel  grammars.  Formally,
CONTROL(APG, APL)= APL.
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Proof. Since APL is a full semiAFL,

CONTROL(APG, APL)=FINITEVISIT(A L)
= FINITEVISIT(FINITEVISIT(REGL)}
=FINITEVISIT(REGL)=APL. [

Anothcer immediate corollary is that if % has the Parikh property so does
FINITEVISIT(%).

Definition 4.9. A set S of n-tur'cs of nonncgative integers is linear if there are
n-tuples of nonnegative integers ¢, p1, . . ., p, such that

S={c+tipy+---+4p, ! 1,...,, nonnegative integers}.

Such a set is semilinear if it is the finite union of linear sets.

Jeiinition 4.10. Let LcX™ and let X ={a),...,a.}, and a=(ay,...,a,). A

Parikh mcoping of L is a function f; from L into n-tuples of non-negative integers
defined by

fal)={(#a,(W),..., #.. (W) |weLl

A language L has the Parikh property or the semilinear property if f(L) is semilinear
for some Parikh mapping f; a family £ of languages has the Parikh property or the
semilinear rroperty if every member of £ does.

Theorem 4.11. If £ is a full semi AFL with the Parikh property, so is FINITE-
VISIT(%).

Proof. It suffices to concider 1.(G,C) for C in & and G an apg. Let G =
(V, X, P, S): /e can assumz without ioss of generality that C < P”. For arule p in P
we can deine A(p) and r(p) as in the proof of Lemma 4.6 and let 1(p) be the
terrainals in the right hand side of p in order. Let [A(p)] and [r(p)] be new symbols
and I="[A(p)],[r(p)]|peP}. We define a new rule with label h(p) as {A(p)]~
t(p)r(p))if r(p)#e and [A(p)] > t(p) otherwise. We recard h as a homomorphism
on P*. Thus G'=(Iu3, 2, h(P),[S]) is a regular grammar and A(C) is in .
Further. foi any Parikh maping f, f(L(G, C))=f(L{(G’, h(C))). Since G' is a regular
context-free grammar, L(G’, h(C)) is in ¥ [12] and so fL(G', h{(C))) is semi-
linear. O

Corollary 4.11.1. APL has the Parikh property.
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We can give a characterization of FINITEVISIT(Z) akin to the characterization
of FINITEREVERSAL(Z) in Theorem 3.3; hov zver the languages involved are
much less attractive.

For an alphabet X ={a1, ..., an}, let ai,..., d, be n new matching symbols and
$={a.,...,a.}. For each w in (U £ )*, let u(w) be the minimal member of the
equivalence class of w in the congruence relation generated by a;d; ~ e. For a word
w, let Init(w) be the set of all initial substrings of w. Let ¢ be a new symbol. For
L< 2 * we can define a language

cL)={wey |weL,ye(EuZ)*, u(nit(y)) < nit(w))},
and for each &
ce(L)={wcy ec(L)|for 1<i<|w|, #{y’ e Init(y) | [u (y")| = i} < k}.

It is shown in [9] that the family of one-way checking automaton languages is
M(c({ay, az}*¥)). Rodriguez provides a characterization of 2k-reversal bounded
one-way checking automaton languages in terms of a restriction of c({a1, a»}*) [27].
By methods similar to those in [9] and {18] and in the proof of Theorem 3.3, one
can establish the foliowing result; the proof is left to the reader.

Theorem 4.12. For any fuii semi AFL £, and k=1

EESIT(PY = M (e (L) | L e £5).

For the particular case & = REGL onc can shnw the following corollary.

Corollary 4.12.1. The family of k-visit 0:ie-way checking automaton languages is
A {ck({ar, az}?)).

We proceed to establish two hierarchy theorems. First we give a lemma used in
proving the strong hierarchy theorem for finite visit checking automata.

Lemma 4.13. For k == 1, the language
Lisi={c(a mC')k+1 | m =1}

is not in k-VISIT(REGL).

Proof. Assume to the contrary that L;.; =L(M) for a strictly k-visit nonwriting
machine M = (K, 2, I, 8, 4o, I, R) with regular base R. We use the following simple
combinatorial fact which we state without proof.

Sublemma. There is no way to place k +1 connected line segments on a straight linc

in such a way that every two segments overlap in at least one point but no poini is
touched by all k + 1 liizes.
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Consider any accepting computation C of M on c(a”c)**" with working tape y.
We can regard as line segment i the porticn of y visited by M during the scan of the
ith block of a’s. Since the computation is k-visit bounded, there can be ro point of y
on which all k +1 iine segments coincide. Hence by the sublerama there must be at
least on~ pair, say r and s, 1 <r <s <k +1, such that no square visited during the r™
block oi a’s is also visited during block s. We can factor y as either y =y,y, or
y =ysyr such that during block r only y, is visited and only y, during block s.

Since M is strictly k-visit there is some ¢ such that every accepting computation
of m is t-crossing bounded. So there is a list S of up to 2t states of M giving the
states in order for the up to ¢ crossings of the border between y, and y,. Since R is
regular, we can factor I" " into some finite number of congruence classes Ry, ..., R,
such that R is the union of some of these classes [22].

