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Abstract

It is well known that every convex function f : I → R (where I ⊂ R is an interval) admits an affine
support at every interior point of I (i.e. for any x0 ∈ Int I there exists an affine function a : I → R such that
a(x0) = f (x0) and a � f on I ). Convex functions of higher order (precisely of an odd order) have a similar
property: they are supported by the polynomials of degree no greater than the order of convexity. In this
paper the attaching method is developed. It is applied to obtain the general result—Theorem 2, from which
the mentioned above support theorem and some related properties of convex functions of higher (both odd
and even) order are derived. They are applied to obtain some known and new Hadamard-type inequalities
between the quadrature operators and the integral approximated by them. It is also shown that the error
bounds of quadrature rules follow by inequalities of this kind.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let I ⊂ R be an interval and f : I → R. For distinct points of I the divided differences of f

are defined recursively as follows: [x1, f ] := f (x1) and

[x1, . . . , xn+1;f ] := [x2, . . . , xn+1;f ] − [x1, . . . , xn;f ]
xn+1 − x1

, n ∈ N, n � 2. (1)
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For n distinct points x1, . . . , xn ∈ I (n � 2) the following formula holds true:

[x1, . . . , xn;f ] = D(x1, . . . , xn;f )

V (x1, . . . , xn)
, (2)

where

D(x1, . . . , xn;f ) :=

∣∣∣∣∣∣∣∣∣∣

1 . . . 1
x1 . . . xn
...

...

xn−2
1 . . . xn−2

n

f (x1) . . . f (xn)

∣∣∣∣∣∣∣∣∣∣
and V (x1, . . . , xn) stands for the Vandermonde determinant of the terms involved. By (2) we can
immediately see that the divided differences are symmetric.

Let Πn be the family of all polynomials of degree at most n. For k distinct points
x1, . . . , xk ∈ I denote by P(x1, . . . , xk;f ) the (unique) interpolation polynomial p ∈ Πk−1 such
that p(xi) = f (xi), i = 1, . . . , k. Then for any n + 1 distinct points x1, . . . , xn+1 ∈ I and for any
x ∈ I \ {x1, . . . , xn+1} we have

f (x) − P(x1, . . . , xn+1;f )(x) = [x1, . . . , xn+1, x;f ]
n+1∏
i=1

(x − xi). (3)

For the definition and properties of divided differences the reader is referred to [7,8,10].
If x1, . . . , xn+1 ∈ I are distinct then Newton’s Interpolation Formula holds:

P(x1, . . . , xn+1;f )(x) = f (x1) + [x1, x2;f ](x − x1) + · · ·
+ [x1, . . . , xn+1;f ](x − x1) · · · (x − xn). (4)

Next we recall the notion of convex functions of higher order. Hopf’s thesis [6] from 1926 seems
to be the first work devoted to this topic (the functions with nonnegative divided differences were
considered but the name “convex functions of higher order” was not used). Eight years later
higher-order convexity was extensively studied by Popoviciu [8] (cf. also [7,10]). Let n ∈ N.
A function f : I → R is called n-convex if [x1, . . . , xn+2;f ] � 0 for any n + 2 distinct points
x1, . . . , xn+2 ∈ I . It follows by (2) that f is n-convex if and only if

D(x1, . . . , xn+2;f ) � 0 (5)

for any x1, . . . , xn+2 ∈ I with x1 < · · · < xn+2 (since V (x1, . . . , xn+2) > 0).
For n = 1 it is not difficult to observe that the n-convexity reduces to convexity in the usual

sense.
By (3) we obtain the following important property of convex functions of higher order

(cf. [7,8,10]): a function f : I → R is n-convex if and only if for any x1, . . . , xn+1 ∈ I with
x1 < · · · < xn+1 the graph of an interpolation polynomial p := P(x1, . . . , xn+1;f ) passing
through the points (xi, f (xi)), i = 1, . . . , n + 1, changes successively the side of the graph of f

(always p(x) � f (x) for x ∈ I such that x > xn+1, if such points do exist). More precisely,

(−1)n+1(f (x) − p(x)
)
� 0, x < x1, x ∈ I,

(−1)n+1−i
(
f (x) − p(x)

)
� 0, xi < x < xi+1, i = 1, . . . , n,

f (x) − p(x) � 0, x > xn+1, x ∈ I. (6)
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The theorem below contains another property of higher-order convexity (cf. [7, p. 391, Corol-
lary 1], [8, p. 27]).

