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Glomerular expression of the ATP-sensitive P2X receptor in
diabetic and hypertensive rat models.

Background. The molecular identification and characteriza-
tion of the adenosine triphosphate (ATP)-sensitive family of P2
receptors is comparatively new. There are two main subgroups,
each with several subtypes and widespread tissue distribution,
including the kidney. A unique member of the P2X subgroup of
P2 receptors is the ATP-gated ion channel P2X, which on acti-
vation can cause cell blebbing, cytokine release, and cell death
by necrosis or apoptosis. We report expression of this receptor
in normal rat kidney and in two chronic models of glomerular
injury: streptozotocin-induced (STZ) diabetes and ren-2 trans-
genic (TGR) hypertension.

Methods. At different time points in these models, we used
a polyclonal antibody to the P2X; receptor and immunohisto-
chemistry to determine its expression and distribution. We also
used Western blotting and real-time polymerase chain reaction
(PCR) to detect changes in P2X; receptor protein and mRNA
expression, respectively.

Results. We found only low-level glomerular immuno-
staining for the P2X; receptor in normal rat kidney, but intense
P2X; receptor immunostaining of glomeruli in kidneys from di-
abetic animals at 6 and 9 weeks, and in hypertensive animals at
12 weeks. In diabetic animals, real-time PCR demonstrated a
~tenfold increase in glomerular P2X; receptor mRNA relative
to control, and Western blotting confirmed an increase in pro-
tein. Immunohistochemistry and immunoelectron microscopy
showed staining of glomerular podocytes, which was both intra-
cellular and at the plasma membrane.

Conclusion. We conclude that the P2X; receptor is not ex-
pressed appreciably under normal conditions, but that follow-
ing glomerular injury it is significantly up-regulated, mainly in
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podocytes, though also in endothelial and mesangial cells, of
animals with STZ-induced diabetes mellitus or TGR hyperten-
sion. Although the exact function and regulation of this receptor
remain unclear, its association with inflammatory cytokine re-
lease and cell death suggests that increased expression might be
involved in the pathogenesis of glomerular cell injury or repair.

Extracellular adenosine triphosphate (ATP) and
adenosine were first recognized to have important bio-
logic actions over 70 years ago, and the concept that these
purines may act as paracrine or autocrine mediators and
regulators of cellular function was put forward more than
40 years later [1]. In 1978, Burnstock proposed an early
classification of purine receptors, distinguishing between
those for adenosine (P1) and ATP (P2) [2]. The P2 recep-
tors have since been divided into two major subgroups,
P2X and P2Y, which are based on their molecular struc-
tures, intracellular signal transduction mechanisms, and
pharmacological profiles [3]. Currently, seven members
of the P2X family have been identified and eight subtypes
of the P2Y receptor [4, 5].

The P2X;_7 receptors share a sequence homology of
around 35% to 50%, but the P2X; receptor is more
structurally divergent and unique, having a much longer
C-terminus (239 amino acids) than the other six P2X re-
ceptors [6]. The P2X receptor, believed to be the origi-
nal P2Z receptor [7], has a dual response to extracellular
ATP: rapid opening of a ligand-gated cation channel (a
typical P2X response), followed by induction of a large
cytoplasmic pore permeable to molecules of between 600
and 900 Da [6]. It is known that extracellular ATP can kill
cells by either necrosis and/or apoptosis and that this is
probably mediated via the P2X; receptor [5]. Moreover,
atleastin lymphoid cells, low-level expression of the P2X5
receptor has been linked to cell proliferation [8], as well
as cell death, and (though still controversial) that recep-
tor polymorphisms may affect prognosis in chronic lym-
phocytic leukemia [9] and in tuberculosis [10]. However,
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the physiologic and pathologic role of this receptor, its
regulation and tissue expression, remain unclear.

In the present study, we have examined the distribution
and localization of the P2X7 receptor in normal kidneys
and in kidneys from two rat models of glomerular injury
due to diabetes or hypertension, respectively, using im-
munohistochemistry with a rabbit polyclonal antibody to
the rat P2X; receptor, as well as real-time polymerase
chain reaction (PCR) detection of its mRNA (in the dia-
betic model only). We chose these models because of pre-
vious findings that mesangial cells [11, 12] and glomeru-
lar epithelial cells [13] can express the P2X receptor and
that high glucose altered its expression in cultured fibrob-
lasts [14].