Hence we can associate with C a tuple {1, s, b, S, i, i;) with b =left if y = y,y, and
b =rightif y =y,y, and y, € R,, y; € R,.. There are only finitely many suckh tuples but
infinitely many words c(a™c)**' accepted by M. Hence there are m, # m, and
accepting computations C; for c(a™c)**',i=1,2 such that C, and C, are asso-
ciated with the same tuple. The cases ar: similar, so suppose they are associated
with tuple (7. 5, 1, S, i, i5). This means that C; has working tape v.y; € R, with
yir€R,, yis€ R;, and visits only y; durir.g block r and only y; during block s.
i=1,2. Thus y =y;,y2s is also in R and M has an accepting computation C with
workii.g tape y for some worc cf the form uca™ cvca™cz; this computation foilows
C, while visiting y,, and C, while visiting y,,. But this word cannot be in L., a
contradiction. [

We can now summarize our hierarchy results for reversals and visits in checking
automata.

Theorem 4.14. Froreach k=1,

(1) k-REVEFRSAL(REGL) ¢ (k +1)-REVERSAL(REGL),

(2) k-VISTT(REGL) ¢ (k +1)-VISIT(REGL), and

(3) (k +1,-REVERSAL(REGL)—k-VISIT(REGL) # 0.
Fork=3

(4) k-REVERSAL(REGL) ¢ 4-VISIT(REGL),

(5) 3-VISIT(REGL) and (k +1)-REVERSAL(REGL) are incomparable, and
3-VISIT(REGL) and FINITEREVERSAL(REGL) are incomparable.

Proof. Theorem 3.11 gives us (1) since REGL # 2-REVERSAIL(ReGL) = LINCF.
The lansuage Li.; of Lemima 4.13 is not in k-VISIT(REGL) but is obviously
(k +1)-REVERSAL(REGL). This establishes (2), (3) and part of {5). For (£4) and
the rest of (5), notice that the closure of 2-REVERSAL(REGL)=LINCF under
Kleere + is not in FINITERE v™ 1SAL{REGL) by Theorem 3.11 but clearly is
contained in 3-VISIT(REGL). 0O
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Notice that 2-REVERSAL(%)=2-VISIT(¥) always since a 2-visit bounded
computation is necessarily 2-reversal bounded. Thus we cannot improve Theorem
4.14(4). It also shows that while for any semiAFL %, & # FINITEREVERSAL(Y)
if and only if & # 2-REVERSAL(Z), we can have

L= 2-VISIT($)‘# FINITEVISIT(%).
For =xample, take £ =FINITEREVERSAL(RE(L); then
% =2-REVERSAL(¥) = 2-VISIT(Z)

FINITEVISIT(Z)=FINITEVISIT(REGL) # Z.

Corsiiary 4.14.1. For each k=i, k-APL < (k +1)-APL; that is, degree (k+1)
absolutely parallel grammars are strictly more powerful than degree k.

We now turn to a general hierarchy theorem for k-VISIT(&Z). It is not a strong
hierarchy theorem since it requires that £ be closed under substitution. We need
a syntactic lemma regarding special types of substitution.

Definition 4.15. Fer languages L., and L, contained in 3 *, let

L, L)={aiw;---aw,|ay, - ,a,.€5,a1 - ancly, wi, wa, . ..,
’ w’geLz}.

A proof that FINITEVISIT(Z) is closed under substitution whenever % is, can
readily be obtained from the proof that the family of one-way che~king auiomaton
languages is closed under substitution [16]. Since we want bounds on how many
visits are needed, we indicate briefly how the construction works.

Lemma 4.18. Let £ be a full semi AFL closed under substitution. Let L, be in
k,-VISIT(g), L,-EZ,-*, i= 1, 2, 21 "sz:ﬂ. Then L= T(Ll, Lz) is in (k1+k2+2)-
VISIT(Z).

Proof. Lei L; = L(M;), M; a strictly k;-visit nonwriting fva with base R; and working
alphabet [, i = 1, 2. We can assume without loss of generaiity that I'ynI', = 0. We
may as well also assume that each M; is e-free since, by inserting dummy svmbois
(d; in M;), we can get e-free strictly k;-visit nonwriting machines M, accep:ing L;
such that 7(L,, L) is obtainable from r(Lj, L3) by an a-transducer mapping, and
(k1+k2+2)-VISIT(Z) is a full semiAFL. Let ¢, d, ¢, and $ be new symbols.

We sketch the consiructio of a (k;+ k2 -+2)-visit bounded #-based fva 1 to
accept 7(Li, L,). The new machine will not be nonwriting. The base for M is

R3=¢(cRze) 1(Ry, (cRyc)")S.
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Since £ is substitution closed, R is in 4. Now M,’s woiking tapes are tapes of M,
with tapes of M, surrounded by c¢’s interspersed everywaere.

Machine M; switches between an M, simulation and an M, simulation, starting
with an M, simulation and ending with an M, simulation. We have assumed M, to
be ¢-free so during the A, simulation M; reads one input from X, and executes one
corresponding step ot M. To do so, it reads a working tase symbo! of I}.