Theorem A. If f : I → R is n-convex then for any k ∈ {1, . . . , n + 1} the divided differences
[x1, . . . , xk;f ] are bounded on every compact interval [a, b] ⊂ Int I .

Convex functions of higher order have the following regularity property (cf. [3,7,8]):

Theorem B. If f : [a, b] → R is n-convex then f is continuous on (a, b) and bounded on [a, b].

All the integrals that appear in this paper are understood in the sense of Riemann. Then by
Theorem B we obtain

Theorem C. If f : [a, b] → R is n-convex then f is integrable on [a, b].

For n-convex functions which are (n + 1)-times differentiable the following result holds
(cf. [12, Theorems A and B], [13, Theorems 1.2 and 1.3], cf. also [7,8,10]):

Theorem D. Assume that f : [a, b] → R is (n + 1)-times differentiable on (a, b) and continuous
on [a, b]. Then f is n-convex if and only if f (n+1)(x) � 0, x ∈ (a, b).

It is well known that every convex function f : I → R admits an affine support at every interior
point of I (i.e. for any x0 ∈ Int I there exists an affine function a : I → R such that a(x0) =
f (x0) and a � f on I ). Convex functions of higher order (precisely of an odd order) have a
similar property: they are supported by the polynomials of degree no greater than the order of
convexity. Such a result was obtained by Ger [5], who assumed that the supported n-convex
function, defined on an open and convex subset of a normed space, was of the class Cn+1. In this
paper we develop the attaching method and we use it to prove in Theorem 2 a support-type result
of a general nature. As almost immediate consequences we obtain the result improving Ger’s
theorem (we remove the differentiability assumption) for functions defined on a real interval and
more support-type properties of convex functions of higher (both odd and even) order.

In the theory of convex functions an important role is played by the famous Hermite–
Hadamard inequality. It states that if f : [a, b] → R is convex then

f

(
a + b

2

)
� 1

b − a

b∫
a

f (x) dx � f (a) + f (b)

2
. (7)

The interesting study of this inequality and lots of related inequalities was given by Dragomir
and Pearce [4]. In this paper we apply the above mentioned support-type properties of convex
functions of higher order to obtain both known and new Hadamard-type inequalities between the
quadrature operators and the integral approximated by them. We also show that the error bounds
of quadrature rules follow by inequalities of this kind.

2. Attaching method

In this section we describe this method. Consider the n-convex function f : I → R and take
the polynomial p ∈ Πn interpolating f at n + 1 distinct points of I . Figure 1 is drawn for
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Fig. 1. The “bubbles” are attached to the “bullets.”

Fig. 2. The degree (its upper bound) of the polynomial is preserved.

the 6-convex function. The graph of f is represented by the horizontal straight line. Then by
n-convexity the graph of p (symbolized by the curve line) meeting the graph of f changes suc-
cessively its side. If the “bubbles” lying between two consecutive “bullets” tend to the nearest
“bullet” situated on the left-hand side of them, then the appropriate interpolation polynomials
belonging to Πn (the graph of one of them is shown at Fig. 1) tend to some polynomial be-
longing to Πn. Then we arrive at the situation that we can see at Fig. 2. Figures 1 and 2 have
only an explanatory character. The curve lines are not really the graphs of polynomials and the
straight line is not really the graph of f . They illustrate only the location of graphs of appropriate
polynomials on a proper side of the graph of f .

