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SUMMARY

Here we identify a key role for the homeodomain
proteins Extradenticle (Exd) and Homothorax (Hth)
in the specification of muscle fiber fate inDrosophila.
exd and hth are expressed in the fibrillar indirect flight
muscles but not in tubular jumpmuscles, andmanip-
ulating exd or hth expression converts one muscle
type into the other. In the flight muscles, exd and
hth are genetically upstream of another muscle iden-
tity gene, salm, and are direct transcriptional regula-
tors of the signature flight muscle structural gene,
Actin88F. Exd and Hth also impact muscle identity
in other somatic muscles of the body by cooperating
with Hox factors. Because mammalian orthologs of
exd and hth also contribute to muscle gene regula-
tion, our studies suggest that an evolutionarily
conserved genetic pathway determines muscle fiber
differentiation.

INTRODUCTION

The skeletal muscles of vertebrates are composed of heteroge-

neous individual fiber types that have distinct biochemical,

mechanical, structural, and molecular characteristics (Punkt,

2002; Schiaffino et al., 1970; Toniolo et al., 2004). The differential

expression of fiber-specific muscle genes distinguishes fibers at

the molecular level and is used to classify fibers into distinct

categories (Schiaffino and Reggiani, 2011). At the functional

level, the abundance of particular fiber types in individual skeletal

muscles is causatively related to muscle performance (reviewed

in Zierath andHawley, 2004), and a shift in fiber type ratio is char-

acteristic of some congenital human myopathies (D’Amico and

Bertini, 2008). Nevertheless, there is still much to learn concern-

ing how muscle fiber identity is initially specified.

As in vertebrates, the somatic muscle system of the fruit fly,

Drosophila melanogaster, comprises several types of fibers.

Morphologically, there are two major muscle types in adult

Drosophila: fibrillar muscles, which are exclusively present as

indirect flight muscles and that provide the power for oscillatory

flight (hereafter, we refer to thesemuscles as flight muscles); and

tubular muscles, such as the jump muscles, leg muscles, and

abdominal body wall muscles, which are neurogenic and are

used for activities including walking and the initiation of flight
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(Bernstein et al., 1993). Molecular profiling validates themorpho-

logically visible differences between fibrillar and tubular fiber

types but also further segregates tubular muscles into distinct

subtypes. For example, jump muscles and abdominal body

wall muscles belong to the tubular type but express the muscle

actin genes Act79B and Act57B, respectively (Fyrberg et al.,

1983). The diversity of muscle fiber types, along with the genetic

tractability of the organism, make Drosophila a useful model for

studying genetic aspects of muscle fiber specification.

Some insight into how muscle fiber identity along the body

axis is controlled in Drosophila has come from demonstration

that homeotic selector (Hox) genes, such as Ultrabithorax

(Ubx), can impact fiber-specific gene expression and muscle

patterning (Roy and VijayRaghavan, 1997). However, no under-

standing of the mechanisms of possible Hox-dependent muscle

identity specification has been gained to date. Hox proteins

cooperate with the homeodomain proteins Hth and Exd to select

and bind specific DNA sequences (Gebelein et al., 2002).

Although no direct targets for these complexes have been iden-

tified in the muscle system, there is evidence that the vertebrate

orthologs of Exd and Hth—termed Pbx and Meis, respectively—

can contribute to the diversification of muscle types (Maves

et al., 2007). However, simple Hox-dependent fiber identity regu-

lation fails to explain how two substantially different fiber types in

Drosophila, the flight and jump muscles, can both arise from

myoblasts in the second thoracic segment that do not express

homeotic selector genes (Roy et al., 1997; Roy and VijayRagha-

van, 1997).

Here, we define a molecular mechanism that specifies fiber

identity between the flight muscles and jumpmuscles, mediated

by the homeodomain factors Hth and Exd. Since Exd and Hth or-

thologs are found in mammals as the muscle-expressed factors

Pbx and Meis, respectively, our studies suggest a role for evolu-

tionarily conserved factors in muscle fiber specification.
RESULTS

Identification of exd and hth as Critical Factors for Adult
Muscle Gene Expression
To identify transcription factors that control fiber identity, we

conducted RNA interference (RNAi)-based genetic screening

using fiber-specific reporters as readouts. To achieve this, we

first identified and cloned fiber-specific enhancers from the

fibrillar flight muscle-specific flightin gene (Vigoreaux et al.,

1993) and the tubular jump muscle-specific Troponin C at 41C
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mailto:rcripps@unm.edu
http://dx.doi.org/10.1016/j.devcel.2012.08.004