Next M; gets ready for the M, simulation. If the M, step results in a right move,
M; moves right to find the first block cyc, y € R;, turns the left ¢ to d and starts
simulating M, asing y as its working tape ar:d reading :nputs oniy from 1. if it sees
¢ or d in a nonfinal state it blocks. If it sees ¢ in an accepting state it changes ¢ to d
and moves right to the first symbol of I'; to resume the M, simulation while if it sees
d in the accepting state it does the same thing except it changes the first ¢ to the
right to d ir the process (this is the right ¢ in cyc now dyc and finally dyd). If the M,
step on the other hand resulted in a left move, M5 would move left to find the first
cyc, ¥ € R, this time positioning itself on the leftmost symbol of y and turning both
¢’s to d initially. Now it simulates M, on y with input fromn X, as in the previous
case. When it finds itself in an accepting state of M, it moves left to the first I
symbol ard resumes the M, simulation

If M; t:ies to resume the M, simulation in an accepting state of M, and {inds no
symbol! of I'; in the direction in which it is moving it accep's.

Eac!, square containing a symbol from I} is visited only when simulating M, for a
total of k; visits. A string cyc, y € R, can be visited as M; sweeps over it from an M-
simulation to an M, simulation. Since this corresponds to a visit of M, to the I
symbols to the left and right of cyc, this situation occurs at most k, ttrmes. String cyc
can also be used for one and only one simulation of M, since after this simulation it
becomes dy< and is ignored; this means at most k> more visits. However, if M,
starts this M, simulation moving right and the computation is left exiting one more
sweep right over y will be needed. If M; starts this M, simulation moving left, it
first passes over cyc, turning it to dyd, in order to be on the leftmost symbol of y at
the start, and ii the simulated computation is right >xiting it will have to go over dyd
once more. 7 nis possible complication adds at most 2 extra visits per square. Hence
Mjis (ki ky+2)-visit bounded. [

Remark. Lemma 4.16 implies that k,-VISIT(¥) ¢ k.-VISIT( )< (ky +k>+2)-
VISIT(.#) whenever £ is closed under substitution. A rmore complicated con-
struction shows that (k,+ k> + 1)-VISIT(¥) sutfices and if » is closed under rever-
sal then (k| + k3)-VISIT(.¥) works. However k, + k> + 2 is a gocd enough bound for
our pre-ent purpnsec

Now we need a syntactic lemma which says that if 7(L,. L.) can be recognized
within k visits, either L, is already in the base family or L, could be recognized
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| within k-1 visits;r.Ttnis,is shown by the sort of dichotomy argument found in [15, 16
and 19] and the proof will only be outlined.

Lemmiu 4.17. Let Lic 3 ¥, L, 3 ¥ withZ,n3,=0. Let $ be a new symbol. Let ¥
Le a full semi AFL and let k = 2. If 7(Ly, L2)$ is in k-VISIT(Z) then either L, is in £
or L, is in (k-1)-VISIT(Z).

Proof. We use the following two sublemmas which we state without proof. They
can be proven by standard arguments for checking automata and stack languages
(cf. [16]); recali that & is a full semiAFL.

Sublemmia 1. Let M be an Z-based nonwriting preset Turing machine with inp-
alphabet X. Suppose that for each w =a, - - - a,€L(M), a1, ...,a, €3, there is an
accepting computation  such that during C for each i, 1 <i<n -2, no working tape
square read during the scanning of a; and subsequent e moves is read again after a; .,
is input. Then L(M) is in &. ’

Sublemma 2. Let M be an &£-based nonwriting preset Turing machine with input
alphabet 2. Let s=1. Suppose that for each w=a,-:-a,eL(M), ay,...,a, €3,
there is an accepting computation C such that during the period from the input of a,
through the input of a,—but not necessarily including any e-moves before a, or after

a,—no working tape square is visited more than s times. Then L(M) is in s-
VISIT(Z).

Now suppose that L=7(L;, L,)$ is accepted by a strictly k-visit nonwriting
Z-based fva M =(K, 2, I, 8, qo, F, R), R € . We can define from M machines M,
and M- for L,; and L, as follows.

Let M’L = (K’ 219 I-; 81, q09 F" R) for 31(‘1, a, A)= 8(‘1, a, A)» a E21 and
51(‘1, e, A)= U S(q, b’ A)'
bsizu{s.e}

Thus M, simply simulates M on inputs from 5, and uses e-rules to simuiate M on
other inputs.
Let

M2 = (K X{O’ 1’ 2’ 3}’ 2.2’ r; 62’ (qu 0)’ F X {3}3 R)’
where 8, is defined as follows. For b € X, we have

82((9, 1), 5, A)={((@’. 1), A, 5)| (@', A, 5)€ 8(q, b, A)}.
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Otherwise we have e-rules. For (g, 0) we have
8:((q,0), ¢, A)={((q’, ), A,s)|(q'. A, s)eblg,a, A),ae 3, uI,ule}}
ui{l(@’, 1) A,s)|(q' A, 5)ed g, a. A),ac X}
For (g, 1) we have
5:((q, 1), e, A)={((q'. 1" A, 5)[ (4" A, s)€ 5(q, e. A)}
u{l((@’ 2),A,8)|(q. A, s :8(q, 2. A),ac X}

u{i(@'.3), A, )| (@' A :+:8(q, 8. A)},
for (g, 2)

82((9,2), e, A)=1{((q".2), A, 8)| (@', A. )€ (g, a, A),ac 2 U T2 u el

uf((q'.3) A.5)|(q', A.5)eb(q, 3, A)L,
and for (q, 3)

8:((q,3). e, A)=1{((q',3), A.s)| (@', A, 5)€ (g, e, A)}.