3. Support-type theorem

Now we are going to prove a support-type theorem of the general nature. In the proof we
would like to use the boundedness of divided differences of an n-convex function. By Theorem A
this is the case when all the points involved belong to the compact subinterval of Int I . However,
we need also this property for divided differences involving additionally the boundary points of I

(if they do exist). That is why we prove below the following lemma.

Lemma 1. Let n ∈ N, A ⊂ R, a /∈ clA and f :A ∪ {a} → R. If for any k ∈ {1, . . . , n} the divided
differences [x1, . . . , xk;f ] are bounded on A then for any k ∈ {1, . . . , n} they remain bounded on
A ∪ {a}.

Proof. For k = 1 there is nothing to prove. For k > 1 assume that the divided differences
[x1, . . . , xk−1;f ] are bounded on A ∪ {a}. To finish the proof it is enough to show the asser-
tion for k-point divided differences containing a. To proceed this job take x1, . . . , xk−1 ∈ A.
Then by (1)

∣∣[a, x1, . . . , xk−1;f ]∣∣ = |[x1, . . . , xk−1;f ] − [a, x1, . . . , xk−2;f ]|
|xk−1 − a| � 2M

|a − A| ,

where

M := sup
{∣∣[x1, . . . , xk−1;f ]∣∣: x1, . . . , xk−1 ∈ A ∪ {a}},

|a − A| := inf
{|a − b|: b ∈ A

}
> 0 (since a /∈ clA). �

Now we are ready to prove the main result of this section.
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Theorem 2. Let n ∈ N and f : I → R be an n-convex function. Fix k ∈ N, k � n, and take
x1, . . . , xk ∈ I such that x1 < · · · < xk . Assign to each point xj (j = 1, . . . , k) the multiplicity
lj ∈ N (lj −1 stands for the number of points attached to xj ). We require l1 +· · ·+ lk = n+1 and
if x1 = inf I then l1 = 1, if xk = sup I then lk = 1 (the points can be attached only to the interior
points of I ). Denote I0 = (−∞, x1), Ij = (xj , xj+1), j = 1, . . . , k − 1, and Ik = (xk,∞). Under
these assumptions there exists a polynomial p ∈ Πn such that p(xj ) = f (xj ), j = 1, . . . , k, and

(−1)n+1(f (x) − p(x)
)
� 0 for x ∈ I0 ∩ I,

(−1)n+1−(l1+···+lj )
(
f (x) − p(x)

)
� 0 for x ∈ Ij , j = 1, . . . , k − 1,

f (x) − p(x) � 0 for x ∈ Ik ∩ I. (8)

Before we start the proof let us notice that at Figs. 1 and 2 we have n = 6, k = 4 (the “bubbles”
were attached to the “bullets”) and the multiplicities of the “bullets” are (from left to right) 1, 3,
1, 2, respectively.

Proof of Theorem 2. Let m ∈ N. If lj > 1 (j = 1, . . . , k), we take the points

xj < xj + 1

m
< · · · < xj + lj − 1

m
.

For m large enough all these points belong to Ij . Then the sequence(
x1, x1 + 1

m
, . . . , x1 + l1 − 1

m
,x2, . . . , xk, xk + 1

m
, . . . , xk + lk − 1

m

)
(9)

is increasingly ordered and it contains n + 1 points of I (because of l1 + · · ·+ lk = n + 1). There
exists a polynomial pm ∈ Πn interpolating f at the points of the sequence (9). We use Newton’s
Interpolation Formula (4) to write pm. This formula contains the products of binomials of the
form

x − xj − sj

m
, j = 1, . . . , k, sj = 0, . . . , lj − 1 (k � n),

and the divided differences involving points of the sequence (9). By Theorem A and Lemma 1
the sequences of these differences containing 1 point, 2 points, . . . , n+1 points, respectively, are
bounded and for that reason they contain the convergent subsequences. By taking (if needed) the
common subsequence (αm) of positive integers we may assume without loss of generality that
all these sequences are convergent.