Figure 1. Identification of exd and hth as

Important Determinants for Fiber-Specific

Enhancer Activities

(A) Schematics of fiber-specific enhancers (green

rectangles) from fln and TpnC41C genes and their

location relative to the exons of the respective

genes (blue boxes). Rightward arrows indicate

transcription start sites. Lower panels for each

gene show lacZ reporter activity in flight (asterisks)

and jump (outlined) muscles in the thorax of adult

flies. Reporter activity was assessed via immu-

nofluorescent detection of b-gal on cryosections

of pharate adults (green), counterstained with

a fluorescent conjugate of phalloidin to identify

actin filaments (red). Note that fln-lacZ expression

is specific to the flight muscles, whereas

TpnC41C-lacZ expression is strong in the jump

muscles but absent in the flight muscles.

(B) Whole-fly reporter activities (green bars) and

relative sizes of thoracic muscles (red bars) in

control flies (WT) and flies with muscle-specific

knockdown of exd (exdY) or hth (hthY). For b-gal

assays, WT was normalized to 100%. Error bars

represent standard deviation from four measured

samples. Muscle size was calculated as a ratio of

total muscle area to thorax area on frozen

sections.

(C) Accumulation of Exd and Hth proteins in the

thorax of pharate adults. Note the presence of Exd

(green) and Hth (Red) staining in the flight muscles

(asterisks) but not in the jump muscle (outlined).

F-actin (visualized using fluorescent phalloidin,

gray) is included to show muscles and nuclei are

visualized using DAPI (blue).

(D) Localization of Exd in control (WT) and hth

knockdown (hthY) flight muscles. Nuclear enrich-

ment of Exd (green) disappears in hth knockdown

muscles.

See also Figure S1.
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gene (Herranz et al., 2004). Transgenic flies harboring these

enhancers fused to LacZ reporters selectively expressed

b-galactosidase (b-gal) in flight and jump muscles, respectively

(Figure 1A). The reporters were next crossed into a genetic back-

ground of the 1151-Gal4 transgenic line (Anant et al., 1998) that is

used to specifically control binary gene expression (Brand and

Perrimon, 1993) in the developing adult muscles. The resulting

two lines were independently crossed to a library of UAS-RNAi
Developmental Cell 23, 664–673, Se
lines (Dietzl et al., 2007) targeting

transcription factors encoded by the

Drosophila genome, and their offspring

were quantitatively assayed for b-gal

activity.

From 70 knockdowns assayed (for

details, see Table S1 and Figure S6E

available online), selective knockdown

of extradenticle (exd) or homothorax

(hth) caused the flight muscle-specific

reporter to be detected at reduced levels,

whereas in the same knockdowns the

jumpmuscle-specific reporter profoundly

increased in activity (Figure 1B). Of the
genes assayed, exd and hth knockdowns were the only ones

that had this effect upon reporter activities (Table S1). Similar

effects were observed using independent exd or hth RNAi

constructs targeted to different regions of each gene, several

of which had no predicted off-targets (see Figure S6E and Exper-

imental Procedures for details of knockdowns). Moreover, the

changes in reporter activities could not be simply explained by

changes in muscle size, as changes in muscle area measured
ptember 11, 2012 ª2012 Elsevier Inc. 665



Figure 2. Dynamics of exd and hth Expression during Myogenesis of Flight and Jump Muscles

(A) Muscle templates in 16 hr APF pupa of the rP298-nucLacZ transgenic line, wherein lacZ expression (gray) is restricted to the muscle founder cells (Nose et al.,

1998; Ruiz-Gómez et al., 2000). Note that Exd (green) and Hth (red) are present in nuclei of flight muscle founder cells (arrowheads in panel at left) but not in the

surrounding fusion-competentmyoblasts (arrows, also verified in Figure S2). Founder cells of the jumpmuscle (panels at right) are characteristically located at the

periphery of the myoblast pool, and only weakly accumulate Exd and Hth.

(B) Nascent fibers of 30 hr APF pupa, showing continuing Exd and Hth presence only in flight muscles (panels at left). Newly formed myofibrils are detected with

fluorescent phalloidin (gray) highlight fused myofibers. Developing fibers of the jumpmuscle (arrowheads in panels at right), as well as unfused myoblasts (arrow)

do not accumulate Exd (green) and Hth (red).

See also Figure S2.
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in thoraces of knockdown flies did not correlate with the changes

in reporter activities (Figure 1B).

To understand if exd and hth have a direct impact uponmuscle

biology, we carried out antibody staining of cryosections from

wild-type pharate adults to localize Exd and Hth accumulation.