Essentially M, first uses e-rules to simulate M on any input, then, when M is about
to start o a word in L, switches to real input (states (g, 1)) and when M returns to
input from X; (or $) continves the simulation with e input, making sure that § is
read b+ M (states (g, 2) and (q, 2)).

Clearly L;=L(M,),i =1, 2. We want to show that eithc. *f; satisfies the hypo-
theses of Sublemri.ia 1 so L, € £ or M, satisfies the hypotheses of Sublemma 2 with
s=k—1,s0 L, is in (k —1)-VISIT(Z).

Consider an accepting computation C for a,w, - a.w,%, a,...,a, €2y,
w1, ..., w, Lo, If no working tape square scanned during a,w; is scanned after
w;+1 is through, for each i, 1<i<n -2, call C locall. 1-visit on a,- - - an. If no
square is scanned more than k — 1 times during the period from the input of the first
symbol of w; to the last, call C locally (k —1)-visit on (i, w;); if wi=w2=""-=w,
we just call C locally k-visit on some occurrence of w. Suppose C is not localiy °
(k —1)-visit o.n (i, w;) for each i, 1 </ < n. During w, some square is visited k times.
This square can never be seen again since M is strictly k-visit, setting up a
“barrier”. Similarly some square is seen k times during w», setting .'v a new barrier.
Thus ne square seen during a,w, can be scen after w» is through. arguing in this
fashicn, we see that for each i, 1 i< n — 1, no square scen during aw; can be seen
after the scan of w,.;. Hence C is locally l-visiton a, - - - a,.

In pa-ticular, if C is an accepting computation on

aw - awS=ula, - a,w),

then either C is locally 1-visit on a; - - a, or C is locally (k — 1)-visit on some
occurrence of w. If for each a; -+ - «, in L, there is a w in l.» and an accepting
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computation for p(a: - * a,, w), which is locally I-visit on a; - - - a,, then clearly
M, satisfies the hypotheses of Sublemma 1 and L, € Z. Otherwise thereis a; - - - a,
in L, such that for each w in L, no accepting computation of M on u(a; - * a,, w)
is locally i-visit on a;---a, and so every accepting computation of M on
pl(ay -+ an, w)islocally {k —1)-visit on some occurrence of w (and there is at least
one such accepting computation). Hence M, satisfies the iiypotheses of Sublemma
2and L, isin (k —1)-VISIT(¥). O

Now we can state our general hierarchy theorem for finite visit automata.

Theorem 4.18. Let & be a substitution closed full AFL. If ¥ # FINITEVISITY),
then there is an integer ko= 4 such that forallk =1,

k-VISIT(®) < (k + k;)-VISIT(Z).

Proof. [f ¥ #FINITEVISIT(Y) then for some k; =2,
¥ =1-VISIT(Z) < k,-VISIT(Z).

Let ko=k1+ 2. Clearly
k-VISIT(Z) < (k + ko)-VISIT(Z) fork =1.
Suppose k =2 iz the smallest integer such that
~=-VISIT(Z) = (k + ko)-VISIT(Z).

Let L; be in k;-VISIT(#)— <. Consider any member L, of k-VISIT(%). Since all
our families are closed under renaming we can assume that the vocabularies of L,

and L, are disjoint and that $ is a new symbol. By lemma 4.16, 7(L,, L,) and so
T(I;l, L2)$ is in :

(k +ky +2)-VISIT(Z) = (k + ko)-VISIT(Z) = k-VISIT(¥).

Since L, is not in %, by Lemma 4.17, L, is in (k —1)-VISIT(¥). As L, was an
arbitrary member of k-VISIT(Z) we see that

k-VISIT(Z) = (k - 1)-VISIT(¥)
and thus

(k —1)-VISIT(#) = k-VISIT(F) = {k + ko— 1)-VISIT(¥)
= (k + ko)-VISIT(Z).

This contradicts the minimality of k. Hence we conclude that

k-VISIT(L) ¢ (k + ko)-VISIT(¥) foralk=1. [
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Corcllary 4.18.1. For any subsiitution closed full AFL ¥, if ¥+
COMTROL(APG, &), then there i< 1 ko=2 such that

CONTROL(k-APG, ¥) ¢ CONTROL((k + ko)-APG, #')
foreach k =1.

We can provide a somewhat different extension of Theorem 4.14 by considering
iterative properties of languages.

Definition 4.19. A language L is k-iterative if there is a k, = 1 such that whenever w
is in L and |w|>k;, then w=uv; - wxxUx for v;---vx#e and
ULUT ** c UgliUr+q is in L for all n=0. A language L is weakly k-iterative if it is
either finite or contains a k-iterative subset. A family of languages ¥ is k-iteratite
(weatztly k-iterative) if every member of ¥ is k-iterative (weakly k-iterative).

We shall sketch the proof that if £ is a weakly k-iterative full semiAFIL., then
r-VISIT(Z) is weakly kr-iterative. First we need an auxiliary definition and lemma
which says in essense that finite visit automata can be made to operate in linear time
and spac: in a strong way.

