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Abstract

In the past, partial order reduction has been used successfully to combat the state explosion
problem in the context of model checking for non-probabilistic systems. For both linear time and
branching time specifications, methods have been developed to apply partial order reduction in
the context of model checking. Only recently, results were published that give criteria on applying
partial order reduction for verifying quantitative linear time properties for probabilistic systems.
This paper presents partial order reduction criteria for Markov decision processes and branching
time properties, such as formulas of probabilistic computation tree logic. Moreover, we provide
a comparison of the results established so far about reduction conditions for Markov decision
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1 Introduction

Model checking is a technique that allows for the fully automatic verification
of a property (often specified in a temporal logic) against a system that is
modelled as a network of finite-state automata. It allows for the analysis of
qualitative properties such as “every request is eventually answered”. Follow-
ing this example, there are systems whose nature may lead to some occasional
unanswered request. Consider, for instance, a protocol that attempts to access
a lossy medium a bounded number of times after which it aborts. A property
like “access is eventually granted” is obviously false. Instead, to ensure quality
of service, one would like that access is granted “often enough”. For this pur-
pose, model checking has been extended to deal with quantitative properties
such as “access is eventually granted with at least 99% probability” [12,3].
In this case, systems are modelled as networks of Markov decision processes
(MDP for short) [20].

To reason about non-probabilistic systems, a diversity of methods have
been devised to tackle the state-explosion problem that arises when the net-
work of automata is composed. A particular approach is partial order reduc-
tion [23,17,10,19, etc.] which is based on the observation that the execution
order of concurrent operations does not usually change the validity of a prop-
erty. Therefore, fixing one particular order of interleaving operations (without
generating the others) helps to reduce the number of states and transitions
that need to be explored while preserving the properties of interest.

Recently, Baier, Größer and Ciesinki [1] and D’Argenio and Niebert [5]
developed independently from each other partial order reduction criteria for
MDPs that preserve linear time properties, formalized as quantitative LTL\X

properties. Both approaches rely on modifications of Peled’s ample set meth-
ods [17,13,18].

The main contribution of this paper is the presentation of partial order
reduction criteria for verifying branching time properties formalized by means
of formulas of probabilistic computation tree logic [3]. Our criteria applied to
ordinary transition systems reduce to the criteria suggested by Gerth et al.
[10] for non-probabilistic branching time properties. Further on, we discuss
the connections between the reduction criteria of [5,1] and those presented
here and process equivalences (trace distribution equivalence, suitable notions
of simulation and bisimulation).

Although the partial order reduction criteria for verifying branching time
properties are rather strong and often might lead to a minor savings of states,
our contribution has some impact under both practical and theoretical aspects.
First, even a reduction that cannot shrink the state space of an MDP but only
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the transitions can increase the efficiency of the probabilistic model checking
procedure. The latter relies on solving linear programs where the number
of linear (in)equalities for any state s is given by the number of outgoing
transitions from s. Thus, removing certain transitions via efficient reduction
algorithms that operate on syntactic descriptions of the processes simplifies
the linear program to be solved, and thus, can yield a speed-up of the analysis.
Second, our reduction criteria provide the justification for modifying the given
probabilistic program to be analyzed “by hand”, e.g., using atomic regions for
certain program fragments. 4 Third, in the context of the wide range of re-
search results that discuss the possibility to adapt formal techniques to reason
about non-probabilistic systems for the probabilistic setting, our results are
of theoretical interest as they prove the existence of a conservative probabilis-
tic extension of the partial order reduction criteria to preserve branching time
properties. In fact, although research on model checking algorithms for proba-
bilistic systems started about 20 years ago, the question whether partial order
reduction for probabilistic systems is possible at all was open for a long time.

Organization of the paper. Section 2 briefly summarizes the preliminar-
ies concerning our model (Markov decision processes). Section 3 recalls the
criteria of the ample-method for linear time properties as suggested in [5,1].
The main result is presented in Section 4 where we provide the criteria to
preserve probabilistic branching time properties. In Section 5, we explain the
connections between the several reduction criteria and process equivalences.
The paper ends with a brief conclusion in Section 6.

2 Preliminaries

In an MDP, any state s might have several outgoing action-labeled transitions,
each of them is associated with a probability distribution which yields the
probabilities for the successor states. As in [20,16,6] we assume here that for
any state s, the outgoing transitions of s have different action labels. (This
corresponds to the so-called reactive model in the classification of [25].) In
addition, we assume here a labelling function that attaches to any state s a
set of atomic propositions that are assumed to be fulfilled in state s. The
atomic propositions will serve as atoms to formulate the desired properties in
a temporal logical framework.

4 The concept of atomic regions is known to be helpful to avoid the interleaving of con-
current activities, and thus, can be seen as a user-driven reduction technique to reduce the
state space.
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Definition 2.1 (Markov decision process (MDP), e.g. [20]) An MDP is
a tuple M = (S,Act,P,sinit, AP, L), where S is a finite set of states, Act a finite
set of actions, P : (S ×Act×S) → [0, 1] is the (three-dimensional) probability
matrix, sinit ∈ S the initial state, AP a finite set of atomic propositions, and
L : S → 2AP is a labeling function. Act(s) denotes the set of actions that
are enabled in state s, i.e. the set of actions α ∈ Act such that P(s, α, t) > 0
for some state t ∈ S. For any state s ∈ S, we require that Act(s) �= ∅ and∑

s′∈S P(s, α, s′) = 1 for any action α ∈ Act(s). (In particular, we assume that
M does not have terminal states.) �

The intuitive operational behavior of an MDP is as follows. If s is the cur-
rent state then first one of the actions α ∈ Act(s) is chosen non-deterministically.
Afterwards, action α is executed leading to state t with probability P(s, α, t).