These stains revealed that exd and hth gene products were de-

tected in the nuclei of almost all somatic muscles, including the

flight muscles, but not in the jump muscle (Figure 1C). The levels

of Exd and Hth accumulation varied noticeably among different

tubular muscle types, being somewhat lower in leg muscles

and more robust in abdominal body wall muscles (Figure S1).

Nevertheless, the most striking difference was observed

between the flight muscles and jumpmuscles (Figure 1C). More-

over, RNAi knockdown of hth also resulted in disappearance of

the Exd protein from muscle nuclei (Figure 1D), consistent with

the requirement of Hth protein for nuclear import of Exd (Rieck-

hof et al., 1997). Altogether, these data showed that Exd and Hth
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are unequally expressed in different muscles, and, while their

presence in the flight muscles is required for flight muscle

reporter activity, their loss coincided with a gain in jump muscle

reporter activity.

To determine if exd and hth expression correlated with the

earliest stages of adult muscle development, we assessed their

expression in developing pupae at 16 hr after puparium forma-

tion (APF) and at 30 hr APF. We specifically concentrated upon

the flight and jump muscles, given the focus of our study and

the striking differences in Exd and Hth accumulation in the two

muscle types. The earlier time point represents the onset of

myoblast fusion, whereas the 30-hr APF time point represents

the onset of fiber-specific gene expression (Bryantsev et al.,

2012). The earliest expression of exd and hth in the flight muscle

precursors mapped to single cells with large nuclei, that were

surrounded by myoblasts containing smaller nuclei (Figure 2A,

left panels). These single cells represented the founder cells for
evier Inc.



Figure 3. hth and exd Control the Muscle-Specific Properties of

Flight and Jump Muscles

Fiber-specific features of flight and jump muscles in control (WT), hth knock-

down (hthY), and exd plus hth ectopic expression (exd[ hth[). Note the
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Developmen
the flight muscles, since Exd and Hth colocalized with b-gal

produced from the founder cell reporter, rP298-nucLacZ (Nose

et al., 1998; Ruiz-Gómez et al., 2000). The surrounding cells

were identified as myoblasts, since they expressed the

muscle-specific marker MEF2 (Figure S2A). At this early stage,

extremely low levels of Exd and Hth were sometimes observed

in founder cell nuclei for the jump muscle (Figure 2A, jump

muscle). However, whereas the Exd and Hth accumulation in

the flight muscle nuclei was sustained through myoblast fusion

and present at the onset of myofibrillogenesis (Figure 2B, ‘‘flight

muscle’’), these proteins were no longer detected in the jump

muscles after the initiation of myoblast fusion (Figure 2B,

‘‘jump muscle’’). These findings demonstrated that Exd and

Hth are present in the flight muscles from their earliest time

points in development. Moreover the expression of these two

genes in flight muscle founder cells indicated that they might

be critical determinants of flight muscle fate.

exd and hth Control a Cell Fate Decision between Flight
and Jump Muscle Identities
Based upon the changes we observed in reporter gene expres-

sion in our knockdowns, and upon the sustained expression of

exd and hth in the flight muscles but not the jump muscles, we

hypothesized that the change in fiber-specific reporter expres-

sion in exd and hth knockdowns reflected a transition in flight

muscle identity toward that of the jump muscle. The fibrillar fiber

type of the flight muscles in wild-type adults shows several char-

acteristic features (Figures 3A–3C, WT flight muscle), when

compared to the tubular fiber type of the jumpmuscle (Bernstein

et al., 1993) (Figures 3A–3C, WT jump muscle). The fibrillar

muscles have: narrow H-zones in the cylindrical myofibrils, rela-

tively weak coordination of Z discs in adjacent myofibrils,

dispersed nuclei and T-tubule systems, and mitochondria inter-

mingled with the myofibrils. By contrast, the jump muscles have

cuboidal myofibrils with broad H-zones, myofibrils held in

register relative to each other, nuclei located in a central lumen,

an intricate T-tubule system, and mitochondria that segregate

into a distinct zone between rows of myofibrils. In addition, the

flight muscles show high levels of succinate dehydrogenase

(SDH) activity and very low levels of acetyl cholinesterase

(ACh) activity (Deak, 1977), whereas the converse is true of the

jump muscles (Figures 3D and 3E, WT).

Flies with knockdowns of either hth or exd showed a striking

transformation of the flight muscles into a jump muscle fate.