Defini'ion 4.20. Let C be a computation of fva M with working tape y and iet
1<isl|v!. We say that C skips i if every visit to square i results in an e-rule
transition. If fcr every i, 1<i<|y|, C does not skip i, then C is nonskipping. 1f
every accepting computation of M for nonempty input is nonskipping, then M is
nonskipping.

In a nonskipping computation, every working tape square must be visited at least
once while input is read and the input tape advanced. An Z-bascd &-visit bounded
automaton can he made nonskipping, employing standard argumens of the type
used fc. checking automata and stack automata. Essentially one can use an a-
transduer ¢ » replace a portion of working tape “‘skipped’” during a computation by
a table summarizing the behavior of the machine on that portion for e-input. The
proof is .ketched in Section 5.

Lemma 4.21. Let ¥ be a full semi AFL and let L be in k-VisIT(¥#). There is a
nonwrit:ng, right touching, nonskipping ¥-based k-vis:t bounded automaton M such
that L=1L(M), and every accepting computation of M is k-visit bounded.

Now we sketch the proof of the weak iteration lemma.

Lemma 4.22, Let &£ be a weakly k-iterative full semi AFL. Then r-VISIT(Y) is
weakly kr-iterative.



212 " . S.A. Greibach

Proof. We need only consider a nonwriting, right touching, nonskipping, £-based
r-visit bounded autematon Af = (K, 3, I, 8, qo, F, L), with Le &, and every accept-
ing computation of A ~visit bounded.

Define the sigma svmhals and associated “unctions and sets R, and R, for M as
in the proof oi Tlieorem 4.1 and let

R={x|¢x$€RiUR3}.

Let L, =h (L)~ R. As before, L; consists of encodings of working tapes of L
along with complete accepting computations using these tapes. Every accepting
computation of M is encoded in L, ~ad the corresponding input can be obtained by
appropriate dechding, Further, R is regular and so L, is in £.

It L; is finite, L(M) certainly is finite. Otherwise L; contains a subset [ =
{usvf- - - vlusr1 | n =0} with 1 <s =<k and every v; nonempty. Let

L={uv7™" - uv " "tssr | n=1}.

We wish to argue that I, encodes accepting computations for an rs-iterative (and
hence rk-iterative) subset of L(M).

Notice that since v; encodes actions on & (v;), identical actions can be taken by M
on each repetition of h(v;) corresponding to repetitions of v; in words of I.
Consider the computation C on h(uwi™ - - uw! 'uss;) encoded by
w7 - uw! ugeq. Suppose h(v;) is first entered from the left in a state p. Thus
the first entry intc. each repetition of h(v;) is also in state p and the same inputs and
actions are involvad. Since M is right touching, M will eventually cross (4 (v;)) ™"
There are two possibilities. If M crosses h(v;) directlv, without going left of this
subtape using input x,, then repetition of input x, causes M to cross all of (h(v;))™"
for any n. Otherwise, M may have some wiggles left before crossing, and may
repeatedly go left of h(v;). But M is r-visit bounded. Hence there must be some
repetition of . (v;) (before the r+ 1) such that C enters it in p and enters the next
segment h(v;) in p under some input x, without leaving (4(v;))"*". Thus further
iterations of h(v;) can also be crosssed using x; and so x; is one of the iterative
factors sought. Similar arguments apply to each left entry to the first #(v;) and each
r:ght entry to the last one in C. Since there are at most r such cntries and crossings
of (h(v;))"*", we identify at most r iterative factors. Since M is nonskipping, at least
cne is nonempty. This holds for each i. Thus I, describes an rs-itcrative subset of
LM). O

The point is that the langnage L;.; of Lemma 4.13 is (k + 1)-iterative but not
k-iterative.

Theorem 4.23. Let & be a weak’y k-iterative full semi AFL. Let r=1. Then:
(1) r-VISIT{E) ¢ (kr +1)-VISIT(Z),
(2) (kr+1)-REVERSAL(ZL}— r~-VISIT(X) #0, and
(3} if Ly is in &, then (r+ 1)-REVERSAL(E )~ r-VISIT(#) # 0 for each r=1.
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Proof. On one hand, L, ., is in

(kr +1)-REVERSAL(REGL) < (kr + 1)-REVERSAL(Y)
< (kr+1)-VISIT(%).

On the other hand, since L,,.; is not weakly kr-iterative, it cannot he in r-
VISIT(XZ). This establishes (1) and (2). If Ly is in &%, then using it as a base language
we can certainly get L, using r + 1 reversals; this yields (3). O

Corollary 4.23.1. If £ is any full seivit AFL contained in CF,

r-VISIT(&) < 2r +1)-VISIT(¥) foreachr=
and if {a"b" |n=1}is in &, then

r-VISIT(®) < (r+ 1)-VISIT(Y) forz2achr=1.

Proof. Every context-free language is obviously 2-iterative in a very strong way.
Clearly L,,.; can be obtained from {a"5" | n =1} using r + 1 reversals.

We conclud= this section by observing that Lemma 4.17 can also be used to
provide an alternative proof’ that not all context-free languages are checking
automat~n languages. Let CAL be the family of one-way checking automaton
languages and NESA the family of one-way nonerasing stack languages.