We refer to t as an α-successor of s if P(s, α, t) > 0. Action α is called a
probabilistic action if it has a random effect, i.e., if there is at least one state
s where α is enabled and that has two or more α-successors. Otherwise, α is
called non-probabilistic. In particular, if all actions in Act are non-probabilistic
then our notion of an MDP reduces to an ordinary transition system with
at most one outgoing α-transition per state and action α. When modelling
realistic systems, most actions α will be non-probabilistic in the sense that
they yield unique successor states.

Paths. An infinite path in an MDP is a sequence ς = s0, α1, s1, α2, . . . ∈
(S × Act)ω such that αi ∈ Act(si−1) and P(si−1, αi, si) > 0 for any i ≥ 1. We
write paths in the form

ς = s0
α1−→ s1

α2−→ s2
α3−→ . . .

Then first(ς) = s0 denotes the starting state of ς and trace(ς) = L(s0), L(s1), L(s2), . . .
the word over the alphabet 2AP obtained by the projection of ς to the state
labels. Finite paths (denoted by the greek letter σ) are finite prefixes of infi-
nite paths that end in a state. We use the notations first(σ) and trace(σ) as
for infinite paths, last(σ) for the last state of σ and |σ| for the length (number
of actions).

Schedulers. A scheduler denotes an instance that resolves the nondetermin-
ism in the states, and thus, yields a Markov chain and a probability measure
on the paths. We consider here history dependent, randomized schedulers
(briefly called schedulers) which are given by a function D that assigns to any
finite path σ a probability distribution over Act(last(σ)). Schedulers are essen-
tial for the semantics of PCTL. For a formal definition see [20,1]. Intuitively,
a scheduler takes as input the “history” of a computation (formalized by a
finite path σ) and chooses the next action α randomly, according to the prob-
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abilities specified by the distribution D(σ). Given a state s and a scheduler
D, the behavior of M under D can be formalized by a (possibly infinite-state)
Markov chain.

Probabilistic computation tree logic (PCTL). PCTL is a probabilistic
variant of CTL [4] which has been introduced first for Markov chains [12] and
then for Markovian models with non-determinism [11,3,22]. We follow here
the state-labeled approach of Bianco and de Alfaro [3] and consider the full
logic PCTL∗, but without the next step operator. We define PCTL∗

\X-state
formulas (denoted by the capital greek letter Φ) and PCTL∗

\X -path formulas
(denoted by ϕ) by the following grammar:

Φ ::= true

∣∣ a
∣∣ Φ ∧ Φ

∣∣ ¬Φ
∣∣ P��p(ϕ)

ϕ ::= true

∣∣ Φ
∣∣ ϕ ∧ ϕ

∣∣ ¬ϕ
∣∣ ϕUϕ

Here, a ∈ AP is an atomic proposition. U denotes the standard until operator.
The intuitive meaning of the path formula ϕ1Uϕ2 is that ϕ2 will eventually
hold while before continuously ϕ1 is satisfied. In the state formula P��p(ϕ),
the subscript �� p describes a probability bound, say ≥ p, ≤ p, > p or < p
where p is a real number in the interval [0, 1]. Thus, P��p(ϕ) holds for state s
if for each scheduler D the probability measure of all infinite paths starting in
s and fulfilling the path formula ϕ meets the probability bound �� p. We skip
the formal definition of the semantics of PCTL∗

\X which can be found e.g. in
[3].

We write s |= Φ to denote that state-formula Φ holds in state s, and
similarly, ς |= ϕ to denote that path formula ϕ holds for the infinite path ς.
State formula Φ is said to hold for an MDP M if M’s initial state satisfies Φ,
i.e., if sinit |= Φ.

Other boolean connectives, such as disjunction ∨, implication →, can be
derived as usual. The temporal operators eventually ♦ and always � are
obtained in the standard way by ♦ϕ = trueUϕ and �ϕ = ¬♦¬ϕ.

PCTL\X denotes the state formula fragment of PCTL∗
\X where the path

subformulas in P��p(ϕ) are of the form Φ1UΦ2 . LTL\X arises as the path
formula fragment of PCTL∗

\X where all state subformulas are propositional
formulas, i.e., do not contain the probabilistic operator P��p(·). By a quanti-
tative LTL\X property, we mean a PCTL∗

\X state formula of the form P��p(ϕ)
where ϕ is a LTL\X formula.

Stutter actions. The correctness of partial order reduction criteria and
temporal properties is typically formulated by means of an equivalence that
identifies those states/paths whose traces agree up to stuttering. In this con-
text, stuttering refers to the repetition of the same state-labels. For the partial
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order reduction we shall need the concept of stutter actions, i.e., actions that
have no effect on the state-labels, no matter in which state they are taken.
Formally, action α of an MDP M is called a stutter action iff for all states s,
t ∈ S we have: P(s, α, t) ¿ 0 implies L(s) = L(t).

We refer to s
β
−→ t as a non-probabilistic stutter step if β ∈ Act(s) is a

non-probabilistic stutter action and t the unique β-successor of s.