Let x ∈ I and p(x) := limm→∞ pm(x). Then p ∈ Πn and by the construction we have
p(xj ) = f (xj ), j = 1, . . . , k.

Let x ∈ I0 ∩ I (if x ∈ I0 ∩ I �= ∅). Then x < x1 and by n-convexity and (6) (−1)n+1(f (x) −
pm(x)) � 0 for m large enough. Tending with m to infinity we get (−1)n+1(f (x) − p(x)) � 0.

Let x ∈ Ik ∩ I (if x ∈ Ik ∩ I �= ∅). Then for m large enough we have

x > xk + lk − 1

m
.

We infer by (6) that f (x) − pm(x) � 0, whence letting m → ∞ we obtain f (x) − p(x) � 0.
Finally let x ∈ Ij , j = 1, . . . , k − 1. For m large enough we have

xj + lj − 1
< x < xj+1.
m
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Observe that the point xj + lj −1
m

has in the sequence (9) the number l1 + · · · + lj . Therefore
by (6) (−1)n+1−(l1+···+lj )(f (x) − pm(x)) � 0. For m → ∞ we get (−1)n+1−(l1+···+lj )(f (x) −
p(x)) � 0, which finishes the proof. �
Remark 3. In the classical setting, if f : I → R admits at each point x0 ∈ Int I an affine sup-
port, then f is convex. This is also the case for the statement of Theorem 2: it characterizes
n-convexity. Indeed, to prove that f is n-convex it is enough to assume that the appropriate poly-
nomial exists for k = n, x1, . . . , xn ∈ Int I with x1 < · · · < xn and l1 = · · · = ln−1 = 1, ln = 2.
This is shown by the present author in [14, Theorem 3] in a more general setting, i.e. for convex
functions with respect to Chebyshev systems (for a polynomial Chebyshev system (1, x, . . . , xn)

such a convexity reduces to n-convexity). We have formulated Theorem 2 in the form of the
necessary condition since, as we can see, the sufficient condition can be weakened.

Remark 4. The polynomial obtained in Theorem 2 need not to be unique. Let n = k = 3. Then for
a 3-convex function f : R → R, x1 = −1, x2 = 0, x3 = 1 and l1 = l3 = 1, l2 = 2, by Theorem 2
there exists a polynomial p ∈ Π3 such that p(−1) = f (−1), p(0) = f (0), p(1) = f (1) and
p(x) � f (x) for |x| > 1, p(x) � f (x) for 0 < |x| < 1. Observe that for a 3-convex function
f (x) = x4, x ∈ R, this assertion is fulfilled by p1(x) = 1 and by p2(x) = x2.

Remark 5. The assumption l1 = 1 if x1 = inf I is essential. For n = k = 1 and l1 = 2 Theorem 2
asserts that a convex function f : I → R has an affine support at a point x1. If x1 is a boundary
point of I it need not to be the case. Observe that a convex function f (x) = −√

1 − x2, x ∈
[−1,1], has no affine support both at x1 = −1 and at x1 = 1.

4. Some consequences of Theorem 2

We start with the support theorem for convex functions of an odd order.

Corollary 6. Let n ∈ N be an odd number and f : I → R be an n-convex function. Then for any
x1 ∈ Int I there exists a polynomial p ∈ Πn such that p(x1) = f (x1) and p � f on I .

Proof. In Theorem 2 take k = 1 and l1 = n + 1. �
This result needs at least two comments.

1. The support theorem for convex functions of an odd order was proved by Ger [5] with the
additional assumption that the supported function is of the class Cn+1. However, Ger’s result
holds for functions defined on an open and convex subset of a normed space. Notice at this
place that if f : I → R is n-convex then f is of the class Cn−1 on Int I (cf. [7,8]). Better
regularity properties must be assumed (e.g. for n = 1, f (x) = |x| is convex, continuous and
not differentiable).