We show here representative data for hth knockdowns;
switching between flight and jump muscle properties upon manipulations of

hth and exd expression. The following features are both distinct between flight

and jump muscles, and altered upon manipulation of exd/hth expression.

(A) Patterns of myofibril striation visualized using phalloidin; H-zones are

indicated.

(B) Shape and organization of myofibrils, visualized by electron microscopy

of muscle transverse sections; myofibrils are highlighted in pink; MT, mito-

chondria.

(C) Nuclear positioning and T-tubule network on muscle transverse sections,

revealed by DAPI (blue) and anti-Dlg immunostaining (green), respectively.

(D and E) Histochemical detection of SDH (D) and ACh (E) in the thorax. Jump

muscles are outlined. Asterisks indicate flight muscles. Arrowheads indicate

ACh-positive nerve. J, the position of the missing jump muscle.

See also Figures S3 and S4.
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Figure 4. hth and exd Control the Molecular Identities of Flight and Jump Muscles

(A and B) Expression of characteristic structural genes in thoraces of the indicated genotypes. Asterisks mark flight muscles; jump muscles are outlined. (A)

Accumulation of the Fln protein (green), revealed by immunostaining. Muscles are visualized using phalloidin (red). In WT, Fln accumulates in the flight muscles

and not the jump muscle. Note the loss of this protein in the flight muscles of hth knockdowns, and the ectopic accumulation of Fln in the jump muscle when exd

and hth are expressed there. (B) TpnC41CmRNA expression revealed by in situ hybridization (red); #, autofluorescent nonmuscle structures. In hth knockdown,

TpnC41C transcripts are detected in the flight muscles. In exd[ hth[, several fibers of the jump muscle are negative for TpnC41C RNA.

(C) RT-PCR detection of fiber-specific genes from samples of indicated muscles from WT animals and those with exd/hth manipulations. Green and red fonts

indicate flight and jumpmusclemarkers, respectively; the pan-muscle-specificMyosin Heavy Chain (Mhc) serves as a reaction loading control. See also Figure S3

for similar effects of exd knockdown.

See also Figure S3 and S4.
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nevertheless, similar effects were observed for each of several

lines of exd or hth knockdown. Data for representative exd

knockdowns are shown in Figure S3. The hth knockdown pheno-

type also most likely represents a double knockdown for exd

plus hth, since Hth is required for nuclear localization of Exd

(Figure 1D; Rieckhof et al., 1997); in addition, we generated

a double-knockdown for both exd and hth in the adult muscles,

and the phenotype was comparable to that observed for exd or

hth knockdown alone (data not shown).

In the flight muscles of knockdown animals, myofibril and

T-tubule systemmorphology, as well as mitochondria and nuclei

localization, were more similar to those of the wild-type (WT)

jump muscle (Figures 3A–3C, labeled hth Y). Moreover, SDH

levels in the knockdowns were markedly lower than wild-type,

and ACh was upregulated in the flight muscles of knockdown

animals (Figures 3D and 3E, hthY). Clearly, loss of exd or hth

function caused a major change in flight muscle fate toward

that of the jump muscle. We note that, in the knockdowns,

the sizes of the jump muscles were strongly reduced (outlined

in Figure 3D). This might result from presumptive jump

muscle myoblasts mistakenly fusing to nascent flight muscles

that have transformed identity. Myoblast mixing between devel-

oping flight and jump muscles has been described before in

a case of experimentally denervated muscles (Fernandes and

Keshishian, 2005).

We next asked if ectopic expression of exd plus hth in the jump

muscle would transform this muscle into a fibrillar fiber type. We

used a jumpmuscle driver, Act79B-Gal4 (Bryantsev et al., 2012),
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to control expression of exd plus hth, and we subjected the

resulting flies to the same analyses described earlier. Here, we

found that the jump muscle fibers were radically altered toward

flight muscle fate (Figures 3A–3E, labeled exd[ hth[). These

data indicated that Exd and Hth collaborate to induce flight

muscle fate and that their absence leads to jump muscle identity

being specified.