3 The ample set method for linear time properties

In this section, we summarize the main results of [5] and [1] and recall the
argument why these techniques fail for branching time properties. 5 The start-
ing point is an MDP M = (S, Act, P, sinit, AP, L) to be verified against a linear
time property. The rough idea is to assign to any reachable state s an action-
set ample(s) ⊆ Act(s) and to construct a reduced MDP M̂ that results by
using the action-sets ample(s) instead of Act(s). Formally, given a function
ample : S → 2Act with ample(s) ⊆ Act(s) for all states s, the state space of the
reduced MDP M̂ = (Ŝ, Act, P̂, sinit, AP, L̂) induced by ample is the smallest set
Ŝ ⊆ S that contains sinit and any state t where P(s, α, t) ¿ 0 for some s ∈ Ŝ
and α ∈ ample(s). The labeling function L̂ : Ŝ → 2AP is the restriction of
the original labeling function L to the state-set Ŝ. 6 The transition proba-
bility matrix of M̂ is given by: P̂(s, α, t) = P(s, α, t) if α ∈ ample(s) and 0
otherwise. State s is called fully expanded if ample(s) = Act(s).

If the ample sets are “small” then we might expect that the linear program
to be solved for M̂ is simpler than the one for M. This is firstly, because the
number of variables for M̂ is smaller than for M, since there is one variable per
state. Secondly the linear programs to be solved for M̂ contain less inequalities
for any reachable state s that is not fully expanded (i.e., ample(s) �= Act(s)).

Independence of actions. The main ingredient of any partial order reduc-
tion technique in the non-probabilistic or probabilistic setting is an adequate
notion for the independence of actions. The rough idea is a formalization of
actions belonging to different processes that are executed in parallel and do
not affect each other, e.g. as they only refer to local variables and do not
require any kind of synchronization. The formal definition for the indepen-
dence of actions α and β in the composed transition system (which captures
the semantics of the parallel composition of all processes that run in parallel)

5 We adapt here the notations and conditions used in [5] and [1] for the purposes of this
paper.
6 Atomic propositions that do not occur in the given formula are assumed also not to occur
in AP. This simple step can identify more paths as stutter equivalent, hence improving the
reduction.

C. Baier et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 97–116102



relies on recovering the interleaving diamonds. In non-probabilistic systems,
independence of two actions α and β means that for any state s where both
α and β are enabled the execution of α does not affect the enabledness of β
(i.e., the α-successor of s has an outgoing β-transition), and vice versa, and in
addition the action sequences αβ and βα lead to the same state. In the prob-
abilistic setting, the additional requirement that αβ and βα have the same
probabilistic effect is made:

Definition 3.1 (Independence of actions, cf. [5,1] Two actions α, β with
α �= β are called independent (in M) iff for all states s ∈ S with {α, β} ⊆
Act(s):

(1) P(s, α, t) ¿ 0 implies β ∈ Act(t),

(2) P(s, β, u) ¿ 0 implies α ∈ Act(u)

(3) for all states w ∈ S:
∑

t∈S P(s, α, t) · P(t, β, w) =
∑

u∈S P(s, β, u) ·
P(u, α, w)

Two different actions α and β are called dependent iff α and β are not in-
dependent. If A ⊆ Act and α ∈ Act \ A then α is called independent from
A iff for all actions β ∈ A, α and β are independent. Otherwise, α is called
dependent on A. �

Applying the above definition to non-probabilistic actions α and β (i.e.,
where P(s, α, t), P(s, β, t) ∈ {0, 1} for all states s, t) yields the standard
definition of independence of actions in ordinary transition systems.

Example 3.2 Fig. 1 shows a fragment of an MDP M1 representing the paral-
lel execution of independent actions α and β. For example, α might stand for
the outcome of the experiment of tossing a “one” with a dice, while β stands
for tossing a fair coin. In general, whenever α and β stand for stochastic ex-
periments that are independent in the classical sense then α and β viewed as
actions of an MDP are independent. However, there are also other situations
where two actions can be independent that do not have a fixed probabilistic
branching pattern. E.g., actions α and β in the MDP M2 in Fig. 1 are in-
dependent. First notice that only in state s both α and β are enabled. The
α-successors t, s of s have a β-transition to state u, while the β-successor u
has a α-transition to itself. The effect under the action sequences αβ and βα
is the same as in either case state u is reached with probability 1. �

Criteria for linear time properties. To preserve linear time properties,
both approaches [5] and [1] use a series of conditions (see Figure 2) that rely
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Fig. 1. Examples for independent actions

A0 (Nonemptiness-condition) For all states s ∈ S, ∅ �= ample(s) ⊆ Act(s).

A1 (Stutter-condition) If s ∈ Ŝ and ample(s) �= Act(s) then all actions α ∈ ample(s) are
stutter actions.

A2 (Dependence-condition) For each path σ = s
α1−→ s1

α2−→ . . .
αn−→ sn

γ
−→ . . . in M

where s ∈ Ŝ and γ is dependent on ample(s) there exists an index i ∈ {1, . . . , n} such
that αi ∈ ample(s).

A3 (Cycle-condition) On each cycle s
α1−→ s1

α2−→ . . .
αn−→ sn = s in M̂ there exists a state

si which is fully expanded, i.e., ample(si) = Act(si).