METHODS
Rat models

Model of diabetes. Dr.E.Debnam (University College
London) provided the streptozotocin (STZ)-induced di-
abetic rat kidneys. Male Sprague-Dawley rats (initial
weight 240 g, aged 6 to 7 weeks) were given a single injec-
tion of STZ into a tail vein (50 to 60 mg/kg dissolved in pH
4.5 citrate buffer) under light anesthesia [15]. The animals
were then sacrificed at 3, 6, and 9 weeks post-injection
and their kidneys examined by immunocytochemistry;
isolated glomeruli were obtained for protein and mRNA
extraction. Kidneys from age-matched control rats were
also examined. In STZ-induced diabetic rats, glomerular
filtration rate (GFR) and renal blood flow at 8 weeks post-
STZ are increased compared with control [16]; glomeru-
lar morphology at 14 weeks post-STZ is no different from
control and the majority of glomeruli look normal under
the light microscope [17]. Although we did not record
blood pressure in our treated rats, an earlier and rep-
resentative study of this model, using a similar dose of
STZ, found no change in diastolic or mean blood pressure
compared with a control group for up to 10 weeks [18].

Model of hypertension. The kidneys of hyperten-
sive transgenic (mRen2) 27 rats (TGR), which expresses
the murine Ren-2 gene [19], were kindly provided by
Professor J. Mullins (Edinburgh University) and Dr. J.
McEwan (University College London), and additional
archived renal tissue by Professor S. Fleming (University
of Dundee). At the time of sacrifice these animals were
aged 12 weeks. This animal model is no longer accessi-
ble for further study and the kidney tissue available to us
was examined by immunocytochemistry only. TGR rats
develop severe hypertension, which begins at4 weeks and
peaks at 9 weeks of age [19]; blood pressure decreasing
thereafter [20]. No renal damage is visible up to 10 weeks
of age [21]; although GFR is no different from control
at 16 and 32 weeks, glomerulosclerosis is present, and by
18 weeks >50% of glomeruli are sclerotic and the in-
trarenal vessels thickened [20, 21].

Immunohistochemistry

Kidney tissue was embedded in Tissue-Tek (Sakura
Finetek, The Netherlands) and frozen in isopentane pre-
cooled in liquid nitrogen. The unfixed cryostat sections (8
um thick) were collected on poly-L-lysine-coated slides
and allowed to equilibrate at room temperature for at
least 10 minutes and then fixed in 4% formaldehyde-
0.03% picric acid in 0.1 mol/L phosphate buffer (pH 7.4)
for 2 minutes. From archived tissue, sections (4 pm) were
cut, placed on gelatin-coated slides, and dried overnight
at 37°C; sections were then dewaxed with xylene and re-
hydrated in decreasing concentrations of ethanol.

