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a b s t r a c t

A graph is called γ -critical if the removal of any vertex from the graph decreases the
dominationnumber,while a graphwith no isolated vertex isγt -critical if the removal of any
vertex that is not adjacent to a vertex of degree 1 decreases the total domination number.
A γt -critical graph that has total domination number k, is called k-γt -critical. In this paper,
we introduce a class of k-γt -critical graphs of high connectivity for each integer k ≥ 3. In
particular, we provide a partial answer to the question ‘‘Which graphs are γ -critical and
γt -critical or one but not the other?’’ posed in a recent work [W. Goddard, T.W. Haynes,
M.A. Henning, L.C. van der Merwe, The diameter of total domination vertex critical graphs,
Discrete Math. 286 (2004) 255–261].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For many graph parameters, criticality is a fundamental question. Much has been written about those graphs where a
parameter (such as connectedness or chromatic number) goes up or downwhenever an edge or vertex is removed or added.
In this paper, we continue the study of total domination vertex critical graphs introduced by Goddard, Haynes, Henning, and
van der Merwe [3].
Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well studied in graph

theory. The literature on this subject has been surveyed and detailed in the two excellent domination books by Haynes,
Hedetniemi, and Slater [5,6].
For notation and graph theory terminology we in general follow [5]. Specifically, let G = (V , E) be a graph with vertex

set V of order n and edge set E. We denote the degree of v in G by dG(v), or simply by d(v) if the graph G is clear from the
context. For a set S ⊆ V , the subgraph induced by S is denoted by G[S]. The (open) neighborhood of vertex v ∈ V is denoted
by N(v) = {u ∈ V | uv ∈ E}while N[v] = N(v)∪ {v}. For a set S ⊆ V , N(S) =

⋃
v∈S N(v) and N[S] = N(S)∪ S. The set S is

a dominating set if N[S] = V , and a total dominating set if N(S) = V . For sets A, B ⊆ V , we say that A dominates B if B ⊆ N[A]
while A totally dominates B if B ⊆ N(A). The minimum cardinality of a total dominating set is the total domination number,
denoted as γt(G). A total dominating set of cardinality γt(G)we call a γt(G)-set.
Let G = (V , E) be a graph and let S ⊆ V and v ∈ S. We denote the subgraph of G induced by S by G[S]. The minimum

degree of G is denoted by δ(G). A vertex w ∈ V is an S-private neighbor of v if N(w) ∩ S = {v}. Further, the S-private
neighborhood of v, denoted as pn(v, S), is the set of all S-private neighbors of v.
We say that a vertex v in a graph G is critical if γt(G − v) < γt(G). Since total domination is undefined for a graph with

isolated vertices, we say that a graph G is total domination vertex critical, or just γt-critical, if every vertex of G that is not
adjacent to a vertex of degree 1 is critical. In particular, if δ(G) ≥ 2, then G is γt-critical if every vertex of G is critical. If G is
γt-critical, and γt(G) = k, then we say that G is k-γt-critical. For example, the 5-cycle is 3-γt-critical as is the complement
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of the Petersen graph, and the 6-cycle is 4-γt-critical. We also note that K2 is trivially 2-γt-critical. We remark that our
terminology used for total domination vertex critical graphs is similar to that used for domination vertex critical graphs. For
example, a graph G is k-γ -critical if γ (G) = k and γ (G− v) < k for all vertices v in G. A graph is γ -critical if it is k-γ -critical
for some k. The study of γ -critical graphs was begun by Brigham, Chinn, and Dutton [1].
In [3], the authors pose the following open question:

Question 1 ([3]).Which graphs are γ -critical and γt-critical or one but not the other?

Our aim in this paper is twofold. Our first aim is to introduce for each integer k ≥ 3, a class of k-γt-critical graphs of high
connectivity. Our second aim is to provide a partial answer to Question 1, by presenting an infinite family of graphs that are
γt-critical but not γ -critical.