A4 (Branching condition) . . .

Fig. 2. Conditions for the ample-sets

on modifications of Peled’s conditions for preserving LTL\X -properties. The
nonemptiness-condition (A0) ensures that the reduced system is a sub-MDP of
the original one. 7 The stutter-condition (A1), dependence-condition (A2) and
the cycle-condition (A3) agree exactly with Peled’s conditions [17,13] for non-
probabilistic systems and linear time properties. Instead of (A3), [1] suggests
a weaker condition that uses the concept of de Alfaro’s end components [6,7]
in the style of the following condition:

A3’ (End component condition) In each end component (T, A) in M̂
there is a fully expanded state, i.e., ample(t) = Act(t) for some t ∈ T .

End components can be viewed as the MDP-counterpart to terminal strongly
connected components in Markov chains. They consist of a state-set T and a
nonempty action-set A(t) ⊆ Act(t) for each t ∈ T such that for all t ∈ T and
actions α ∈ A(t) any α-successor of t belongs to T and the underlying directed
graph of (T, A) is strongly connected. While in MDPs, infinite traversal of a
cycle with at least one probabilistic action occurs with probability 0, almost

7 Recall that in this paper we focus our attention to MDPs without terminal states. This
explains why we require here as in [1], but unlike [5], the ample-sets to be non-empty.
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all paths “end” in an end component (T, A), that is, once T is entered and
only actions in A(t) are scheduled, T will not be left and any state of T is
visited infinitely often almost surely.

While conditions (A0)-(A3) ensure the equivalence of M and the reduced
system M̂ in the non-probabilistic setting, they are not sufficient in the prob-
abilistic setting, not even for reachability problems. Informally, the problem is
that (A0)-(A3) allow for a reduction where the ample-set of a state s consists
of e.g. two actions, say β, γ, while a certain probabilistic action α ∈ Act(s) is
not contained in the ample set of s. But then, a scheduler D for M might first
schedule α and then – depending on the probabilistic outcome of α – decide to
choose one of the ample actions β or γ (or to choose β and γ with appropriate
probabilities). On the other hand, any scheduler for M̂ is forced to assign
fixed probabilities to the actions β and γ before the outcome of the probabilis-
tic experiment according to α is known. This explains why, with (A0)-(A3),
M might have better strategies for reachability or other linear time properties
than M̂. To remedy the situation a further condition is needed:

A4.1 (branching condition à la [5])
|ample(s)| = 1 or ample(s) = Act(s) for any state s ∈ Ŝ.

A4.2 (branching condition à la [1]) If σ = s
α1−→ s1

α2−→ . . .
αn−→ sn

γ
−→ . . .

is a path in M where s ∈ Ŝ, α1, . . . , αn, γ /∈ ample(s) and γ is probabilistic
then |ample(s)| = 1.

Clearly, (A4.2) is weaker than (A4.1). Moreover, (A4.2) is irrelevant for ordi-
nary transition systems viewed as MDPs where all actions are non-probabilistic.
[5] shows that under conditions (A0)-(A3) and (A4.1), M and M̂ are simu-
lation equivalent with regard to a probabilistic variant of forward simulation,
and thus, M and M̂ are equivalent for all properties that are preserved by
the simulation relation. [1] provides a direct proof for the preservation of mea-
surable, stutter insensitive linear time properties under conditions (A0)-(A3)
and (A4.2).

[5] and [1] observed that although (A4.1) agrees with the condition made
by Gerth et al. [10,18] which in combination with (A0)-(A3) ensures the
preservation of branching time properties for non-probabilistic systems, (A0)-
(A3) and (A4.1) may fail for verifying probabilistic branching time properties
specified in PCTL\X . The counterexample, given in Fig. 3, that illustrates
this observation is a probabilistic variant of the example presented in [10,18] to
demonstrate that (A0)-(A3) cannot guarantee that a non-probabilistic system
and the reduced system are CTL\X -equivalent. In the MDP M in Fig. 3, a
and b are atomic propositions. 8 Dark states are labelled with {a, b}, grey

8 In Fig. 3 we have grouped together the states of the system M that are probabilistic
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Fig. 3. (A0)-(A3) and (A4.1) are not sufficient for PCTL\X

states with {a} and white states with ∅. α and β are independent stutter
actions. Moreover, β and γ are independent. Thus, conditions (A0)-(A3) and
(A4.1) are fulfilled when choosing the singleton ample-set {β} in the initial
state which leads to the reduced MDP M̂1 in Fig. 3. But then, the PCTL\X -
formula

P=1( �( (a ∧ ¬b) → (P=1[♦b] ∨ P=1[♦¬a]) ) )

holds for M̂1, but not for M. An intuitive explanation for this phenomenon is
the fact that (A4.1) still allows for probabilistic branches in non-fully expanded
states leading to states that are not PCTL\X -equivalent.

4 Preserving branching time properties

As a consequence of the previous example, requirements (A4.1) and (A4.2)
need to be strengthened. Therefore, we adopt the following stronger condition.

A4 (branching condition for branching time properties) If ample(s) �=
Act(s) then ample(s) is a singleton consisting of a non-probabilistic action.

Notice that condition (A4) collapses to (A4.1) for ordinary transition systems,
i.e., MDPs where all actions are non-probabilistic. Thus, the five conditions
(A0)-(A4) that we suggest for a reduction that preserves probabilistic branch-
ing time properties yield a conservative adaption of the conditions (A0)-(A3),
(A4.1) suggested by Gerth et al. [10,18] for non-probabilistic systems and
CTL∗

\X -properties.