2. The attaching method gives an answer to the question why convex functions of an even
order need not to admit polynomial supports at every interior point of I . Namely, for an
n-convex function f : I → R and x1 ∈ Int I , if n is an even number then the suitable interpo-
lation polynomial p (constructed as in the proof of Corollary 6) fulfills by (8) the inequality
p(x) � f (x), x ∈ I , x < x1. It is easy to give an example: the 2-convex function f (x) = x3

must not be supported on R by any quadratic polynomial (cf. [5]). However, there are some
situations when convex functions of an even order do admit polynomial supports (cf. Corol-
lary 10 below).
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Remark 7. Figures 1 and 2 show that the graph of a polynomial p ∈ Πn obtained by Theorem 2
may be situated on both sides of the graph of an n-convex function f . Another possibility which
may occur is that the graph of p may be situated above the graph of f , contrary to the support
property (see Corollaries 9 and 11 below).

Corollary 8. If f : [a, b] → R is (2n−1)-convex and x1, . . . , xn ∈ (a, b), then there exists a poly-
nomial p ∈ Π2n−1 such that p(xi) = f (xi), i = 1, . . . , n, and p � f on [a, b].
Proof. Assuming that x1 < · · · < xn use Theorem 2 for 2n−1 instead of n, k = n and l1 = · · · =
ln = 2. �
Corollary 9. If f : [a, b] → R is (2n− 1)-convex and x1 = a, x2, . . . , xn ∈ (a, b), xn+1 = b, then
there exists a polynomial p ∈ Π2n−1 such that p(xi) = f (xi), i = 1, . . . , n + 1, and p � f on
[a, b].
Proof. Use Theorem 2 for 2n−1 instead of n, k = n+1, l1 = 1, l2 = · · · = ln = 2, ln+1 = 1. �
Corollary 10. If f : [a, b] → R is 2n-convex, x1 = a, x2, . . . , xn+1 ∈ (a, b), then there exists
a polynomial p ∈ Π2n such that p(xi) = f (xi), i = 1, . . . , n + 1, and p � f on [a, b].
Proof. Use Theorem 2 for 2n instead of n, k = n + 1 and l1 = 1, l2 = · · · = ln+1 = 2. �
Corollary 11. If f : [a, b] → R is 2n-convex, x1, . . . , xn ∈ (a, b) and xn+1 = b, then there exists
a polynomial p ∈ Π2n such that p(xi) = f (xi), i = 1, . . . , n + 1, and p � f on [a, b].
Proof. Use Theorem 2 for 2n instead of n, k = n + 1 and l1 = · · · = ln = 2, ln+1 = 1. �
5. Hadamard-type inequalities

In this section we obtain some inequalities between the quadrature operators and the integral
approximated by them. The classical inequality of this kind is the celebrated Hermite–Hadamard
inequality (7).

Orthogonal polynomials

Let w : [a, b] → [0,∞) be an integrable function such that
∫ b

a
w(x)dx > 0. The function w

is called the weight function. Then 〈f,g〉w := ∫ b

a
f (x)g(x)w(x)dx is the inner product in the

space of all integrable functions f : [a, b] → R. Performing for the sequence of monomials
(1, x, x2, . . .) the Gramm–Schmidt orthogonalization procedure we obtain the sequence (Pn) of
polynomials orthogonal to each other on [a, b] with the weight w (i.e. with respect to the above
inner product). Let Pn be the member of this sequence of degree n. The well-known results from
numerical analysis (cf. e.g. [9,11]) state that the polynomial Pn has n distinct zeros belonging
to (a, b).

Gauss quadratures

Let (Pn) be the sequence of polynomials orthogonal to each other on [a, b] with the weight
function w and let x1, . . . , xn be the zeros of the polynomial Pn. Furthermore, let
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wi :=
b∫

a

Pn(x)w(x)

(x − xi)P ′
n(xi)

dx, i = 1, . . . , n,

Gn(f ) :=
n∑

i=1

wif (xi).