To determine if the observed morphological changes in

muscle fiber identity were reflected at the molecular level, we

studied fiber-specific gene expression in cryosections of control,

knockdown, and gain-of-expression fibers. For Flightin, we

observed a loss of this flight muscle-specific protein in hth

knockdown animals, and there was an increase in the Fln protein

in the transformed jump muscle fibers upon expression of exd

plus hth using the Act79B-Gal4 driver (Figure 4A). For TpnC41C,

transcription was increased in the flight muscles in the hth

knockdown and reduced in the jump muscles upon ectopic

expression of exd plus hth (Figure 4B). In addition, we used mi-

crosampling followed by reverse transcriptase-PCR (RT-PCR)

(Bryantsev et al., 2012), to collect samples from the wild-type

and transformed flight and jump muscle fibers, and we analyzed

thesemuscle samples for fiber-specific patterns of gene expres-

sion (Figure 4C). As observed for the physiological andmolecular

markers described earlier, there was a striking transition of the

flight muscle to a jump muscle fate when exd or hth were

knocked down, based upon loss of flight muscle markers. There

was also a concomitant gain of the jumpmuscle-specific expres-

sion profile in the flight muscles of these knockdown individuals.
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We also documented at the molecular level jumpmuscles taking

on flight muscle fate when exd and hth were ectopically coex-

pressed. We note that, in this case, not all of the individual fibers

comprising the jump muscle were completely transformed. This

might result either from a requirement for factors in addition to

exd and hth to completely alter jump muscle fate or from incor-

rect timing of expression initiation, given that the Act79B-Gal4

driver has a relatively late onset in adult myogenesis.

Overall, our data strongly confirmed the radical changes in

flight and jump muscle phenotypes that resulted from manipula-

tion of exd and hth expression. While we cannot assess every

single fiber-specific property of themuscles, the transformations

in ultrastructure, T-tubule morphology, patterns of gene expres-

sion andmuscle cell biochemistry lead strongly to the conclusion

that Exd/Hth specify flight muscle versus jump muscle fate.

Experimentally induced changes in fiber-specific expression

were not limited to the flight and jump muscles. We de-

tected abnormal expression of the TpnC41C-LacZ reporter in

abdominal wall muscles in response to hth knockdown (Fig-

ure S4). Notably, these muscles do not express TpnC41C gene

or its reporter under normal conditions (Figure S4; Herranz

et al., 2004). This observation supports the conclusion that Exd/

Hth contribute to muscle identity in other muscles of the body.

Exd and Hth Control a Regulatory Cascade Specifying
Fibrillar Muscle Fate
The zinc finger transcription factor spalt-major (salm) was

recently shown to promote flight muscle fate in Drosophila

(Schönbauer et al., 2011). To understand the role of salm in the

context of exd- and hth-mediated identity specification, we

analyzed salm expression by quantitative RT-PCR (RT-qPCR)

and by immunofluorescence in normal and transformed

muscles. In WT samples, significant salm expression was de-

tected in the flight muscles, with lower levels consistently

observed in the jump muscles. Jump muscle transcript levels

were approximately 40% of that in the flight muscles (Figures

5A and 5B). This difference was also observed in microsamples

of muscle tissues, using endpoint RT-PCR (Figure 5C). Apart

from the flight and jumpmuscles, Salm protein was not detected

in any other muscle (Schönbauer et al., 2011; data not shown).

These observations suggest that the presence of Salm alone is

not sufficient to induce flight muscle fate. In hth knockdowns,

there was a reduction in salm expression in the transformed flight

muscles, as detected both by endpoint RT-PCR and by immuno-

fluorescence (Figures 5C and 5D, hthY). When exd plus hthwere

expressed in the jump muscle, those fibers that were trans-

formed toward fibrillar muscle fate showed an increase in salm

expression compared to control jump muscles (Figures 5C and

5D, exd[ hth[). We also carried out the converse experiment,

where salm expression was manipulated in the adult muscles:

under knockdown conditions, Salm levels were undetectable

by immunofluorescence (Figure S5, salmY), yet Exd and Hth

levels in the flight muscles were unchanged (Figure 5E, flight

muscle, salmY). When salm was overexpressed in the jump

muscle (Figure S5, salm[), there was no induction of exd nor

hth in the jumpmuscle, and there was no evidence of a transition

of the jump muscle to fibrillar muscle fate (Figure 5E, jump

muscle, salm[). While these epistatic interactions can be difficult

to interpret since the cells are also changing fate, the data
Developmen
strongly suggest that expression of exd and hth are required

for the elevated expression of salm in the flight muscles and

provisionally place exd/hth genetically upstream of salm in a

pathway for fiber type specification. Since high levels of salm

expression only correlated with the transformed jump muscle

fibers upon exd/hth expression, there are perhaps further inter-

actions between these factors to ensure mutual enrichment in

flight muscles. In addition, since there is still transformation of

the flight muscles to a tubular muscle fate in salm knockdowns,

despite sustained accumulation of Exd and Hth in these mutants

(Schönbauer et al., 2011; Figure 5E, salmY), at least some of the

function of Exd and Hth to promote fibrillar fiber fate must occur

through upregulation of salm.