To handle branching time properties, the cycle-condition (A3) could also
be replaced with the weaker end component condition (A3’). However, in
combination with (A4), conditions (A3’) and (A3) are equivalent. This follows
from the fact that for any end component in M̂ where none of its states is

visible bisimilar, which will be explained later in definition 4.5.
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fully expanded, the ample-sets of all its states are singletons consisting of a
non-probabilistic action. Thus, the end component under consideration is a
cycle.

Example 4.1 In contrast to M̂1, the reduced system M̂2 in Fig. 3 which is
obtained from M by choosing the ample-set of the initial state to be {α} fulfills
(A0)-(A4). Thus, as will be shown, M and M̂2 satisfy the same branching
time properties. �

The remainder of this section is concerned with the proof of the correctness
of our approach which is stated in the following theorem.

Theorem 4.2 (Correctness of (A0)-(A4)) If (A0)-(A3) and (A4) are ful-
filled then M and M̂ satisfy the same PCTL∗

\X state formulas.

We use a proof technique similar to those of [10,18] where (A0)-(A3) and
(A4.1) are shown to be sufficient for CTL∗

\X properties and non-probabilistic
transition systems. However, we have here the additional difficulty to reason
about probabilistic behaviors.

Definition 4.3 (Weight function, cf. [12]) Let S, S ′ be finite sets and
R ⊆ S × S ′. If μ and μ′ are distributions on S and S ′ respectively 9 then a
weight function for (μ, μ′) with respect to R denotes a function w : S × S ′ →
[0, 1] such that

• w(s, s′) > 0 implies (s, s′) ∈ R,

•
∑

s′∈S′ w(s, s′) = μ(s) for all s ∈ S and
∑

s∈S w(s, s′) = μ′(s′) for all s′ ∈ S ′.

We write μ ∼=R μ′ to denote the existence of a weight function for (μ, μ′)
w.r.t. R and refer to ∼=R as the lifting of R to distributions. �

In the sequel, we will use the following observation which is e.g. shown in
[2,8]:

Proposition 4.4 (Transitivity of ∼=R) If R is a binary, transitive relation
on a set S and μ, μ′, μ′′ are distributions on S such that μ ∼=R μ′ and μ′ ∼=R μ′′

then μ ∼=R μ′′.

The following definition can be viewed as a probabilistic variant of the
so-called visible bisimulation that has been introduced in [10].

Definition 4.5 (Probabilistic visible bisimulation (pvb))
Let M = (S, Act, P, sinit, AP, L) and M′ = (S ′, Act′, P′, s′

init
, AP, L′) be two

MDPs with the same set of atomic propositions and let R ⊆ S×S ′ be a binary

9 By a distribution on a finite set S we mean a function μ : S → [0, 1] such that
∑

s∈S μ(s) =
1.
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relation. Then, R is called a probabilistic visible simulation if (sinit, s
′
init

) ∈ R
and for any pair (s, s′) on R the following three conditions are fulfilled.

(1) L(s) = L′(s′)

(2) For any action α ∈ Act(s) at least one of the following two conditions
holds:
(2.1) α is a non-probabilistic stutter action such that (t, s′) ∈ R for the

unique α-successor t of s,

(2.2) There is a finite path σ′ of the form s′ = s′0
β0

−→ s′1 . . .
βn−1

−−→ s′n in M′

s.t. 10

• β0, . . . , βn−1 are non-probabilistic stutter actions,
• (s, s′i) ∈ R for 1 ≤ i ≤ n,
• α ∈ Act′(s′n) and P(s, α, ·) ∼=R P′(s′n, α, ·).

(3) If there is an infinite path ς of the form s = t0
β0

−→ t1
β1

−→ t2
β2

−→ t3
β3

−→ . . . in
M consisting of non-probabilistic stutter actions β0, β1, β2, . . . and such
that (ti, s

′) ∈ R, i = 0, 1, 2, . . . then there is a finite path σ′ of the

form s′ = t′0
γ0

−→ t′1
γ1

−→ . . .
γj−1

−−→ t′j
γj
−→ t′j+1 in M′ such that (s, t′i) ∈ R,

i = 0, 1, . . . , j, (t1, t
′
j+1) ∈ R, and γ0, γ1, . . . , γj−1, γj are non-probabilistic

stutter actions.

R is called a probabilistic visible bisimulation for (M,M′) if R is a proba-
bilistic visible simulation for (M,M′) and R−1 is a probabilistic visible sim-
ulation for (M′,M). We write M ≈pvb M′ iff there exists a probabilistic
visible bisimulation for (M,M′).

Our goal is to show that M ≈pvb M̂ where M denotes the “full” MDP

and M̂ the reduced MDP that results from ample-sets satisfying (A0)-(A4).
The following proposition completes then our argumentation.

Proposition 4.6 (Soundness of pvb for PCTL∗ without next step) Let
M and M′ be two MDPs as in Definition 4.5 such that M ≈pvb M′. Then,
M and M′ satisfy the same PCTL∗

\X state formulas.