Lemma 4.17 tells us that any substitution closed full principal semiAFL
contained in FINITEVISIT(¥) must be in ¥, so CF cannot be contained in
FINITEVISIT(REGL). But every language in CAL—FINITEVISIT(REGL) must
be weakly 1-iterative, while there are generators of CF which do not contain an
infinite regular set.

More formally, we derive the next lemma from Lemma 4.17.

Lemma 4.24, Let ¥ be a fuli semi AFL and let ¥, be a substitution closed full
principal semi A FL. If ¥, < FINITEVISIT(Y), then ¥, < ¥.

Proof. Let .£, =Jﬁ(L). If Le i-VISIT(®) =Y, we sre done. Otherwise, for some
k=2, Le «-VISIT(¥)—(k —1)-VISIT(¥). iet L, ke a renaming of L. in a new
vocabulary (i.e., Ly = k(L) for a onec-one length-preserving homomorphism /) and
let $ be new. Since &y is subsitution closed, (L. L,)5¢ ALY E-VISITUS ). This
contradict. Lemma 4.17,since L2 Fand L, ¢k - 1)-VISIT(/ ) Hence Le ¥ T

Lemms ¢ 28, Let £ be a full semi AFL. If L is rior in FINUUENISTTUS) bur can be
accepted by a nonwriting one-way preset °-based Turiiig machine. then L is weakly
1-iterative.

® See [43].
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Proof. Let L=L(M), where M =(X, 2, T, 8,qo, F,R) is a preset one-way %-
based Turing machine. Let k =1+ #K. Since L is not in k-VISIT(Z), there is a
word w in L such that no accepting computation of M on input w is k-visit
bounded. Let C' be the shortest accepting computation of M on input w, and let C
have working tape y. During C, M must visit some square in y at least k times and
thus twice in the same state q. Heace w =uavbz, a,beZ ule}, y=y:Ay,, Al
and C includes visits to A in state g at ¢ and b. Since C is the shortest accepting
computation, av # e. Hence u(av)*bz is an infinite regular subsetof L. [

Theorem 4.26. There are context-free languages which are not one-way nonerasing
stack languages. '

Proof. Since CF is substitution closed, Lemma 4.1 of [16] allows us to conclude that
CF < NESA if and only if CF< CAL.

Now CF =/ (L) for a parenthesis language L which is not weakly 1-iterative [36].
By Lemma 4.25, L is not in CAL -FINITEVISIT(REGL). By Lemma 4.24, L is
not in FINITEVISIT(REGL). Hence L is not in CAL, so LeCF-CAL and
LeCF-NESA. O

Remark. The same argument shows that some index languages cannot be expressed
as nondeterministic two-way finite state transductions of stack languages'®.

§. Complexity questions

Upper bounds on the space or time complexity of FINITEVISIT(¥) can be
obtained by applying the results foi the two-way case and using special considera-
tions pertinent 1o the one-way case.

The space and time complexity of two-way finite visit automata was studied in
[20]. It wa shown in particular that

TWOFINITEVISIT(REGL) = NSPACE(log, n).

the class of lariguages accepted in space logz n by off-line nondetermin:istic multi-
tape Turing mechines and TWOFINITEVISIT(CF)= 2, the class of languages
accepted in polyriomial time by deterministic ofi-line multitape Turing machines.
Corresponding :haracterizations do not exist in the one-way case. For example,
FINITEVISIT(. EGL) is incomparable with the family of languages accepted by
on-line nondeterministic multitape Turing machines in space log, n since the
former is closed .inder homomorphism while the homomorphic image of the latter
is the family of recursively enumerable sets and the former contains {wew?® | w e

{a, b}*} which the latter does 1:0t. We state the obvious restrictions of the two-way
results,

1% Kiel [42] proved variants of Corollary 4.1.1, Theorem 4.11 and Lemma 4.25 in » different model.
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Theorem 5.1. FINITEVISIT(REGL)= APL ¢ NSPACE(log. n),
FINITEVISIT (CF) ¢ 2.

Corollary S5.1.1. The family of derivation bounded languages is contained in
NSPACF (iog;y n).

Proof. Clearly DB< APL {25). O

Corollary 5.1.1 strengthens Sudborough’s observation that all linear context-free
languages are in NSPACE(log, n) [30].

Corollary 5.1.2.

CONTRG:(LDBG, REGL) < NSPACE(log: 1),
CONTROL.(LDBG, DB) ¢ NSPACE(log: ),
CONTROL(LDBG, CF) ¢ 2.

Proof. for a left derivation bounded grammar G and controf set C one can clearly
find an 1pg G and control set C" in M (C) with L(G, C)=L{3", ). O

We can obtain further complexity results in the one-way case from the fact that
one-way finite visit automata can be made to operate in linear time and space. If a
k-visit bounde< computation on input w # ¢ and working iape , is nonskipping,
then |y|<|w, and the computation takes at most k|y|=k|w| steps. Hence. we
rephrase Lemmz 4.21 and sketch the proof.

Lemma 8.2, Let £ be a full semi AFL and let L be in k-VISIT(Y). There is a k-visit
bounded non»-riting £-based automaton M such that 1. = 1L(M), M is nonskipping
and, for ~ve'y win L and every accepting computation C of M on w with working tape
y, Cis k-visit bounded, 1 <|y!|<Max(|wl, 1) and " takes at most k - Max{{w|, 1) steps

Proof. Lot L=L(M), where M = (K, X, I, 5, go. F, L)} 1s a nonwriting strictly f-visit
P-based automaton. Further, M enters an accepting state only on a left or right
exit.