After blocking the endogenous peroxidase activity in
50% methanol-0.3% hydrogen peroxide (H,0O,) for 15
minutes, specimens were incubated overnight at room
temperature with the primary P2X; receptor antibody [5
pg/mL in 10% normal horse serum (NHS)/phosphate-
buffered saline (PBS)], as described previously [22].
The secondary antibody was a biotinylated donkey an-
tirabbit IgG (Jackson ImmunoResearch, Luton, UK)
ExtrAvidin-horseradish peroxidase (Sigma, Poole, UK)
was used to increase the sensitivity of antigen localization.
Nickel-intensified diaminobenzidine tetrahydrochloride
(DAB) and H,0O; were used as the enzyme substrate
to produce a black amorphous reaction product in the
sections. Control experiments were performed to estab-
lish specific immunoreactivity: sections were incubated
with P2X; receptor antibody pretreated with an excess
of the homologous peptide antigen; the primary anti-
body was replaced with nonimmune rabbit antiserum,
or without primary antibody. The P2X; receptor anti-
body was obtained from Roche Bioscience (Palo Alto,
CA, USA). The subtype-selective antibody was raised
in rabbits against a specific 15 amino acid residue at the
carboxy-terminus of the P2X receptor molecule [23]. We
confirmed in human embryonic kidney (HEK) cells ex-
pressing recombinant rat P2X5 that this antibody detects
a ~80 kD band (not shown), which is thought to be the
glycosylated monomeric form of the receptor [24]; in rat
brain this same band was detected plus a ~50 kD, also
reported previously [25], which (tested because of its
predicted size) when detected in rat kidney tissue (see
Results section) did not cross-react with a Roche P2Xy
polyclonal antibody (not shown); we also confirmed no
glomerular immunostaining with this antibody in normal
[26] and diabetic (not shown) kidney. Anti-thymocyte-
1 (Thy-1) (Abcam, Cambridge, UK) antibody was used
as a marker for mesangial cells and anti-Wilms tumor-1
(WT-1) (Santa Cruz Biotechnlogy, Santa Cruz, CA, USA)
antibody was used as a marker for podocytes. The sec-
ondary antibody for fluorescence microscopy was either
the fluorescein isothiocyanate (FITC)-conjugated anti-
body (ICN, Biomed, CA, USA) (green color) or a Cy3-
labeled anti-rabbit IgG (Abcam) (red color). Antibodies
to the P2X; receptor and the podocyte marker WT-1 were
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raised in the same species, and additional steps were re-
quired to ensure elimination of cross-reactivity. After in-
cubation overnight with anti-P2X7 receptor antibody, the
layers of secondary antibody were biotinylated donkey
anti-rabbit IgG (Jackson Immunoresearch) and ExtrA-
vidin peroxidase (Sigma); the tyramide signal amplifica-
tion solution was applied for 8 min and the final layer was
streptavidin fluorescein (Amersham Lifescience, Bucks,
UK). Finally, sections were incubated overnight with anti-
WT-1 and then detected with donkey antirabbit Cy3.
Pictures were taken with a Zeiss Axioplan immunoflu-
orescent microscope with a Leica DC200 digital camera
(Zeiss, Oberkochen, Germany).

Immunoelectron microscopy

Blocks (about 0.5 x 0.5 cm) of kidney were dissected
out and immersion-fixed overnight at 4°C in fixative
consisting of 4% paraformaldehyde and 0.2% glutaralde-
hyde in 0.1 mol/L phosphate buffer (pH 7.4). The follow-
ing day, the specimens were rinsed in phosphate buffer for
several hours (at 4°C) and then transferred to 0.05 mol/L
Tris-buffered saline (TBS) at pH 7.6. Sections (60 to
70 um) were cut on a vibratome, collected in TBS, and
processed for the pre-embedding electron immunocy-
tochemistry of P2X; receptor antibody, using the Ex-
trAvidin peroxidase-conjugate procedure as previously
described [27]. Initially, sections were washed in TBS
and exposed for 30 minutes to 0.3% H,O; in 30%
ethanol to block endogenous peroxidases and then
washed in TBS. The main steps of the immunoproce-
dure included (7) for blocking nonspecific protein bind-
ing sites, incubation of sections for 1/, hours with heat-
treated 10% NHS (Jackson ImmunoResearch); (2) in-
cubation for 20 hours with a rabbit polyclonal antibody
to the P2X; receptor (at 3 pg antibody/mL of TBS
containing 10% NHS and 0.1% sodium azide); (3) in-
cubation for 5 hours with a biotin-conjugated donkey-
antirabbit immunoglobulin G (IgG) (H + L) serum
(Jackson ImmunoResearch) diluted 1:500 in TBS con-
taining 1% NHS and 0.1% sodium azide; and (4) incuba-
tion for 18 hours with Extr Avidin-horseradish peroxidase
conjugate (Sigma-Aldrich, Poole, UK) diluted 1:1500 in
TBS. After exposure to DAB and H,0O,, and osmication
(1% osmium tetroxide in 0.1 mol/L cacodylate buffer,
pH 7.4), the specimens were dehydrated in a graded se-
ries of ethanol and embedded in Araldite. The ultrathin
sections were stained with uranyl acetate and lead citrate
and examined with a JEM-1010 electron microscope.

