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Summary

Stomatal pores surrounded by a pair of guard cells in the
plant epidermis control gas exchange for photosynthesis

in response to light, CO2, and phytohormone abscisic acid
[1, 2]. Phototropins (phot1 and phot2) are plant blue-light

receptor kinases and mediate stomatal opening via activa-
tion of the plasma membrane H+-ATPase [3, 4]. However,

the signaling mechanism from phototropins to the H+-
ATPase has yet to be determined. Here, we show that

FLOWERING LOCUS T (FT) is expressed in guard cells and
regulates stomatal opening. We isolated an scs (suppressor

of closed-stomata phenotype in phot1 phot2) 1-1 mutant of

Arabidopsis thaliana and showed that scs1-1 carries a novel
null early flowering 3 (elf3) allele in a phot1 phot2 back-

ground. scs1-1 (elf3 phot1 phot2 triple mutant) had an
open-stomata phenotype with high H+-ATPase activity and

showed increased levels of FT mRNA in guard cells. Trans-
genic plants overexpressing FT in guard cells showed

open stomata, whereas a loss-of-function FT allele, ft-1, ex-
hibited closed stomata and failed to activate the H+-ATPase

in response to blue light. Our results define a new cell-auton-
omous role for FT and demonstrate that the flowering time

genes ELF3 and FT are involved in the regulation of H+-
ATPase by blue light in guard cells.

Results and Discussion

Stomatal opening is mediated by an inside-negative electrical
potential-dependent K+ accumulation through the K+ channel
in guard cells [1, 2]. Phototropins (phot1 and phot2) activate
the plasma membrane H+-ATPase that creates electrical
potential through phosphorylation of its C terminus, which
allows subsequent binding of a 14-3-3 protein [3, 4]. Since
the phot1 phot2 double mutant of Arabidopsis thaliana
exhibits both downward curling leaves and closed stomata
under light [3, 5] (Figures 1A and 1B), we expected that the
disruption of common negative regulators of leaf flattening
and stomatal opening would restore both phenotypes in
phot1 phot2. To obtain such mutants, we selected revertants
*Correspondence: kinoshita@bio.nagoya-u.ac.jp
showing leaf flattening from 160,000 M2 phot1 phot2 plants
treated with ethyl methanesulphonate (Figure 1A). We next
examined their stomatal apertures in the epidermis and
successfully isolated eight open-stoma mutants, which we
designated as scs (suppressor of closed stomata phenotype
in phot1 phot2) (Figure 1B). Of these, scs1-1 was recessive
and showed early flowering, suggesting that SCS1 is a
common suppressor of leaf flattening, stomatal opening, and
early flowering (see Figure S1 available online).
We then analyzed the stomatal responses of scs1-1 in more

detail (Figure 1C). The wild-type stomata opened when
exposed to light, whereas those of phot1 phot2 did not. The
stomata of scs1-1 opened widely in darkness, and exhibited
a closing response with the application of either the phytohor-
mone abscisic acid (ABA) or vanadate and erythrosine B (EB),
which inhibit plasma membrane H+-ATPase [4, 6]. Both ATP
hydrolysis and H+-ATPase phosphorylation increased in
response to blue light in wild-type guard-cell protoplasts
(GCPs), but this was not the case in the GCPs of phot1 phot2
(Figures 1D and 1E). Note that both processes (i.e., ATP hydro-
lysis and H+-ATPase phosphorylation) were enhanced in
scs1-1 not exposed to blue light, but the amount of H+-ATPase
remained unchanged. The results indicate that stomatal
opening in scs1-1 is due to the sustained enhancement of
H+-ATPase activity in guard cells and not to an inhibition of
ABA-induced stomatal closure.
To identify the SCS1 locus in phot1 phot2, we performed