It is well known from numerical analysis (cf. e.g. [2,9,11,16]) that the equation
b∫

a

f (x)w(x)dx = Gn(f )

holds for all polynomials belonging to Π2n−1. If [a, b] = [−1,1] and w ≡ 1 then Gn is the
n-point Gauss–Legendre quadrature (cf. [9,17]).

Lobatto-type quadratures

Let (Qn) be the sequence of polynomials orthogonal to each other on [a, b] with the weight
function (x − a)(b − x)w(x) and let x1, . . . , xn−1 be the zeros of the polynomial Qn−1 (where
Qn−1 is the member of this sequence of degree n − 1). Furthermore, let

w0 := 1

(b − a)Q2
n−1(a)

b∫
a

Q2
n−1(x)(b − x)w(x)dx,

wi := 1

(b − xi)(xi − a)

b∫
a

Qn−1(x)(x − a)(b − x)w(x)

(x − xi)Q
′
n−1(xi)

dx,

wn := 1

(b − a)Q2
n−1(b)

b∫
a

Q2
n−1(x)(x − a)w(x)dx,

Ln+1(f ) := w0f (a) +
n−1∑
i=1

wif (xi) + wnf (b).

It is well known from numerical analysis (cf. e.g. [2,9]) that the equation
b∫

a

f (x)w(x)dx = Ln+1(f )

holds for all polynomials belonging to Π2n−1. If [a, b] = [−1,1] and w ≡ 1 then Ln+1 is the
(n + 1)-point Lobatto quadrature (cf. [9,18]).

Inequalities for Gauss quadratures and Lobatto-type quadratures

Proposition 12. If f : [a, b] → R is (2n − 1)-convex then

Gn(f ) �
b∫

a

f (x)w(x)dx � Ln+1(f ).
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Proof. By Theorem C, f is integrable on [a, b]. Let x1, . . . , xn be the abscissas of the quadra-
ture rule Gn. By Corollary 8 there exists a polynomial p ∈ Π2n−1 such that p(xi) = f (xi),
i = 1, . . . , n, and p � f on [a, b]. Then Gn(p) = Gn(f ) and by w � 0,

b∫
a

p(x)w(x)dx �
b∫

a

f (x)w(x)dx.

Since the quadrature Gn is precise for polynomials belonging to Π2n−1, then

Gn(f ) = Gn(p) =
b∫

a

p(x)w(x)dx �
b∫

a

f (x)w(x)dx.

The second inequality we prove similarly taking as x1, . . . , xn+1 the abscissas of the quadrature
rule Ln+1 and using Corollary 9. �
Radau-type quadratures

Let (Pn) be the sequence of polynomials orthogonal to each other on [a, b] with the weight
function (x − a)w(x) and let x1, . . . , xn be the zeros of the polynomial Pn. Furthermore, let

w0 := 1

P 2
n (a)

b∫
a

P 2
n (x)w(x)dx,

wi := 1

(xi − a)

b∫
a

Pn(x)(x − a)w(x)

(x − xi)P ′
n(xi)

dx, i = 1, . . . , n,

Rl
n+1(f ) := w0f (a) +

n∑
i=1

wif (xi).

If [a, b] = [−1,1] and w ≡ 1 then Rl
n+1 is the (n + 1)-point Radau quadrature (cf. [9,19]).

Let (Qn) be the sequence of polynomials orthogonal to each other on [a, b] with the weight
function (b − x)w(x) and let x1, . . . , xn be the zeros of the polynomial Qn. Furthermore, let

wi := 1

(b − xi)

b∫
a

Qn(x)(b − x)w(x)

(x − xi)Q′
n(xi)

dx, i = 1, . . . , n,

wn+1 := 1

Q2
n(b)

b∫
a

Q2
n(x)w(x)dx,

Rr
n+1(f ) :=

n∑
i=1

wif (xi) + wn+1f (b).

It is well known from numerical analysis (cf. e.g. [2,9,19]) that the equation

Rl
n+1(f ) =

b∫
a

f (x)w(x)dx = Rr
n+1(f )

holds for all polynomials belonging to Π2n.
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Inequalities for Radau-type quadratures

Proposition 13. If f : [a, b] → R is 2n-convex, then

Rl
n+1(f ) �

b∫
a

f (x)w(x)dx � Rr
n+1(f ).