For y in I"", the table ‘or y is the 0— 1 tunction T, on K = (¥ {eiv<{l K-
{L, R}x K such that T,(p, a, i, ], q)=1if and only it

(> @, diiNF (4, €, ¥, d())).
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where d(L)=1 and d(R)=|y|+ 1. The relation on I"*, defined by x =y if and only
if T, =T,, is clearly a congruence relation of finite index’ on I'"* so, by Nerode’s
Theorem [22], for each table T the set {y e I'* | T, = T is regular. Let

T ={T,i,j)| Tisatable, Isisk+1,1<sj<k},
T ={(T,i,))eT|i=1},

and

F.={(T,0)| T is a table}.

Threre is an a-transducer M, taking I'" into subsets of J;uJ,, such that
Si- -8, eM(y)nTi ifandonlyif y=y,---y,and Ty, =S;, 1<i<r and (5,0) ¢
Mi(y)n T, if and oaly if T, =S5. The new machine M has base L, =M,(L;) and
tape vocabulary I' =9 u 7..

A tape (T, 0) in L, is used only for input e, which is accepted if and only if, for
some q in F and d in {L, R}, T(qo, ¢, d, L, ¢)= 1. Otherwise, M has working tape
symbols of the form (T, i,j) and states of the form (g, L) or (¢, R). A symbol
(T, k + 1, j) causes a biock. For i <k, M has a transition from s:ate {g, d) to state
(9, d") changing (T, i,j) to (T,i+1,j) and moving in direction d’ on input be
Sulelif and only if T(q, b,d,d’,q’)=1 and if i =}, then b # e. The start state is
(g0, L) and the final state set is {{g, L}, {2, R)|q € F}.

Clearlv M is nonskipping since the j visit to (7, i, j) must be on nonempty input.
The behavior of M on input w and working tape (S1, 1, 1)+ * - (S, 1, j,) simulates a
computation of M on input w and working tape u;Av; - - - w,Av,, A; €T, such
that the u; and v; (which may be empty) are “‘skipped” but nonempty input is read
at least on the j visit to A;. So L=L(M)=L(M).

#7achine M is not nonwriting. However, the conversion to a nonwriting machine
can be accomplished without adding new e-rules. [

Now we observe that the one-way FINITEVISIT operator preserves non-
deterministic time and space and deterministic space complexities for full semiAFL’s
in a certain sense. Let us assume tha! 2/l bounding functions are monotonic functions
from the nonnegative integers into the nonnegative integers (so, e.g., log, n meais
[logz #]).

Definition 5.3. Let NTIME(T (n))(NSPACE(S(n)) be the family of languages ac-
cepted by nondeterministic multitape Turing machines in time T(n)(space S'n));
let DTIME(T (n))(DSPACE(S(n))) be the family of languages accepted by deter-
ministic multitape Turing mack.ines in time T'(n)(space S(n)).

9 . . , ap ey e . ‘ .
A relation R < S X S is a congruence relation if it is an equivalence relation and for all x, y, z, w in S,

{x, yYand (z. w) in R imply (xz, yw) in R; it is of finite index cn $ if it partitions $ into finitely many
equivalence classes.
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Theorem 5.4. Let £ be a full semi AFL.
(1) If ¥ = NTIME(T (n)), and T(n)=n for all n, then

FINITEVISIT(¥)< NTIME(T (n)).

(2) If Z=NSPACE(S(n)) for S(n)=n a.e., then
FINITEVISIT(£)< NSPACE(S(n)).

(3) If #=DSPACE(S(rn)) for S(n)=n a.e. then
FINITEVISI'I ()< DSPACE(S(n)).

Proof. For L in k-VISIT(¥), we let L = L{M,) {or nonskipping fva M, with base C
in £ satisfying the conclusions of Lemma 5.2. If C e NTIME(T (n)), let multitape
Turing machine M> accep: C in time T(»). We construct a multitape Turing
machine M for L. On input w, M wntes down on one &f its tapes a guess at a
working tape y with |y|<Max(|w|, 1). Next M simulates M, to determine whether y
isin C. If y is in C, M concludes by simulating M, for input w and working tape y.
Hence if w is in L, some accepting computation of M takes at most (k +2)|y|+
T({yh=(k +3)T(w|)steps. Thus ¥ is in NTIME((k + 3)T (n)). Since NTIME(T (n))
has linea: speedup {3], L is in NTIME(T (n)). This establishes (1). The argument for
(2) is similar.

To ¢Htain (3), we note that a determinisiic Turing machine M can cycle through
all those coiiputations of M, on input w which use working tape bounded in length
by Max(|w|, 1) and take =t most k|w| steps; furthermore, A needs at most |w| tape
squares for this process (this is essentially the proof that DSPACE(S(n)) is closed
under nonerasiiag homomorphism for S(n)=n a.e.). U

A few corollaries of Theorem 5.4 follow, letting STACK be the family of
one-way stack laneuages.