map-based cloning, which revealed that scs1-1 had a single
nucleotide substitution in EARLY FLOWERING 3 (ELF3) (Fig-
ure S2D) [7]. This mutation was localized in the splicing recog-
nition site of the second intron and produced a missplicing of
ELF3 mRNA [8] (Figure 2A). The ELF3 protein was found by
immunological assay in the guard cells of wild-type and
phot1 phot2, but was not seen in scs1-1 (Figure 2B; see also
Figure S2G). The transformation of the wild-type genomic
ELF3 gene with its own promoter into scs1-1 (gELF3/scs1-1)
complemented all phenotypes that had been lost in scs1-1
(Figure 2D; see also Figure S1), indicating that ELF3 is
a common negative regulator of phototropin-mediated leaf
flattening and stomatal opening. Therefore, we renamed the
scs1-1mutation as elf3-201. The stomata of the elf3-201 single
mutant, which had been obtained by crossing scs1-1 with gl1,
opened as widely as those of scs1-1 (elf3-201 phot1 phot2
triple mutant) (Figure S2E). An ELF3 nonsense mutant, elf3-1
[7], also exhibited the open-stomata phenotype (Figure S2E).
These results demonstrate that ELF3 is expressed in guard
cells and that an ELF3 deficiency is responsible for the open-
stomata phenotype. We obtained four allelic mutants of
ELF3 in this screening (Figures S2A–S2D).
The elf3 mutants have been identified previously as early-

flowering mutants under short days [9]. ELF3 negatively
regulates the transcription of a florigen FLOWERING LOCUS
T (FT), and therefore the elf3mutation greatly elevates the tran-
scription of FT in leaves, leading to accelerated flowering [10].
Moreover, it has been demonstrated that FT-overexpressing
plants show up-curled rosette leaves in addition to early flow-
ering phenotype [11]. These results suggest that leaf flattening
and open stomata phenotypes in scs1-1 is probably due to
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Figure 1. Stomatal Aperture and Plasma Membrane H+-ATPase Activity of scs1-1

(A) Mature rosette leaves of wild-type (WT), phot1 phot2 (p1 p2), and scs1-1 plants. Scale bar represents 1 cm.

(B) Typical stomata in the epidermis, which was illuminated with blue light under background red light for 3 hr. Scale bar represents 5 mm.

(C) Stomatal apertures under various conditions. Light conditions were the same as in (B). ABA, 20 mM ABA; vanadate, 1 mM vanadate; EB, 30 mM EB.

Data represent the means of 45 measurements with standard deviations (SDs). Experiments repeated on three occasions yielded similar results.

(D) ATP hydrolysis by H+-ATPase in GCPs. The GCPs were illuminated by red light (600 mmol m22 s21), with a 30 s blue-light pulse (100 mmol m22 s21) super-

imposed on the red light. R, red light; R+B, 2 min after the onset of blue light. Data represent the means of three independent measurements, with SDs.

(E) Phosphorylation-dependent binding of 14-3-3 protein to the H+-ATPase and the amount of the H+-ATPase in the GCPs were assayed with protein blots

and immunoblots, respectively. Since the amount of 14-3-3 protein bound to H+-ATPase is proportional to the phosphorylation levels of H+-ATPase [4],

phosphorylation levels were estimated by protein blot analysis with GST-14-3-3 as a probe. The GCPs were illuminated as in (D).

Experiments repeated on three occasions yielded similar results. See also Figure S1.
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overexpression of FT. Then, we examined expression of FT in
guard cells. RT-PCR experiments showed that the FT tran-
script was present in GCPs isolated from either the wild-type
or phot1 phot2 (Figure 2A). There was no contamination of
these GCPs by mesophyll cells (Figure S2F) [12–14]. To show
the expression of FT in guard cells, we performed a promoter
analysis with the FT promoter (FT::GUS/wild-type) [15]. A GUS
stain was found in the guard cells of young rosette leaves but
was not seen inmature leaves (Figure 2E). This result wasmost
probably due to the low levels of expression of GUS in mature
rosette leaves; the GUS transcript was detected by RT-PCR in
GCPs from mature leaves (Figure 2F). In addition, FT protein
having a molecular mass of 19 kDa was detected in GCPs by
immunological assay (Figure 2G). These results indicate that
FT is expressed in guard cells. Interestingly, the levels of the
FT transcript were greatly enhanced in the scs1-1 GCPs (Fig-
ure 2A). Quantitative-PCR analysis revealed that expression
levels of FT were 50 times higher in GCPs from scs1-1 than
in those from wild-type and the background phot1 phot2 (Fig-
ure 2C). Hence, we suspected that FT acts as a positive regu-
lator of stomatal opening.