Proof. The proof is similar to that of Proposition 12. For the first inequality use Corollary 10
for the abscissas of the quadrature rule Rl

n+1 and for the second one use Corollary 11 for the
abscissas of Rr

n+1. �
6. Comments

1. The inequalities of Propositions 12 and 13 were earlier proved by Bessenyei and
Páles [1–3].

2. In [2] these inequalities were proved for the weight function w ≡ 1 by the method of
smoothing of convex functions of higher order. Namely, it is shown in [2, Theorem 5] that for an
n-convex function f : I → R and for any compact subinterval J ⊂ Int I there exists a sequence
of n-convex functions of the C∞ class convergent uniformly to f on J .

3. In more recent paper [3] Hadamard-type inequalities for convex functions with respect to
Chebyshev systems are given. The results are proved for any weight function. The method of
the proof was based on integration of the determinant defining the convexity of this kind. The
paper [1] contains the same results. However, some assumption present in [3] was removed. Both
quoted papers do not contain any results of support-type.

4. For some cases it is possible to give the inequalities of Hadamard-type which are better in
some sense from the inequalities of Propositions 12 and 13. Some of them are presented in the
next section.

7. Other Hadamard-type inequalities

In this section we consider real functions defined on [−1,1] and the weight function w ≡ 1.
In this setting

G2(f ) = f

(
−

√
3

3

)
+ f

(√
3

3

)
,

L4(f ) = 1

6

(
f (−1) + f (1)

) + 5

6

(
f

(
−

√
3

3

)
+ f

(√
3

3

))
.

The abscissas of these quadrature rules are the zeros of suitable orthogonal polynomials.

Remarks on even functions

1. If f is an even function then
∫ 1
−1 f (x)dx = 2

∫ 1
0 f (x)dx.

2. If f is an n-convex function and n is an odd number then the function f (−x) is also
n-convex (cf. [8]). Then an even part of f , i.e. the function fe(x) = f (x)+f (−x)

2 , is n-convex
as well.
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3. Let f be the integrable function. Then
∫ 1
−1 f (x)dx = ∫ 1

−1 fe(x) dx. Indeed, since fe is an
even function we have

1∫
−1

fe(x) dx = 2

1∫
0

fe(x) dx =
1∫

0

(
f (x) + f (−x)

)
dx =

1∫
0

f (x)dx +
1∫

0

f (−x)dx

=
1∫

0

f (x)dx +
0∫

−1

f (t) dt =
1∫

−1

f (x)dx.

4. Fix x1, . . . , xn ∈ (0,1] and for any function f define

T (f ) := α0f (0) +
n∑

i=1

αi

(
f (xi) + f (−xi)

)
.

Then T (f ) = T (fe). Namely,

T (f ) = α0f (0) +
n∑

i=1

αi · 2fe(xi) = α0fe(0) +
n∑

i=1

αi

(
fe(xi) + fe(−xi)

) = T (fe).

5. Let n be an odd positive integer. Because of the above remarks the inequalities of the form
T1(f ) �

∫ 1
−1 f (x)dx � T2(f ) hold for any n-convex function f if and only if they hold for any

n-convex and even function f .

Inequalities for Chebyshev quadrature

Recall that the operator C(f ) := 2
3 (f (−

√
2

2 ) + f (0) + f (
√

2
2 )) is connected with the 3-point

Chebyshev quadrature rule (cf. [9,15]).

Proposition 14. If f : [−1,1] → R is 3-convex then

G2(f ) � C(f ) �
1∫

−1

f (x)dx.

Proof. It is enough to prove the proposition for even functions.
1. By 3-convexity and (5) D(−v,−u,0, u, v;f ) � 0 for any 0 < u < v � 1. Expanding this

determinant by the last row we simply compute v2f (u) � u2f (v)+ (v2 −u2)f (0). For u =
√

3
3 ,

v =
√

2
2 we obtain G2(f ) � C(f ).