Controls for electron microscopy-immunocytochemistry

No immunolabeling was observed when the P2X5 re-
ceptor antibody was omitted from the incubation medium
and/or replaced with nonimmune NHS and nonimmune
normal rabbit serum (Nordic Immunology, Tilberg, The

Netherlands), or when the biotin-conjugated donkey-
antirabbit IgG serum was omitted from the incubation
medium.

Identification of apoptosis in glomeruli
by the TUNEL assay

The terminal deoxynucleotidyl transferase-mediated
nick end-labeling (TUNEL) assay was performed using
the In Situ Cell Death Detection Kit (Roche Molecular
Biochemicals, Mannheim, Germany), according to the
manufacturer’s instructions. Briefly, sections were fixed
with 4% formaldehyde for 20 minutes and then washed
three times with PBS. Cells were permeabilized with 0.1 %
Triton X-100, 0.1% sodium citrate solution in PBS for
2 minutes at 4°C. Sections were rinsed three times with
PBS and then incubated for 1 hour in TUNEL reaction
mixture. After a further washing in PBS, the slides were
then mounted in Citifluor and examined with a Zeiss Ax-
ioplan immunofluorescent microscope.

Glomerular mRNA and protein extraction

Glomeruli were isolated from the renal cortex by a
serial sieving technique. Pieces of cortex were minced,
pushed through a series of stainless steel mesh sieves
of different pore sizes (150, 106, and finally 75 pm) and
rinsed with ice-cold Hepes buffer; collected, divided and
centrifuged at 1500 x g for 8 minutes. Sieved tissue was
>90% free of extraglomerular components.

For protein extraction, lysis buffer containing
50 mmol/L Tris, pH 8, 75 mmol/L NaCl, 1% Nonidet,
10 mmol/L. deoxycholate, 0.1% sodium docedyl sulfate
(SDS), 25 ug mL~! leupeptin, 200 units mL~! aprotinin,
1 umol/L pepstain A, 1 mmol/L phenylmethylsulfonyl
fluoride (PMSF) (Sigma) was added and the mixture
incubated in ice for 1 hour. The tubes were centrifuged
at 14000 x g for 15 minutes and the supernatant was
used for Western blotting. The protein concentration
was estimated using a standard BCA method (Pierce,
Rockford, IL, USA).

Total RNA was extracted with TRIzol (Invitrogen,
Renfrewshire, UK). The amount of RNA was estimated
using a spectrophotometer set at 260/280 nm. Messenger
RNA was isolated using oligo-dT—coated magnetic beads
(PolyATract) (Promega, Madison, WI, USA) according
to the manufacturer’s protocol. Synthesis of cDNA was
done with an equivalent of 2 ug RNA, oligo-dT primer
and 1 U Superscript I RNase H™ reverse transcriptase
(Invitrogen), according to the supplier’s protocol.

Detection and quantification of P2X5 receptor
and B-actin using real-time PCR

The resulting cDNA transcripts of glomerular mRNA
were used for PCR amplification by PCR. To ensure
primer specificity, PCR products were also analyzed by
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gel electrophoresis in the BioRad Multi-Imager (BioRad,
Hercules, CA, USA). In these semiquantitative experi-
ments, the PCR was performed for 35 or 20 cycles for
the P2X; receptor and B-actin, respectively. For real-
time PCR quantification, we used the BioRad Icycler
(BioRad) with a PCR-mix containing SYBR-Green 1.
SYBR-Green I is a useful fluorescent intercalating dye
that labels double-stranded DNA (dsDNA) [28]. The
real-time PCR was used with the following composition:
1 x buffer, 2.5 mmol/L MgCl,, 60 nmol/L SYBR-Green
(Biozym) 1 mmol/LL deoxynucleoside triphosphates
(dNTPs), 1 mmol/L primer, 100 ng cDNA, 1 U Tag-
Polymerase (Invitrogen). Specific primers were designed
from the rat cDNA-sequences of P2X; receptor (sense 5'-
GTGCCATTCTGACCAGGGTTGTATAAA-3; anti-
sense 5-GCCACCTCTGTAAAGTTCTCTCCGATT-
3’; and the housekeeping gene B-actin sense 5'-ACC
TTCAACACCCCAGCCATGTACG-3; and antisense
5-CTGATCCACATCTGCTGGAAGGTGG-3). The
expected lengths of the PCR products were 353 bp and
697 bp, respectively. The cycle profile was 6 minutes at
94°C followed by 40 times 30 seconds at 94°C, annealing
for either 58°C for the P2X; receptor or 65°C for B-actin
and a 72°C extension for 1 minute.