Proof. (Sketch). One proof obligation relies on proving that the coarsest
probabilistic visible bisimulation R is a divergence-sensitive probabilistic branch-
ing bisimulation and the latter is sound for PCTL∗

\X [22,21]. 11

10 The case n = 0, i.e., σ′ = s′, is allowed.
11 There are some minor differences between our approach and those in [22,21], e.g. they use
an action-labelled setting and prove the preservation result under the assumption of proba-
bilistic convergence (rather than considering a divergence-sensitive variant of probabilistic
branching bisimulation). However, the main argumentation for the preservation result for
a notion of divergence-sensitive probabilistic branching bisimulation will be the same.
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Another different proof obligation is to provide a direct proof for the claim
and to show by structural induction on the syntax of PCTL∗

\X state/path
formulas that whenever R is a probabilistic visible bisimulation then

• for all PCTL∗
\X state formulas Φ and (s, s′) ∈ R: s |= Φ iff s′ |= Φ

• for all PCTL∗
\X path formulas ϕ and (ς, ς ′) ∈ Rpath: ς |= ϕ iff ς ′ |= ϕ

Here, Rpath denotes the “lifting” of R to paths (which has to be defined in an
appropriate way). We skip the details of this proof obligation too as it relies
on standard arguments provided e.g. in [22,21] (and also [9] for an MDP-like
model where probabilistic and non-deterministic states alternate). �

In the sequel, we assume that conditions (A0)-(A4) hold. Our goal is now
to establish a probabilistic visible bisimulation that relates M and M̂.

Definition 4.7 (Forming path, relation �) Let M be an MDP as before
and let s, s′ ∈ S. A forming path from s to s′ is a finite path σ of the form

s = s0

β0

−→ s1

β1

−→ . . .
βn−1

−−→ sn = s′ (*)

where β0, . . . , βn−1 are non-probabilistic stutter actions and, for i = 0, 1, . . . , n−
1, the singleton action-set {βi} fulfills the dependence condition (A2) for state
si.

12 We write s � s′ iff there exists a forming path from s to s′. ∼= denotes
the lifting of � to distributions on S via weight functions as in definition 4.3
(i.e., ∼= = ∼=�

). �

As the formal definition of forming paths only refers to non-probabilistic
actions and agrees exactly with the definition of forming paths in the non-
probabilistic setting [10,18], the following properties that were established
for non-probabilistic systems also hold for MDPs. First, we observe that the

s

r

· · ·

α

· · ·

α

· · ·

α

· · ·

α

β1

β2

β1

β2

Fig. 4. Illustration of Prop. 4.8

relation � is transitive and reflexive (even though, in general, non-symmetric).
Second, if σ is a forming path from s to s′ of length n as in (*) in definition 4.7

12 That is, for any finite path si
α0−→ t1

α1−→ . . .
αm−1

−−−→ tm
γ
−→ . . . where γ is dependent on βi

there exists j ∈ {0, 1, . . . , m − 1} such that αj = βi.
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then si � sj for 0 ≤ i ≤ j ≤ n. In addition, forming paths enjoy the property
that they can be replicated after an independent operation is performed. In
a probabilistic setting this can be depicted as in Fig. 4 and is formally stated
in the next proposition.

Proposition 4.8 (Properties of forming paths) Let s, s′ be two states in
M such that s � s′ and let α ∈ Act(s).

(a) If there is a forming path from s to s′ in which α does not occur then
α ∈ Act(s′) and P(s, α, ·) ∼= P(s′, α, ·).

(b) If α is a non-probabilistic stutter action with s
α
−→ t and t �� s′ then

α ∈ Act(s′) and s′
α
−→ t′ where t � t′. (In particular, we also have

P(s, α, ·) ∼= P(s′, α, ·).)

Proof. The proof for (a) can be provided using induction on the length n of a
forming path from s to s′ where α does not occur. The basis of induction n = 0
is obvious as we then have s = s′. In the induction step n − 1 =⇒ n(n ≥ 1)
we assume that

s = s0

β0

−→ s1

β1

−→ . . .
βn−2

−−→ sn−1

βn−1

−−→ sn = s′

is a forming path from s to s′ such that α /∈ {β0, . . . , βn−1}. By induction
hypothesis we have α ∈ Act(sn−1) and

P(s, α, ·) ∼= P(sn−1, α, ·) (+)

As the dependence condition (A2) holds for state sn−1 and the singleton
action-set {βn−1}, actions α and βn−1 are independent. Since βn−1 is a non-
probabilistic stutter action, sn = s′ is the unique βn−1-successor of sn−1.
Thus α ∈ Act(sn) (see Def. 3.1) and for any α-successor t of sn−1, we have
βn−1 ∈ Act(t). Moreover, condition (A2) also holds for any α-successor t of
sn−1 and the singleton action-set {βn−1}, since α and βn−1 are independent
and (A2) holds for state sn−1 and the singleton action-set {βn−1}. Let ut be
the unique βn−1-successor of t. We then have t � ut. As the probabilistic
effect of the action sequences αβn−1 and βn−1α in state sn−1 are the same we
have:

∑
t∈S

ut=u
P(sn−1, α, t) = P(sn, α, u)

for any state u ∈ S. Thus, we may deal with the weights w(t, ut) = P(sn−1, α, t)
and w(·) = 0 in all remaining cases. Hence, P(sn−1, α, ·) ∼= P(sn, α, ·). Using
(+) and the transitivity of ∼= (cf. Proposition 4.4) we get P(s, α, ·) ∼= P(sn, α, ·).
The proof for part (b) can be provided with similar arguments, also using in-
duction of the length of a forming path from s to s′. �
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Note that part (a) of Proposition 4.8 applies to all actions β ∈ Act(s)
which are probabilistic or which are non-stutter actions. But, in addition,
there might be also non-probabilistic stutter actions β enabled in s that do
not occur on at least one forming path from s to the given state s′.