1.1. Harary graphs

For 2 ≤ k < n, the Harary graph Hk,n on n vertices is defined by West [9] as follows. Place n vertices around a circle,
equally spaced. If k is even,Hk,n is formed bymaking each vertex adjacent to the nearest k/2 vertices in each direction around
the circle. If k is odd and n is even, Hk,n is formed by making each vertex adjacent to the nearest (k − 1)/2 vertices in each
direction around the circle and to the diametrically opposite vertex. In both cases, Hk,n is k-regular. If both k and n are odd,
Hk,n is constructed as follows. It has vertices 0, 1, . . . , n− 1 and is constructed from Hk−1,n by adding edges joining vertex i
to vertex i+ (n− 1)/2 for 0 ≤ i ≤ (n− 1)/2.

2. Known results

Harary [4] showed that the graph Hk,n is k-connected.

Theorem 1 ([4]). For 2 ≤ k < n, the Harary graph Hk,n is k-connected.

We shall need the following trivial lower bound on the domination number of a graph in terms of its order andmaximum
degree.

Observation 1. If G is a graph of order n, then γ (G) ≥
⌈

n
1+∆(G)

⌉
.

Dominating sets in Harary graphs are investigated by Khodkar, Mojdeh and Kazemi [7]. The authors obtain exact values
of the domination number of Harary graphs. In particular, they establish the following result.

Theorem 2 ([7]).
(a) For n ≥ 2k+ 1 ≥ 3, γ (H2k,n) = dn/(2k+ 1)e.
(b) For n− (k+ 1) = (2k+ 2)t + r, where 0 ≤ r ≤ 2k+ 1,

γ (H2k+1,2n) =
{
dn/(k+ 1)e + 1 if 2 ≤ r ≤ k+ 1 and t + r ≥ k+ 1
dn/(k+ 1)e otherwise.

Khodkar, Mojdeh and Kazemi [7] also study total dominating sets in Harary graphs. They construct total dominating sets
for several Harary graphs in Theorem 13, Theorem 14, and Theorem 15 of [7], thereby establishing important upper bounds
on the total domination number of certain Harary graphs. However in the proofs of [7] some details aremissing. In this note,
we obtain the total domination numbers in Harary graphs, and give a proof with complete details.
The k-γt-vertex-critical graphs with end-vertices are characterized in [3]. The corona cor(H) of a graphH (denotedH ◦K1

in [5]) is that graph obtained from H by adding a pendant edge to each vertex of H .

Theorem 3 ([3]). Let G be a connected graph of order at least 3 with at least one end-vertex. Then, G is k-γt-vertex-critical if and
only if G = cor(H) for some connected graph H of order k with δ(H) ≥ 2.

3. Main results

In view of Theorem 3, we henceforth only consider connected graphs of order at least 3 with minimum degree at least
two. We shall prove:

Theorem 4. For all integers ` ≥ 1 and k ≥ 2, the Harary graph H2k+1,2`(2k+1)+2 is a (2k+ 1)-connected graph that is (2`+ 2)-
γt-critical.

A proof of Theorem 4 is presented in Section 3.1. We remark that as a special case of Theorem 4 when ` = 1, the Harary
graph H2k+1,4k+4 is a (2k+ 1)-connected graph that is a 4-γt-critical graph of diameter 2 for every integer k ≥ 2. A different
family of 4-γt-critical graphs of diameter 2 is constructed by Loizeaux and van der Merwe [8].

Theorem 5. For all integers ` ≥ 1 and k ≥ 2, the Harary graph H2k,`(3k+1)+1 is a 2k-connected graph that is (2`+1)-γt-critical.
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Theorem5 can be proved in an identicalmanner to in the proof of Theorem4, andwe therefore omit a proof of Theorem5.
As a consequence of Observation 1 and Theorem2,we can readily establish the following result, a proof ofwhich is presented
in Section 3.2.

Corollary 1. (a) For n > k+1 and n− (k+1) ≡ r (mod (2k+2)) for some integer r where r ∈ {0, 1} or k+2 ≤ r ≤ 2k+1,
the Harary graph H2k+1,2n is not γ -critical.

(b) For n ≥ 2k+ 1 ≥ 3, where n 6≡ 1 (mod (2k+ 1)), the Harary graph H2k,n is not γ -critical.