Corollar: 5.4. 1. FINITEVISIT(CF) < NTIME(n).
Corollary 5.4.2. FINITEVISIT(STACK) < NTIME(»n").
Corellary 5.4.3. FINITEVISIT(STACK) < DSPACE(n).

It was shown in [20] that, if & is a full semiAFL whose members are accepied by
one-way nondeterministic ra=chines of the type &, then everv member of k-
VISIT(Y )(k-REVERSAL(SY) can be accepted by a two-wav (& + 1)-head (k-head)
nondete: ministic machine of type 2. Moreover, the simulation of a one -way k-visit
(k-reversal) bounded machine acting on input w and working tape v ook at most
riwl| - |y| steps (r(ly|+|w|) steps) for some constant r. Hence using Lemma 5.2 we
have the following metatheoren.
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Theorem 5.5. if £ is a full semi AFL whose members are accepied by one-way
one-head nondeterministic macnines of type @ in time T(n) and space S(n), then
every member of k-VISIi(¥) (k-REVERSAL(Y)) can be accepted by a two-way
(k +1)-head {(k-head) nondeterministic machine of type & in time nT (1) (time T(n))
and space S(n).

Corollary 5.5.1. Every member of k-VISIT(REGL) (k-REVERSAL(Y)) can be
accepted by a nondeterministic (k +1)-head (k-head) finite state acceptor in fime n 2
(time n).

Corollary 5.5.2. Every member of k-VISIT(CF) (k-REVERSAL(CF)) can be
sccepted by a nondeterministic k-head pushdown store acceptor in time n® (time n).

Cocok [34] showed that all languages accepted by multihead pda in polynomial
time are in DSPACE((log, n)).

Corollary 5.5.3. FINITEVISIT(CF) < DSPACE((log: n)?).

Remark. Arora and Sudborough [32] showed that CONTROL(LINCFG, CF)c

DSPACE((logz n)®), while Eri [35] extended this to %(FINITERE-
VERSAL(CF)).

6. Summary and open questions

We have seen that under both the finite reversal and the finite visit restriction
writing and nonwriting preset Turing machines has . the same power. Charac-
terizations were provided for k-REVERSAL(Z) and k-VISIT(Z) in terms of
operations on languages (Theorems 3.3 and 4.12) and control sets on grammars
(Theorems 3.8 and 4.8). Both FINITEREVERSAL and FINITEVISIT are idem-
potent operators on families of languages (Theorems 3.4 and 4.1); the proof for
reversal bounds gives us the decomposition theorem

k-REVERSAL(r-REVERSAL(Z)= kr-REVERSAL{%).

Finally we established hierarchy theorems which state that under fairly general
conditions, if & is not closed under FINITEREVERSAL or FINITEVISIT then
increasing the nuasber of reversals or visits increases the class of languages defined;
for reversals this foliowed fr~.a established results on homomorphic replication
while different arguments were needed for visit bounds. The hierarchy theorem

for reversals also showsd that in geneial visit bounds are more powearful than
reversal bounds.
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Some of these results have conditions which are needed for the particular proof
method employed but perhaps might be removed with other techniques. I
Theorem 3.12 we showed that FINITEREVERSAL(%) is properly contained in
FINITEVISIT(Z) for any full AFL .% with ¥ # FINITEVISIT /). We conjecture
that £ does not have to be an AFL and the result should hold for full semiAFL’s.
For visits we showed that if &£ is a substitution closed fuil AFL with ¥ # FINITE-
VISITZ), then there is an integer k, such that k + k, visits are more powerful than
k for all k. We conjecture that the substitution closed condition i< unnecessary and
that one should always be able to take k,= 3.

No decomposition or padding theorem . =s given for k-VISIT(%') akin to those for
reversals in Theorem 3.3 and L.emma 2.9. This is one reason way translational
techniques could not be used to further strengthen the hierarchy theorem. Although
exact analogs of Theorem 3.3 and L.emma 3.9 are probably not true, some results of
that nature would be useful.

One curious open question is the relationship between CONTROL . (LDBG, ¥)
and CONTROL(APG, £)=FINITEVISIT(¥). It is clear that CONTROL.
(LDBG, %) is contained in CONTROL(APG, #): are they equal? We saw that

CONTROL(APG, CONTROL(APG, ¥))= CONTROL(APG. ¥).

A simifar result cannot hold for LDBG since obviously LDB=CONTROL
(LDBC, REGL) is properly contained in CONTROL,(LDBG, REGL). It can be
shown that for any full semiAFL % with ¥ < CF, and any k > 1,

CONTROL,(LDBG, ¥) < CONTROL-(LDBG, %).

However, is there a full semiAFl. and a k=2 such that ¥=
CONTROL(LDBG, .¥) but

CONTROLK(LDBG, £)- CONTROLL(LDBG, £)?

In Section 5, we lisizd several complexity results for FINITEVISIT{?) In
particula-. we could establish some of the sume upper bounds for FINITE-
VISIT(CF) 25 for CF, namely, membership in DSPACE((log> n)*) and NTIME(n).
We have FINITEVISIT(CF) ¢ 2. [t seems plausible to conjzcture that languages in
FINITEV'SIT(CF) can be accepted determinisiically in time n'. One might ask
whether “INITEVISIT(REGL) is contained in DSPACE(log- 1), but that would
imply DaPACE(log, n)=NSPACE(log, n) [30].
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