Definition 4.9 (Relation R) The relation R is given by R =
{
(s, ŝ) ∈

S × Ŝ : s � ŝ
}
. (As before, S is the state space of M and Ŝ the state space

of M̂.) �

In the sequel, a forming path in M̂ means a forming path s0

β0

−→ s1

β1

−→

. . .
βn−1

−−→ sn as in definition 4.7 where s0, s1, . . . , sn ∈ Ŝ and βi ∈ ample(si),
i = 0, 1, . . . , n − 1.

Proposition 4.10 (Forming paths in the reduced MDP) Let ŝ be a state
in M̂.

(a) If σ̂ is a forming path in M̂ starting in state ŝ and (s, ŝ) ∈ R then
(s, û) ∈ R for all states û in σ̂.

(b) There exists a forming path from ŝ in M̂ to some fully expanded state.

(c) If α ∈ Act(ŝ) then there exists a forming path σ̂ in M̂ from ŝ to some
state û such that α ∈ ample(û) and P(ŝ, α, ·) ∼= P(û, α, ·).

Proof. Part (a) is immediate by transitivity of �.

Part (b) follows from the fact that any finite path in M̂ where none of its
states is fully expanded is a forming path (because of conditions (A1), (A2)
and (A4)). As M̂ is finite-state, the non-emptiness condition (A0) and the
cycle condition (A3) ensure the existence of a forming path from ŝ to a fully
expanded state.

Part (c) can be derived from (b) and Proposition 4.8 as follows.

Let σ̂ be a forming path in M̂ from ŝ where v̂ = last(σ̂) is fully expanded
and let α ∈ Act(ŝ). If α does not occur in σ̂ then Proposition 4.8(a) yields

α ∈ Act(v̂) = ample(v̂) and P(ŝ, α, ·) ∼= P(v̂, α, ·).

If α appears in σ̂ then we consider the longest prefix π̂ of σ̂ where α does not
occur. Let û = last(π̂). Then, σ̂ has the form

ŝ −→ . . . −→ û︸ ︷︷ ︸
=π̂

α
−→ . . . −→ v̂.

In particular, α ∈ ample(û). Again, Proposition 4.8 (a) yields P(ŝ, α, ·) ∼=
P(û, α, ·). �

We are now ready to prove that M and M̂ are probabilistic visible bisim-
ilar.
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Theorem 4.11 R is a probabilistic visible bisimulation for (M,M̂).

Proof. Clearly, (sinit, sinit) ∈ R. We show that for any (s, ŝ) ∈ R conditions
(1)-(3) in Def. 4.5 hold, and conversely, that (1)-(3) are fulfilled for the “in-
verse” pair (ŝ, s) ∈ R−1.

(1) It is obvious that L(s) = L(ŝ) as all actions on a forming path are stutter
actions. Thus, all states on a forming path have the same labeling.

(2) We first show that condition (2) in Def. 4.5 holds for (s, ŝ) ∈ R. Let
α ∈ Act(s).

If α is a non-probabilistic stutter action and s
α
−→ t where t � ŝ (and thus,

(t, ŝ) ∈ R) then we are in the situation of condition (2.1) in Definition 4.5.

Let us now assume that α is probabilistic or a non-stutter action or s
α
−→ t

is a non-probabilistic stutter step where t �� ŝ. In either case, we may apply
part (a) or (b) of Proposition 4.8 which yields

α ∈ Act(ŝ) and P(s, α, ·) ∼= P(ŝ, α, ·). (+)

As ŝ is a state in the reduced MDP M̂, part (c) of Proposition 4.10 yields
the existence of a forming path from ŝ in the reduced MDP M̂ to some state
û where α ∈ ample(û) and P(ŝ, α, ·) ∼= P(û, α, ·). Hence, by (+) and the
transitivity of ∼= (see Proposition 4.4) we obtain:

α ∈ Act(û) and P(s, α, ·) ∼= P(û, α, ·). (++)

We may compose the forming paths in M from s to ŝ (which exists as we
have s � ŝ) and the forming path σ̂ from ŝ to û in M̂ and obtain s � û. As
û ∈ Ŝ, we get (s, û) ∈ R. By part (a) of Proposition 4.10 we get (s, v̂) ∈ R for
all states v̂ in σ̂. Thus, (++) yields that we are in the situation of condition
(2.2) in Def. 4.5.

Let now be (ŝ, s) ∈ R−1 and an action α ∈ ample(ŝ). As (ŝ, s) ∈ R−1 we
have s � ŝ. Thus, there is a forming path σ′ from s to ŝ. Using the trivial
fact that P(ŝ, α, ·) ∼= P(ŝ, α, ·) and part (a) of Proposition 4.10 we are in the
case of condition (2.2) in Def. 4.5 (note, that R−1 ⊆ Ŝ × S).