Note that if n = `(2k+ 1)+ 1, then n− (k+ 1) = (2k+ 2)(`− 1)+ (k− `+ 2). Hence as an immediate consequence
of Theorems 4, 5 and Corollary 1, we have the following results.

Corollary 2. For integers k ≥ ` − 2 ≥ 0 where k − ` + 2 = r and r ∈ {0, 1} or k + 2 ≤ r ≤ 2k + 1, the Harary graph
H2k+1,2`(2k+1)+2 is γt-critical and is not γ -critical.

Corollary 3. For all integers ` ≥ 1 and k ≥ 2 such that (2k + 1) - `(3k + 1), the Harary graph H2k+1,2`(2k+1)+2 is γt-critical
and is not γ -critical.

3.1. Proof of Theorem 4

To prove Theorem 4, let G = H2k+1,2`(2k+1)+2. Then, G is a (2k + 1)-regular, vertex-transitive graph of order n =
2`(2k + 1) + 2. By Theorem 1, the graph G is (2k + 1)-connected. Let V (G) = {v0, v1, . . . , vn−1}. Then, vi and vj are
adjacent if i− k/2 ≤ j ≤ i+ k/2 or if j = i+ n/2 where addition is taken modulo n.
We proceed further by proving the following five facts.

Fact 1. Let S be a set of vertices of G such that |S| = 2` and G[S] contains no isolated vertex. If S contains two adjacent vertices
that are not diametrically opposite in G, then S totally dominates at most n− k− 2 vertices of G.

Proof. Let vi and vj be two adjacent vertices in S that are not diametrically opposite in G. For notational convenience,
we may assume that i = k and j = k + t where 1 ≤ t ≤ k. Then, vs ∈ N(vi) \ N(vj) if 0 ≤ s ≤ t − 1 or
s ∈ {k + t, k + n/2} and vs ∈ N(vj) \ N(vi) if 2k + 1 ≤ s ≤ 2k + t or s ∈ {k, k + t + n/2}. Further, vs ∈ N(vi) ∩ N(vj) for
s ∈ {t, t + 1, . . . , 2k} \ {k, k+ t}. Thus, |N(vi) \N(vj)| = |N(vj) \N(vi)| = t + 2, while |N(vi)∩N(vj)| = 2k− t − 1. Hence,
{vi, vj} totally dominates 2k+ t + 3 ≤ 3(k+ 1) vertices. Since G is a (2k+ 1)-regular, the set S \ {vi, vj} totally dominates
at most (|S| − 2)(2k+ 1) = 2(`− 1)(2k+ 1) = n− 4(k+ 1) vertices. Hence the set S totally dominates at most n− k− 1
vertices of G.
Assume the set S totally dominates exactly n − k − 1 vertices of G. Then, t = k (and so, i = k and j = 2k)

and the k − 1 vertices between vi and vj, namely vk+1, . . . , v2k−1, are the only common neighbors of vi and vj. Further,
every vertex in N(vi) \ N(vj) is an S-private neighbor of vi, while every vertex in N(vj) \ N(vi) is an S-private neighbor
of vj; that is, |pn(vi, S)| = |N(vi) \ N(vj)| = k + 2 and |pn(vj, S)| = |N(vj) \ N(vi)| = k + 2. Thus, vr 6∈ S for
r ∈ ({0, 1, . . . , 4k} \ {k, 2k}) ∪ {n/2, n/2 + 1, . . . , n/2 + 3k} ∪ {n − k, . . . , n − 1}. Moreover, every neighbor of a vertex
v ∈ S \ {vi, vj} is an S-private neighbor of v. This implies that the 2(` − 1) vertices in S \ {vi, vj} form ` − 1 pairs of
diametrically opposite vertices in G. Thus if vs ∈ S for some s ∈ {n/2 − k, . . . , n/2 − 1}, then vs+n/2 ∈ S contradicting our
earlier observation that vr 6∈ S for r ∈ {n− k, . . . , n− 1}. Hence, vs 6∈ S for s ∈ {n/2− k, . . . , n/2− 1}. Further since vr 6∈ S
for r ∈ {3k + 1, . . . , 4k}, we have that vs 6∈ S for s ∈ {n/2 + 3k + 1, . . . , n/2 + 4k}. But then the vertex vz is not totally
dominated by S for z ∈ {n/2, n/2+1, . . . , n/2+3k} \ {n/2+ k, n/2+2k}. Thus there are at least 3k−1 vertices not totally
dominated by S. By assumption, exactly k+ 1 vertices of G are not totally dominated by S. Hence, k+ 1 ≥ 3k− 1, implying
that k ≤ 1, a contradiction. We deduce, therefore, that the set S totally dominates at most n− k− 2 vertices of G. �

Fact 2. Let S be a set of vertices of G such that |S| = 2` and G[S] contains no isolated vertex. If every pair of adjacent vertices in
G[S] is a pair of diametrically opposite vertices in G, then G[S] = `K2 and S totally dominates at most n− 2 vertices of G.

Proof. Since every pair of adjacent vertices in G[S] is a pair of diametrically opposite vertices in G, G[S] = `K2. Since G is
(2k+ 1)-regular, the set S totally dominates at most |S|(2k+ 1) = 2`(2k+ 1) = n− 2 vertices of G. �

Fact 3. Let S be a set of vertices of G such that G[S] contains no isolated vertex and let v ∈ V (G) \ S. If v is adjacent to a vertex
of S that is not diametrically opposite to it in G, then v totally dominates at most k + 1 vertices that are not totally dominated
by S.

Proof. Let u be a vertex of S that is adjacent to v but is not diametrically opposite to v in G. For notational convenience, we
may assume that u = vi and v = vj where i = k and j = k+ t where 1 ≤ t ≤ k. Then, vs ∈ N(v)\N(u) if 2k+1 ≤ s ≤ 2k+ t
or s ∈ {k, k + t + n/2}. Hence, v totally dominates t + 2 vertices, including the vertex u, that are not totally dominated
by u. However since G[S] contains no isolated vertex, the vertex u is totally dominated by S. Thus, v totally dominates at
most t + 1 ≤ k+ 1 vertices that are not totally dominated by S. �
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Fact 4. γt(G) = 2`+ 2.
Proof. By Facts 1 and 2, no set of 2` vertices is a total dominating set ofG, and so γt(G) ≥ 2`+1. Assume that γt(G) = 2`+1.
Let D be a γt(G)-set. Then, |D| = 2` + 1, G[D] contains no isolated vertex, and N(D) = V . Since |D| is odd, at least one
component F of G[D] has odd order. Thus at least one vertex of F is not the diametrically opposite vertex of any other vertex
in D. Among all such vertices in F , let v be one of smallest degree in F .
If F−v contains an isolated vertexw, then dF (w) = 1 andw is adjacent only to v in F . But since F has order at least 3, v is

adjacent to at least one vertex in F different fromw, and so dF (v) ≥ 2. Thus, dF (v) > dF (w). Since v is not the diametrically
opposite vertex of any other vertex inD, neither isw. This contradicts our choice of the vertex v. Hence, F−v has no isolated
vertex. Let S = D \ {v}. Then, |S| = 2` and G[S] contains no isolated vertex.
If S contains two adjacent vertices that are not diametrically opposite in G, then, by Fact 1, S totally dominates at

most n − k − 2 vertices of G. By Fact 2, v totally dominates at most k + 1 vertices that are not totally dominated by S.
Hence, D totally dominates at most n−1 vertices of G, contradicting the fact that D is a total dominating set of G. Thus every
pair of adjacent vertices in G[S] is a pair of diametrically opposite vertices in G. Hence, by Fact 2, G[S] = `K2 and S totally
dominates at most n − 2 vertices of G. Further if vi is a vertex not totally dominated by S, then vi+n/2 is also not totally
dominated by S (where addition is taken modulo n). Hence, G contains a pair vi and vi+n/2 of diametrically opposite vertices
that are not totally dominated by S. Since two diametrically opposite vertices have no common neighbor, the vertex v totally
dominates at most one of vi and vi+n/2. This contradicts the fact that D is a total dominating set of G. We deduce, therefore,
that γt(G) ≥ 2`+ 2. The set⋃̀

i=0

{vi(2k+1), vi(2k+1)+n/2},

for example, is a total dominating set of G of cardinality 2`+ 2, and so γt(G) ≤ 2`+ 2. Consequently, γt(G) = 2`+ 2. �

Fact 5. γt(G− v) = 2`+ 1 for every vertex v ∈ V .
Proof. Since G is vertex-transitive, we may assume that v = v0. Let

S =
⋃̀
i=1

{vi(2k+1), vi(2k+1)+n/2}.