For continuous monitoring, fluorescence emission was
recorded after each cycle and for every reaction a thresh-
old cycle (c;) was evaluated by the Icycler Software
(BioRad). To quantify P2X; receptor and B-actin gene
expression, standard curves were generated with known
amounts of each gene product.

Immunoblotting

Twenty nanograms of glomerular protein were mixed
with loading buffer and incubated for 5 minutes at
95°C before being loaded on 12% SDS-polyacrylamide
gel electrophoresis (PAGE). A prestained standard
marker (BioRad, UK) was used to estimate molecu-
lar weight. The proteins were transferred semidry for
2 hours onto a Hybond enhanced chemiluminescence
(ECL)-nitrocellulose membrane (Amersham, UK). The
nitrocellulose was blocked (PBS containing 3% milk
powder and 0.05% Tween 20) at room temperature
and incubated overnight in the same solution containing
2.5 pg/mL antibody at 4°C. For detection, the ECL+
chemiluminescence method was performed using a
peroxidase-linked donkey antirabbit IgG and ECL West-
ern blotting reagents (Amersham, UK); light emission
was captured by Multi-Imager scanning software (Bio-
Rad).

Statistical analysis

All data are given as mean £ SEM. Differences be-
tween means were tested for significance by unpaired
t test (Student). A P value of <0.05 was considered
significant.

RESULTS
Immunohistochemistry

P2X; receptor immunoreactivity was barely detectable
in normal rat kidney (Fig. 1A). In contrast, P2X; recep-
tor immunoreactivity was clearly visible in glomeruli of
kidney tissue from both STZ-induced diabetic (Fig. 1B)
and TGR hypertensive rats (Fig. 1C).

Figure 2A to F shows P2X receptor (red) immunofluo-
rescence images of glomeruli of 6-week diabetic (Fig. 2A),
control (Fig. 2B), and 12-week TGR hypertensive
(Fig. 2C) rats, again showing increased P2X; receptor
protein expression in the diabetic and hypertensive rat
kidneys compared with control. Figure 2D shows P2X5
receptor peptide pre-absorption in a 6-week diabetic kid-
ney. Figure 2E and F show co-localization with a podocyte
marker (Fig. 2E) [WT-1 (red)], but not a mesangial cell
marker (Fig. 2F) [Thy-1 (green)] in 6-week diabetic kid-
ney. Although increased P2X; receptor glomerular im-
munostaining was detectable in 3-week diabetic rats,
there was no apparent further increase between weeks
6 and 9.

Immunoelectron microscopy localization
of P2X5 receptor

The electron microscopy images of diabetic animals
localized immunoreactivity for P2X; receptor protein
to podocytes (predominantly), rather than mesangial
cells (not shown); minimal immunoprecipitation could
be detected in healthy controls (Fig. 3A) compared with
diabetic animals (Fig. 3B and C). In podocytes, im-
munoreactivity appeared as small clumps of immunopre-
cipitate in both the cytoplasm and on the cell membrane
(Fig. 3B). The cell membrane labeling was particularly
noted on some podocyte foot processes, at the glomeru-
lar filtration barrier (Fig. 3C). No immunolabeling was
observed in diabetic tissue when the primary antibody
was replaced with nonimmune serum (Fig. 3D).

TUNEL staining

As a marker of apoptosis, although we could demon-
strate an increase in TUNEL staining in diabetic
glomeruli (as shown previously by others [29]), and that
the pattern looked similar to the glomerular P2X; re-
ceptor staining (compare Fig. 4 with Fig. 2A and C),
for technical reasons we could not confidently establish
co-localization of P2X7 receptor immunostaining with
TUNEL-positive cells.