To test our hypothesis, we generated transgenic lines with
the CaMV35S promoter for constitutive FT expression in the
whole plant [16] (35S::FT/phot1 phot2), the CER6 promoter
for epidermal tissue containing guard cells [17] (CER6::FT/
phot1 phot2), and the KAT2 promoter for the guard cells and
phloem of a minor vein [18] (KAT2::FT/phot1 phot2) (Figures
S3A and S3B). As expected, the stomata of all of the FT-trans-
genic plants opened widely, whereas ABA and H+-ATPase
inhibitors decreased the aperture (Figures 3A and 3B). To
detect the expression of the FT transgene in guard cells, we
transformed the plants with FT-GFP under CER6 promoter or
a strong guard-cell promoter, GC1 [14] (Figures 3C–3F). Both
CER6::FT-GFP/phot1 phot2 and GC1::FT-GFP/phot1 phot2
plants showed an open-stomata phenotype, and an FT-GFP
signal was detected in the nucleus and cytosol of guard cells.
By contrast, similar expression of ft-1-GFP (CER6::ft-1-GFP/
phot1 phot2), which exhibited a loss of FT function by
a missense mutation (Gly171 to Glu) [19], did not induce
stomatal opening. The results indicate that an overexpression
of FT in guard cells induces stomatal opening and that FT
serves as an H+-ATPase activator. Note that both early flower-
ing and open stomata phenotypes were observed in FT-trans-
genic plants (Figures 3A and 3B; see also Figure S3A). It would
initially seem possible that flowering influences stomatal aper-
ture. However, this is not the case.We compared light-induced
stomatal opening between 4-week-old nonflowering plants
and 6-week-old flowering plants. Both plants exhibited similar
stomatal responses and expressed FT at the same levels
(Figures S3C and S3D).
We analyzed the stomatal responses of ft-1, an FT loss-of-

function mutant [19]. As expected, the stomata in ft-1 and
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Figure 2. High FT Expression and Absence of

ELF3 Protein in Guard Cells of scs1-1

(A) RT-PCR analyses of ELF3, FT, and TUB2 in

GCPs from the wild-type (WT), phot1 phot2 (p1

p2), and scs1-1. TUB2, TUBELIN BETA CHAIN2

as a control.

(B) Immunoblots of ELF3 and the H+-ATPase

proteins in GCPs. Asterisk indicates an unknown

protein recognized by ELF3 antibodies. The solu-

bilized protein (50 mg protein per lane for ELF3

and 10 mg protein per lane for the H+-ATPase)

was subjected to SDS-PAGE.

(C) Quantitative-PCR analysis of FT in GCPs from

WT, p1 p2, and scs1-1. Data represent the means

of three independent measurements, with SDs.

(D) Stomatal apertures of WT, p1 p2, scs1-1, and

genomic ELF3/scs1-1 (gELF3/scs1-1) under

light-exposure conditions. gELF3/scs1-1, wild-

type genomic ELF3 gene with the native

promoter, was transformed into scs1-1. Data

represent the means of 45 measurements with

SDs (Student’s t test, *p < 0.01, pairs for

Student’s t test are indicated with brackets). #,

line number of transgenic plants.

(E) GUS stain of FT::GUS/wild-type plants. Plants

were subjected toGUS staining at ZT12 on day 16

[15]. Left, young rosette leaf. Right, magnification

of leaf showing GUS stain in guard cells.

(F) RT-PCR analyses for transcripts of GUS and

TUB2 in GCPs from WT and promoter FT::GUS/

wild-type (FT::GUS) plants. 35 cycles of PCR

were performed.

(G) Immunoblots of FT in GCPs from WT. The

solubilized protein (100 mg protein) was sub-

jected to SDS-PAGE. Preserum: preserum at

1:3000 was used for first antibodies, anti-FT +

rFT; FT antibodies at 1:3000 incubated with

0.5 mM recombinant FT as an antigen was used

for first antibodies, anti-FT; FT antibodies at

1:3000 was used for first antibodies. Lower

panels represent immunoblots of 14-3-3 protein

as a loading control using 14-3-3 antibodies [4].