Exd/Hth Act to Regulate Expression of Structural Genes
across Different Fiber Types
To date, no direct targets of Exd/Hth or Salm have been identi-

fied in muscles. Within the full-length Act88F enhancer (Bryant-

sev et al., 2012) that shows flight muscle activity (Figure 6A),

we identified an evolutionarily conserved 52 base pair (bp)

core element that we termed Act88F(Reg1), or Reg1 (Figure 6B).

When Reg1 was tested on its own for in vivo enhancer activity,

this small enhancer retained flight muscle specificity (Fig-

ure S6A), and had activity similar to that of the full-length

Act88F enhancer (Figure S6B). This short element contained

consensus binding sites for Exd/Hth, and an adjacent site for

homeotic factors, that were conserved across multiple

Drosophila species (Figure 6B). Electrophoretic mobility shift

assays (EMSA) revealed that Exd/Hth could bind specifically to

this sequence, and that DNA binding required functional home-

odomains for both Exd and Hth, indicating that these factors

can form a complex on the Act88F enhancer sequence. More-

over, binding of Exd and Hth to Reg1 required the integrity of

their identified sites (Figure 6C). Conversely, no binding sites

for Salm were observed in this sequence, and Salm protein

did not interact with the Reg1 element, either in isolation or in

collaboration with Exd/Hth. As a control, the purified Salm

protein was able to bind to a control sequence from the

rhomboid gene (Li-Kroeger et al., 2008) (Figure S6C).

To determine if Exd/Hth are required in vivo for Act88F

enhancer activity, we assessed the activity of Reg1 under condi-

tions of hth knockdown. This resulted in a loss of Reg1 enhancer

activity in the flight muscles (Figure 6D, hthY). One could inter-

pret this result as a direct requirement for Hth in Act88F expres-

sion; however, since hth knockdown also causes a fiber type

transformation, the loss of enhancer activity might simply have

reflected a change in muscle fate. Therefore, we tested the

activity of the Reg1 enhancer under normal genetic conditions,

but with its Hth or Exd sites mutated. Here, there was also

a loss of enhancer activity (Figure 6D; Figure S6D). We conclude

that Exd/Hth are direct and positive regulators ofAct88F through

these sites, providing a molecular link between the regulators of

fiber identity and a structural gene that is characteristic of that

fiber. This result is of further significance, since manipulation of

salm levels did not affect Act88F expression (Schönbauer

et al., 2011), indicating that the impact of exd/hth upon at least

some flight muscle genes does not occur through salm.

Using immunostaining, we had identified the jump muscle as

one of the only somatic muscles in adult thoraces that did not
tal Cell 23, 664–673, September 11, 2012 ª2012 Elsevier Inc. 669



Figure 5. Regulation of salm Expression in Flight and Jump Muscles

(A) Results of real-time qPCR analysis of salm expression in isolated flight and jump muscles. salm levels are normalized to pan-muscle-specificMhc transcripts

and arbitrarily set to 1.0 in flight muscles. Error bars represent standard deviation.

(B) Salm protein accumulation in the thorax detected by immunofluorescence. Note reduced Salm (green) in the jumpmuscle (dashed line) compared to the flight

muscles (asterisks), and the absence of Salm in other tubular muscles (white dotted line).

(C) RT-PCR detection of salm transcripts from microsamples of flight and jump muscles of WT animals, and animals with exd/hth manipulations. Note the

reduction in salm transcripts in flight muscles of hth knockdown animals, and the increase in jumpmuscles of overexpression animals. Tropomyosin1 (Tm1) levels

were used as a loading control for muscle transcripts.

(D) Nuclear Salm (green) accumulation is reduced in flight muscles when hth is knocked down and increased in the jump muscles in response to ectopic hth plus

exd expression.

(E) Exd (green) and Hth (red) expression in nuclei of muscles with experimentally manipulated expression of salm (Y and [ indicate knockdown and over-

expression, respectively). Exd/Hth levels are not reduced when Salm levels are reduced, and they are not ectopically induced in the jump muscles when salm

expression is elevated there. Arrowhead points to amyofibril with altered striation pattern, indicative of transformation of the flightmuscle toward a tubularmuscle

phenotype, caused by salm knockdown.