(3) As the divergence condition in Definition 4.5 only refers to non-probabilistic
actions and agrees with the third condition of visible simulations in non-
probabilistic systems, condition (3) can be established applying exactly the
same arguments as in the non-probabilistic case [10,18]. �

Theorem 4.11 together with Proposition 4.6 completes the proof of Theo-
rem 4.2.
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5 Partial order reduction versus process equivalences

In this section we give a brief overview of the connections between the partial
order reduction criteria presented here and in the papers [5] and [1] on the one
hand and probabilistic process equivalences on the other hand. With suitable
notions of stutter equivalence, simulation and bisimulation equivalence (see
below) we have:

(a) If conditions (A0)-(A3) and (A4.2) hold then M and M̂ are stutter equiv-
alent (see [1]), but in general M̂ does not simulate M.

(b) If conditions (A0)-(A3) and (A4.1) hold then M and M̂ are simulation
equivalent (see [5]), but in general not bisimilar.

(c) If conditions (A0)-(A3) and (A4) hold then M and M̂ are bisimilar.

(c) is our Theorem 4.11, the underlying notion of bisimulation is probabilistic
visible bisimulation (as defined in Def. 4.5) and could also be replaced with a
divergence-sensitive, state-based variant of probabilistic branching bisimula-
tion defined in the style of [22].

The underlying notion of stutter equivalence essentially agrees with trace
distribution equivalence [21] (reformulated for our model and state labels rather
than action labels). Stutter equivalence for paths identifies those paths ς1 and
ς2 where trace(ς1) and trace(ς2) arise from the same sequence of labels by repe-
tition of state-labels, that is trace(ς1) = �k1

1 , �k2

2 , . . . and trace(ς2) = �n1

1 , �n2

2 , . . .
where �1�2 . . . is an infinite word over 2AP and ki, ni ≥ 1. Two MDPs M and
M′ are said to be stutter equivalent if for any scheduler D for M there is a
scheduler D′ for M′ such that their probability measures agree on all measur-
able unions of stutter equivalence classes (of paths starting in the initial state
of M and M′ respectively). In particular, stutter equivalent MDPs satisfy
the same quantitative LTL\X properties.

The underlying simulation relation has been formally defined in [5] and
is a variant of probabilistic forward simulation as introduced by Segala [21].
This kind of simulation allows a state s to be simulated by a distribution over
states (rather than a single state). For the example in Figure 3, M and M̂1

are simulation equivalent. The intuitive argument why M̂1 can simulate M is
that state s is simulated by the distribution that assigns probability 1/2 to the
two a-states in M̂1. Thus, (A0)-(A3) and (A4.1) guarantee the equivalence
of M and M̂1 up to trace distribution congruence [21], and thus, they are
suitable for compositional reasoning.

In fact, in Figure 3, M and M̂1 are not bisimilar because there is no state
in M̂1 that corresponds to state s in M. Thus, Figure 3 yields an example for a
reduction satisfying (A0)-(A3) and (A4.1) where M and M̂1 are not bisimilar
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(as stated in (b)). Figure 5 illustrates a reduction satisfying (A0)-(A3) and
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Fig. 5. (A0)-(A3) and (A4.2) hold, but M̂ does not simulate M

(A4.2) where M̂ does not simulate M (as stated in (a)). Here, M and M̂
do not contain probabilistic actions, and hence, can be viewed as ordinary
transition systems. The intuitive argument why M̂ does not simulate M is
that there is no possibility to mimic the nondeterministic choice in state s via
a probabilistic choice over the two a-states in M̂. Note that the schedulers
for M in the upper a-state s might choose β and γ (and thus, combine the
two lower a-states) with arbitrary probabilities while probabilistic forward
simulation would require a fixed probabilistic distribution over the two lower
a-states to mimic the possible behaviors of s (which is not possible).

In (a) and (b), the cycle condition (A3) can be replaced with the weaker
end component condition (A3’), while the switch from (A3) to (A3’) is irrel-
evant for (c) as explained in Section 4. Statement (a) with (A3’) rather than
(A3) is the original formulation in [1]. In (b), the end component condition
(A3’) requires a notion of probabilistic forward simulation that allows for (cer-
tain) infinite computations to simulate a single transition, while for the cycle
condition (A3) a simpler version of simulation suffices where any transition of
the simulated process has to be matched by a finite computation tree of the
simulating process. The approach of [5] works with the cycle condition (A3)
and a formalization of finite computation trees by means of SOS-rules. Yet,
to deal with (A3’) and possibly infinite computation trees a further rule that
captures the semantics of infinite behaviors could be added.

6 Conclusion

In this paper, we presented partial order criteria to preserve probabilistic
branching time properties. This is of theoretical relevance, since it represents
the branching counterpart to the linear approach of [1,5] and is the natural
probabilistic extension of the reduction techniques for CTL [10]. Although
we cannot yet report on experimental results, we expect that our results have
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also some impact under practical aspects as explained in the introduction.
Thus our results can be seen as an alternative to the symbolic BDD-based
methods used e.g. in the PCTL model checker PRISM [15], but they can also
be applied in combination with symbolic methods using a static variant of the
partial order reduction criteria as in [14].

On the practical side we are currently implementing a model checker for
quantitative LTL and PCTL and intend to integrate the partial order tech-
niques presented here and in [1,5].

Further directions include a more detailed discussion about partial order
reduction criteria and process equivalences. We will have a deeper look at
the action-labeled case and study which variants of Valmari’s conditions for
various non-probabilistic process equivalences [23,24] can be adapted to the
probabilistic case.
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