All experiments repeated on three occasions

yielded similar results. See also Figure S2.

Current Biology Vol 21 No 14
1234
scs1-1 ft-1 (elf3-101 phot1 phot2 ft-1 quadruple mutant) ex-
hibited reduced light-induced stomatal opening (Figures 4A
and 4B; see also Figure S4A). The activation and phosphoryla-
tion of the H+-ATPase by blue light were severely inhibited in
ft-1 GCPs (Figures 4C and 4D). However, the H+-ATPase acti-
vator, a fungal toxin fusicoccin (FC) [3], induced activation of
the H+-ATPase and stomatal opening in ft-1 (Figures 4B-4D).
The amounts of H+-ATPase and phototropins in ft-1 did not
differ from those of the wild-type GCPs (Figure 4D; see also
Figure S4B). These results suggest that the ft-1 mutation
does not affect phototropins, H+-ATPase, or any of the other
downstream components responsible for regulating stomatal
opening. An FT nonsensemutant, ft-2 [19], and an FT knockout
mutant, ft-101 [15], also exhibited the closed-stomata pheno-
type (Figure S4A). Thus, we conclude that a component of
blue-light signaling is deficient or inac-
tive in guard cells of ft mutants and
that FT acts either as a regulator of this
component or as the component itself.
Open-stomata phenotype of scs1-1
and closed-stomata phenotype of ft
mutants are probably not due to alterna-
tions in endogenous concentrations of
ABA, because the ABA levels in whole leaves did not differ
from those in background plants (Figure S2H). Note that
MOTHER OF FT AND TFL1 (MFT), which is a homolog of FT
and TERMINAL FLOWER 1 (TFL1), has been found to regulate
seed germination via ABA signaling pathway [20]. Further
investigations are needed to examine detailed ABA sensitivity
of stomata in scs1-1 and ft mutants.
ELF3 encodes a nuclear protein of unknown biochemical

activity and regulates photoperiodic floral induction [7, 21–
23]. In photoperiodic floral induction, leaf sensing of day length
via photoperiod-sensing photoreceptors, i.e., phytochrome A
(phyA), phyB, cryptochrome1 (cry1), and cryptochrome2
(cry2), generate a signal that regulates FT expression [24,
25]. Downstreamof photoreceptors, ELF3 negatively regulates
the expression of bothGIGANTEA (GI) andCO [10]. It has been



D

S
to

m
at

al
 a

pe
rt

ur
e

 (
µ

m
)

p1 p2 CER6::FT-GFP CER6::ft-1-GFP

p1 p2 35S::FT#1 CER6::FT#1 KAT2::FT#1
A

p
1
 p

2

3
5
S
::
F
T
#1

3
5
S
::
F
T
#2

C
E
R
6
::
F
T
#1

C
E
R
6
::
F
T
#2

K
A
T
2
::
F
T
#1

K
A
T
2
::
F
T
#2

B

CER6::FT-GFP/p1 p2 CER6::ft-1-GFP/p1 p2

C

S
to

m
at

al
 a

pe
rt

ur
e 

(µ
m

)

N

N

E

N

N

S
to

m
at

al
 a

pe
rt

ur
e

 (
µ

m
)

GC1::FT-GFP/p1 p2#1 F

p1 p2 #1 #2

GC1::FT-GFP

N

N

*

*

*
*

*
*

*

* *

Figure 3. Wide Opening of Stomata of FT-Transgenic Plants

(A) Typical stomata of phot1 phot2 (p1 p2), CaMV35S::FT/p1 p2 (35S::FT),

CER6::FT/p1 p2 (CER6::FT), and KAT2::FT/p1 p2 (KAT2::FT). Epidermis

was illuminated as described in Figure 1B. Scale bar represents 5 mm. #,

line number of transgenic plants.

(B) Stomatal apertures of various transgenic plants under different treat-

ment conditions. The conditions were the same as in Figure 1C. Data repre-

sent the means of 45 measurements with SDs (Student’s t test, *p < 0.01,

Student’s t test was performed between p1 p2 and transgenic plants under

light condition).