See also Figure S5.
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express exd and hth (Figure S1). Interestingly, many exd/hth-

expressing somatic muscles (such as abdominal muscles and

leg muscles) belong to the tubular fiber type, demonstrating

features more similar to those of the jump muscle than the flight

muscle. How do we reconcile the presence of Exd/Hth proteins

in many tubular muscle types with the ability of these factors to
670 Developmental Cell 23, 664–673, September 11, 2012 ª2012 Els
promote flightmuscle fate? The flight and the jumpmuscles arise

from the T2 thoracic segment, and the T2 musculature is unique

in not expressing homeotic (Hox) genes encoded by the Anten-

napedia or Bithorax complexes (Roy and VijayRaghavan, 1997)

that are critically involved in body segment specification

(Foronda et al., 2009). We therefore reasoned that the activities
evier Inc.



Figure 6. Direct Transcriptional Regulation of Muscle Fiber Identity by Hth and Exd

(A) Schematic of the full-length Act88F enhancer and immunofluorescent image depicting the activity of the enhancer in flight muscles (asterisks) but not in jump

muscles (outlined). Enhancer activity is detected by nuclear accumulation of b-gal (green) in nuclei of muscles (red).

(B) Schematic of the Act88F enhancer showing sequence and conservation of the 52-bp minimal enhancer, termed Reg1. Yellow and blue colors indicate

absolute and significant nucleotide conservation, respectively, in 12 Drosophila species. Sequences of probes used for EMSA are shown, and putative binding

sites for Exd, Hth, and Hox proteins are shaded. Mutations of the binding sites used for EMSA are shown in lowercase letters, with the rest of the sequences

remaining intact (dashes).

(C–F) EMSA results are shown in (C) and (E); arrowheads and arrows mark Hth/Exd and Hth/Exd/Ubx bound probes, respectively. Grey marks indicate relative

protein concentration added to reactions. N51A is a homeodomainmutation that prevents DNA binding of the mutated polypeptide. Note that Exd/Hthmust both

be present for DNA binding to occur and that Ubx can bind to these factors tomake a higher-order complex with DNA. In (D) and (F), changes in in vivo expression

of theminimalAct88F enhancer, Reg1, are shown in response to indicated geneticmanipulations and pointmutations. Mutation abbreviations are synonymous to

those indicated in (B). Note that Reg1 activity is lost in the absence of Hth or when Hth or Exd binding sites are mutated. Reg1 activity is also lost when Ubx is

expressed in the flight muscles.

(G) Model for the regulation of flight muscle structural genes (modeled on Act88F) by Exd (E), Hth (H), and Hox proteins. Depending upon the factors present,

these Drosophila somatic muscles acquire the fate of flight, jump or other tubular fibers.

See also Figure S6.
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of exd and hth to promote flight muscle fate could be blunted by

the coexpression of a Hox gene. We tested this idea first by

determining if Hox proteins could interact with the DNA/Exd/

Hth complex formed on the Act88F enhancer sequence. We

found that several Hox proteins, including Ultrabithorax (Ubx),

could form a complex upon the Act88F enhancer with Exd and

Hth. Moreover, the formation of this complex was dependent

upon the binding sites for Exd or Hox (or both) (Figure 6E).

Next, we analyzed the effects upon Reg1 enhancer activity of
Developmen
ectopically expressing Ubx in the flight muscles. Here, there

was a repression of Reg1 enhancer activity, and a reprogram-

ming of the large thoracic muscles to a nonflight muscle fate,

as judged by changes in their myofibril morphology and clus-

tering of their nuclei in a lumen (Figure 6F). These data supported

the hypothesis that Exd and Hth promote flight muscle fate,

whereas tubular muscle fate is initiated either in the absence of

exd/hth expression, or when these two genes are coexpressed

with a Hox gene (summarized in Figure 6G).
tal Cell 23, 664–673, September 11, 2012 ª2012 Elsevier Inc. 671
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DISCUSSION

Our results demonstrate a dramatic effect upon muscle fiber

identity of the two factors Exd and Hth. The fact that muscle fiber

type can be profoundly influenced by the activity of the two

genes defines a central mechanism for the control of fiber iden-

tity and begins to expose the entire fiber specification pathway.

In a recent study by Schönbauer et al. (2011), a genetic factor

that controls transition from tubular legmuscle to the fibrillar fiber

type was identified as salm. The authors demonstrated that

tubular leg muscles could be transformed into the fibrillar type

by ectopic expression of salm. In our study, we expand these

observations to show that the mechanism of Salm action is

less straightforward: salm is expressed in the tubular jump

muscle, suggesting that its pro-fibrillar action may require coop-

eration with additional factors. Our data suggest that Salm

cofactors could be Exd and Hth: their absence in the jump

muscle prevents this muscle from acquiring a fibrillar fiber

phenotype despite its expression of salm; also, ectopic expres-

sion of salm in leg muscles promotes fibrillar fate, perhaps

because the leg muscles also express exd and hth (Figure S1;

Schönbauer et al., 2011).