Then, |S| = 2` and the set S totally dominates every vertex of G− v except for the vertex vn/2 that is diametrically opposite
v = v0 in G. Hence the set S ∪ {vj} is a total dominating set of G for any vertex vj adjacent to vn/2 that is different from v,
i.e., for any value of j satisfying n/2 − k ≤ j ≤ n/2 + k and j 6= n/2. Thus, γt(G − v) ≤ 2` + 1. The removal of a vertex
can decrease the total domination number by at most 1, and so, by Fact 4, γt(G− v) ≥ γt(G)− 1 = 2`+ 1. Consequently,
γt(G− v) = 2`+ 1 for every vertex v ∈ V ; that is, every vertex of G is critical. �

As an immediate consequence of Facts 4 and 5, we have that the graph G is (2`+ 2)-γt-critical. This completes the proof
of Theorem 4. �

3.2. Proof of Corollary 1

Recall the statement of Corollary 1(a).

Corollary 1(a). For n > k+ 1 and n− (k+ 1) ≡ r (mod (2k+ 2)) for some integer r where r ∈ {0, 1} or k+ 2 ≤ r ≤ 2k+ 1,
the Harary graph H2k+1,2n is not γ -critical.

Proof. Let G = H2k+1,2n, and so G is a (2k+1)-regular graph of order 2n. Let v ∈ V (G) and let Gv = G−v. Then, Gv is a graph
of order 2n−1. To show that G is not γ -critical, it suffices for us to show that γ (Gv) ≥ γ (G). Since n−(k+1) = (2k+2)t+r
where r ∈ {0, 1} or k + 2 ≤ r ≤ 2k + 1, we have by Theorem 2 that γ (G) = dn/(k + 1)e = 2t + 1 + dr/(k + 1)e. Since
n > k + 1, we also note that ∆(Gv) = ∆(G) = 2k + 1. By Observation 1, we have that γ (Gv) ≥ d(2n − 1)/2(k + 1)e =
2t + 1 + d(2r − 1)/2(k + 1)e. If r = 0, then γ (Gv) ≥ 2t + 1 = γ (G). If r = 1, then γ (Gv) ≥ 2t + 2 = γ (G). If
k+ 2 ≤ r ≤ 2k+ 1, then γ (Gv) ≥ 2t + 3 = γ (G). In all cases, γ (Gv) ≥ γ (G), as desired. �

Recall the statement of Corollary 1(b).

Corollary 1(b). For n ≥ 2k+ 1 ≥ 3, where n 6≡ 1 (mod (2k+ 1)), the Harary graph H2k,n is not γ -critical.
Proof. Let G = H2k,n, and so G is a (2k)-regular graph of order n. Let v ∈ V (G) and let Gv = G − v. Then, Gv is a graph of
order n− 1. To show that G is not γ -critical, it suffices for us to show that γ (Gv) ≥ γ (G). If n = 2k+ 1, then G = Kn, which
is not γ -critical. Hence we may assume that n > 2k + 1, for otherwise the desired result holds. With this assumption, we
note that∆(Gv) = ∆(G) = 2k. Let n = t(2k + 1) + r , where 0 ≤ r ≤ 2k. Suppose first that r = 0. Then by Theorem 2(a),
γ (G) = t . By Observation 1, we have that γ (Gv) ≥ d(n− 1)/(2k+ 1)e = t = γ (G), as desired. Therefore we may assume
that r ≥ 1. Since n 6≡ 1 (mod (2k+ 1)), we have that r ≥ 2. By Theorem 2(a), γ (G) = t + 1. By Observation 1, we have that
γ (Gv) ≥ t + 1 = γ (G), as desired. �
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