(C) Bright-field and fluorescent images of typical stomata from CER6::FT-

GFP/p1 p2 and CER6::ft-1-GFP/p1 p2. The epidermis was illuminated as

described in Figure 1B. Scale bars represent 5 mm. N, nucleus.

(D) Stomatal apertures of phot1 phot2 (p1 p2), CER6::FT-GFP/p1 p2

(CER6::FT-GFP), and CER6::ft-1-GFP/p1 p2 (CER6::ft-1-GFP). Conditions

were the same as in Figure 1C. Data represent the means of 45 measure-

ments with SDs (Student’s t test, *p < 0.01, a pair for Student’s t test is

indicated with bracket).

(E) Bright-field and fluorescent images of typical stomata from GC1::FT-

GFP/p1 p2. The epidermis was illuminated as described in Figure 1B. Scale

bars represent 5 mm. N, nucleus.
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demonstrated that CO directly upregulates expression of FT
[26, 27]. The GI-CO-FT proteins act in this order at the core
of the photoperiodic pathway [24]. When FT protein expresses
in the phloem companion cells of leaves, FT protein moves
through the phloem to the shoot apex, and, upon arriving at
the shoot apical meristem (SAM), becomes bound to the
bZIP transcription factor, FD [28, 29]. The resulting FT/FD
complex induces the transcription of floral meristem identity
genes such as a MADS-box transcription factor APETALA1
(AP1), which promotes the transition from the vegetative to
the reproductive stage in the SAM [30]. The present results
indicate that FT is expressed in guard cells and acts as a posi-
tive regulator of stomatal opening. We had expected to detect
in guard cells the expression of other components involved in
photoperiodic floral induction. We thus identified by RT-PCR
the transcripts of major components (PHYA, PHYB, CRY1,
CRY2, GI, CO, FD, TFL1, AP1, and FUL) in the floral induction
pathway [24, 25]. As shown in Figure 4E, all of these compo-
nents were transcribed in both the wild-type and the phot1
phot2 guard cells, suggesting that FT induces stomatal
opening via a similar pathway to that of floral induction (Fig-
ure 4F). It is worthy of note that expression levels of FD and
TFL1, a key antagonist of FT, are greatly reduced in scs1-1
guard cells.
We found that the transcript of AP1, which is known to be

a downstream component of FT in floral induction [28, 29],
was enhanced in the guard cells of scs1-1 (Figure 4E) and
was decreased in those of ft-1 (Figure S4C). The stomata in
AP1-transgenic plants (CER6::AP1/phot1 phot2) opened
widely (Figures S4D and S4E). These findings suggest that
FT may induce stomatal opening via AP1 in guard cells.
However, it should be noted that a loss-of-function mutant,
ap1-10, showed normal stomatal responses (Figure S4F),
which was probably due to redundant role(s) of other MADS-
box transcription factor(s) such as FUL [31] with respect to
the role played by API in guard cells. Indeed, we found expres-
sion of FUL in guard cells (Figure 4E). Further investigations
are needed to clarify this.
ELF3 is also shown to be involved in the gating of photic

input to the circadian clock via physical interaction with phyto-
chrome B (phyB) [7, 21–23]. The stomatal aperture shows
circadian rhythms under constant-light conditions [32] and
the amount of FT transcript also reflects circadian rhythm
under the same conditions [33]. Therefore, the circadian
rhythm of the stomatal aperture may be brought about by
diurnal changes in the amount of FT via ELF3. In support of
this hypothesis, elf3-201 exhibited a continuously open-
stomata phenotype under conditions of constant exposure
to light. In contrast, ft-1, an FT loss-of-function mutant, lacked
rhythmicity, and instead exhibited a continuously closed-
stomata phenotype, and wild-type plants exhibited a clear
circadian rhythmicity of the stomatal aperture under the
same conditions (Figure S4G). In addition, our results imply
that guard cells can sense photoperiods through a similar
pathway to that of floral induction and that photoperiodic
(F) Stomatal apertures of phot1 phot2 (p1 p2) and GC1::FT-GFP/p1 p2

(GC1::FT-GFP). Conditions were the same as in Figure 1C. Data represent

the means of 45 measurements with SDs (Student’s t test, *p < 0.01, pairs

for Student’s t test are indicated with brackets). #, line number of transgenic

plants.