We also note that, in the flight muscles, Exd and Hth maintain

their localization in the absence of Salm. Moreover, despite the

sustained accumulation of Exd and Hth, loss of Salm neverthe-

less results in transformation of the flight muscles toward

a tubular fate (Schönbauer et al., 2011). This indicates that Exd

and Hth have at least some requirement for Salm to promote

fibrillar muscle fate, and it will be interesting in the future to iden-

tify the respective roles of these factors directly interacting with

other fiber-specific enhancers.

We also provide a direct mechanistic link between the deter-

minants of fibrillar fate, exd/hth, and the actin gene characteristic

of the flight muscles, Act88F. Whether fibrillar muscle genes

are direct targets of Exd/Hth or Salm, or both, is yet to be

determined; nevertheless, the identification of fiber-specific

enhancers described here and elsewhere (Bryantsev et al.,

2012) will provide new mechanistic insight into this process.

Since diverse fiber types are characteristic of many vertebrate

muscles, our findings may relate directly to vertebrate myo-

genesis. In zebrafish, slow muscle fate is promoted by the activ-

ities of PBX and MEIS, which are the vertebrate orthologs of

Exd and Hth, respectively (Maves et al., 2007). In mice, PBX

and MEIS are cofactors for myogenic determination genes,

where they facilitate transcription factor binding to nonconsen-

sus target sites, and this effect might function to fine tunemuscle

fiber fate (Heidt et al., 2007). Thus, diverse lines of evidence

suggest a robust and conserved mechanism for fiber type spec-

ification, acting through PBX1/Exd and MEIS/Hth.
EXPERIMENTAL PROCEDURES

Genomic fragments of fln and TpnC41C for enhancer analysis were PCR

amplified, cloned into pCHAB and used for P-element transformation of flies,

similarly to what has been described (Bryantsev et al., 2012). For Act88F

enhancers, the PCR-amplified fragments carrying flanking attB sites were re-

combined into pDONR-nLacZ-attb, a Gateway-compatible derivate of the

plasmid pnLacZattB (provided by Dr. Basler, University of Zurich, Zurich,

Switzerland) and incorporated into the genome via phiC31 integrase at the

identical landing site at 86Fb (Bischof et al., 2007). Expression constructs for
672 Developmental Cell 23, 664–673, September 11, 2012 ª2012 Els
exd and hth were created by RT-PCR of pupal RNA samples, generating the

RA isoform of exd and the RE isoform of hth, and cloned into pUASTattB for

making transgenic lines. Drosophilamethods were carried out using standard

approaches, and nomenclature is as described at Flybase.org. Fly stocks were

obtained from the Bloomington Drosophila Stock Center or from the Vienna

Drosophila RNAi Center (VDRC). Among several lines tested, the lines

100687 (Vienna) and 34637 (Bloomington) were the most effective in exd

and hth knockdown, respectively. Salm levels in muscles were downregulated

with the RNAi transgenic line 101052 (VDRC) using the published protocol

(Schönbauer et al., 2011), and upregulated with Act88F-Gal4 (Bryantsev

et al., 2012) and UAS-Salm (Dr. Schnorrer, Max Planck Institute of Biochem-

istry, Martinsried, Germany). Crosses were carried out at 29�C unless

indicated. b-gal assays were carried out as described in the Supplemental

Experimental Procedures. Cryosections were analyzed as described before

(Jaramillo et al., 2009), and antibodies were obtained from The University of

Iowa Developmental Studies Hybridoma Bank unless otherwise indicated.

The anti-Salm antibody was first described elsewhere (Xie et al., 2007). Histo-

chemical stains were as described by Deak (Deak, 1977). Electron microscopy

used an established protocol (O’Donnell et al., 1989). For in situ hybridization,

Stellaris probes for TpnC41Cwere generated by Biosearch Technologies. The

in situ hybridizations were carried out according to the probe manufacturer’s

protocol for frozen tissue sections. Muscle-specific samples for RT-PCR

were collected as described in Supplemental Experimental Procedures.

Electrophoretic mobility shift assays (EMSA) were performed as previously

described (Gebelein et al., 2002), using 2.5 ng, 5 ng, 10 ng, and 20 ng of

Exd/Hth in Figure 6C; and a constant 10 ng of Exd/Hth and either 5 ng or

50 ng of Ubx as indicated in Figure 6E.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2012.08.004.
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