2. By Theorem 2 (for n = 3, k = 3, x1 = −
√

2
2 , x2 = 0, x3 =

√
2

2 , l1 = l2 = 1, l3 = 2) there

exists a polynomial p ∈ Π3 such that p(−
√

2
2 ) = f (−

√
2

2 ), p(0) = f (0), p(
√

2
2 ) = f (

√
2

2 ) and
p � f on [0,1]. By Newton’s Interpolation Formula (4)

p(x) = f

(√
2

2

)
+

[
−

√
2

2
,0;f

](
x +

√
2

2

)
+

[
−

√
2

2
,0,

√
2

2
;f

](
x +

√
2

2

)
x

+ A

(
x +

√
2
)

x

(
x −

√
2
)

2 2
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for some constant A. Computing these divided differences we can easily see that 2
∫ 1

0 p(x)dx =
C(f ), whence C(f ) � 2

∫ 1
0 f (x)dx = ∫ 1

−1 f (x)dx. �
Inequalities for 5-convex functions

Recall that the operator S(f ) := 1
3 (f (−1) + 4f (0) + f (1)) is connected with Simpson’s

quadrature rule (cf. [9,20]).

Proposition 15. If f : [−1,1] → R is 5-convex then

1∫
−1

f (x)dx � 2

5
S(f ) + 3

5
G2(f ) � L4(f ).

Proof. It is enough to prove the proposition for even functions.

1. By Theorem 2 (n = 5, k = 5, x1 = −1, x2 = −
√

3
3 , x3 = 0, x4 =

√
3

3 , x5 = 1, l1 = l2 =
l3 = 1, l4 = 2, l5 = 1) there exists a polynomial p ∈ Π5 such that p(xi) = f (xi), i = 1,2,3,4,5,
and p � f on [0,1]. Similarly as in the proof of Proposition 14 we use Newton’s Interpolation
Formula (4) for the abscissas x1, x2, x3, x4, x5 and we compute 2

∫ 1
0 p(x)dx = 2

5S(f )+ 3
5G2(f ),

from which the first inequality follows.
2. To obtain the second inequality we also proceed similarly to the proof of Proposition 14.

By 5-convexity and (5)

D

(
−1,−

√
3

3
,−

√
5

5
,0,

√
5

5
,

√
3

3
,1;f

)
� 0.

Expanding this determinant by the last row and performing some computations we get the desired
inequality. �

Other inequalities between the quadrature operators can be found in [12].

8. Error bounds of quadrature rules

Hadamard-type inequalities can be applied to estimate the errors of quadrature rules. We il-
lustrate this for the quadrature T (f ) := 2

5S(f ) + 3
5G2(f ). Denote I(f ) := ∫ 1

−1 f (x)dx.

Proposition 16. If f ∈ C6([−1,1]) and M := sup{|f (6)(x)|: x ∈ [−1,1]}, then |T (f )−I(f )| �
M

28 350 .

Proof. Let g(x) := Mx6

6! . Then g(6)(x) = M and |f (6)(x)| � g(6)(x). Therefore (g + f )(6) � 0
and (g − f )(6) � 0. By Theorem D the functions g + f , g − f are 5-convex. By Proposition 15
we get

I(g + f ) � T (g + f ), I(g − f ) � T (g − f ).

Since the operators T and I are linear then

I(g) − T (g) � T (f ) − I(f ), T (f ) − I(f ) � T (g) − I(g).
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Hence |T (f ) − I(f )| � T (g) − I(g). We conclude the proof by computing T (g) − I(g) =
M

28 350 . �
The method presented above can be applied for other quadrature rules. However, using it

for Chebyshev, Gauss–Legendre, Lobatto, Radau and Simpson’s quadratures we obtain the error
bounds known from numerical analysis (cf. [9,15,17–20]).
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