All experiments repeated on three occasions yielded similar results. See

also Figure S3.
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Figure 4. FT Is Required for Blue Light-Induced

Stomatal Opening and H+-ATPase Activation

(A) Typical stomata in wild-type (WT) and ft-1

plants. The epidermis was illuminated as in Fig-

ure 1B. Scale bar represents 5 mm.

(B) Stomatal apertures under different treat-

ments. Light, red and blue light as in (A). FC, the

epidermis was incubated with 10 mM FC for 3 hr.

Data represent the means of 45 measurements

with SDs (Student’s t test, *p < 0.01, a pair for

Student’s t test is indicated with bracket). Exper-

iments repeated on three occasions yielded

similar results.

(C) ATP hydrolysis by the H+-ATPase in GCPs.

The GCPs were illuminated as in Figure 1D. FC,

5 min after addition of 10 mM FC. Data represent

the means of three independent measurements

with SDs (Student’s t test, *p < 0.05, a pair for

Student’s t test is indicated with bracket).

(D) Phosphorylation-dependent binding of 14-3-3

protein to the H+-ATPase and the amount of

H+-ATPase in the GCPs, as in (C). Experiments

repeated on three occasions yielded similar

results.

(E) RT-PCR analyses of transcripts of PHYA,

PHYB, CRY1, CRY2, GI, CO, FD, TFL1, AP1,

FUL, and TUB2 in GCPs from WT, phot1 phot2

(p1 p2), and scs1-1 plants. Experiments repeated

on three occasions yielded similar results.

(F) A possible convergence of phototropin-medi-

ated signaling and the photoperiodic pathway

including ELF3 and FT in guard cells. X represents

an unidentified FT- and/orAP1-regulated compo-

nent in blue-light signaling.

See also Figure S4.
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information significantly affects stomatal movement via FT. In
accordance with this, we found that light-induced stomatal
openings were larger in plants grown under long-day
compared to short-day conditions and the magnitude of
response was related to the amount of FT transcript (Figures
S4H and S4I). These results suggest that larger stomatal
opening, which results in enhancement of photosynthesis
and transpiration, may be beneficial to the flowering plants.
Further investigations are needed to clarify the physiological
significance of regulation of stomatal movements by FT.

Notably, FT protein and its orthologs, which are expressed in
leaves, act as a mobile long-distance signaling component of
flowering [34–38]. Our study suggests that FT is expressed
autonomously in guard cells and may induce the expression of
downstream components such as AP1. Since guard cells are
not connected to neighboring cells via plasmodesmata [39],
FT protein is probably synthesized and functional in guard cells
in amanner independent ofmobile FT. To the best of our knowl-
edge, this is the first evidence of a cell-autonomous role for FT.

Recently, FT and its orthologs have been suggested to func-
tion as general growth regulators in addition to their florigenic
activity [40–42]. Here, we provide evidence that FT plays a
role in regulating the stomatal aperture
via activation of the plasma membrane
H+-ATPase (Figure 4F). TheH+-ATPases,
which are ubiquitous in all plant cell
types investigated, provide the driving
force for the uptake of numerous nutri-
ents, including K+, NO3

2, SO4
22, PO4

32,
amino acids, peptide, and sucrose, by
coupling with organ-specific transporters [43]. Such activities
are essential for cell growth and development [44]. Thus, FT
may act as a general growth regulator by modulating
H+-ATPase activity. Further investigations will be required
whether activation of the H+-ATPase by FT is specific in guard
cells or not. In addition, identificationof thecomponent(s) regu-
lated by FT and/orAP1 in guard cells will be important for eluci-
dating the molecular mechanisms of blue-light responses in
stomata and may provide clues to a better understanding of
FT involvement in floral induction.
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Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and three tables and can be found with this article online

at doi:10.1016/j.cub.2011.06.025.
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