Semiquantitative and quantitative (real-time) reverse
transcription (RT)-PCR in diabetic kidney

The PCR produces single bands at 353 bp and 697 bp
for the P2X; receptor and the housekeeper -actin, re-
spectively. Control and diabetic glomerular cDNA were
standardized to -actin and densiometric analysis showed
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Fig. 1. Light micrographs. (A) Control rat kidney cortex showing minimal P2X7 receptor immunoreactivity in tubules and glomeruli (G). (B) A
9-week diabetic kidney showing increased P2X7 receptor immunoreactivity (arrows) in glomeruli (G). (C) A P2X7 immunopositive glomerulus
(G) of a 12-week Ren-2 transgenic (TGR) hypertensive rat (black scale bar = 50 pm).

no difference between the two groups on an agarose gel
(Fig.5). PCRs performed with the same amount of cDNA
template, but with P2X7 receptor primers, demonstrate
an increase in mRNA abundance in glomeruli of diabetic
animals after 6 weeks (Fig. 5). Experiments on 3-week di-
abetic animals could not detect any difference from con-
trols (data not shown). Figure 6 shows the real-time PCR
data expressed as a ratio of P2X; receptor to -actin con-
centrations, which is increased in diabetic glomeruli.

Western blotting

Western blots incubated with P2X; receptor antibody
produced clear bands at ~80 and ~50 kD with 20 pg of
glomerular protein: a modest increase in P2X; receptor
protein expression could be detected in 9-week diabetic
glomeruli compared with control (Fig. 7A). Preincuba-
tion of the antibody with P2X; receptor peptide absorbed

the bands completely (Fig. 7B). There was no detectable
difference in P2X7 receptor protein expression compar-
ing 3-week and 6-week diabetic glomerular extracts with
control (not shown).

DISCUSSION

Until recently, the P2X subfamily of ion channel recep-
tors was considered exclusive to excitable tissues, but is
now increasingly recognized as widespread in distribution
[5]. Interest in studying the distinct family member P2X5
derives from its unique structure (C-terminal extension)
and unusual function (pore formation) [5]. This receptor
was first cloned from rat brain [6] and subsequently from
human monocytes [30] and mouse microglial cells [31].
Expression of its mRNA, detected by Northern blot anal-
ysis, was initially found (in addition to rat brain) in bone
marrow, and tissues containing abundant macrophages
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Fig. 2. Immunofluorescence photomicrographs. (A) Increased expression of P2X7 receptor immunoreactivity (red) in a 6-week diabetic rat
glomerulus. (B) Control glomerulus, which again shows little or no P2X7 receptor immunoreactivity. (C) Increased expression of P2X7 recep-
tor immunoreactivity (red) in a 12-week Ren-2 transgenic (TGR) hypertensive rat glomerulus. (D) A diabetic glomerulus preabsorbed with excess
P2X7 receptor peptide showing no immunostaining. (E) P2X7 receptor immunoreactivity (green) on podocytes co-localized with the podocyte
nuclear protein Wilm’s tumor (WT-1) (red). (F) Minimal co-localization of P2X7 receptor (red) with the mesangial cell marker Thy-1 (green)
(white scale bar = 30 um).
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Fig. 5. Sample agarose gel from reverse transcription-polymerase
chain reaction (RT-PCR) experiments. Lanes 1 to 3 are mRNA iso-
lated from glomeruli of three control animals; lanes 4 to 6 are mRNA
isolated from glomeruli of three 6-week diabetic animals. Levels of 3-
actin mRNA expression are unchanged; however there is an increase
in expression of P2X7 receptor mRNA in diabetic glomeruli.

or monocytes, but not in the kidney [32]. Later we, and
others, found evidence for P2X; receptor expression in
cultured mesangial cells and showed that it can medi-
ate ATP-induced cell death by apoptosis [11, 12]. These
observations prompted us to investigate whether P2X5
receptor expression might be altered in two models of
chronic glomerular injury: the STZ-induced model of dia-
betes and the transgenic (mRen2)27 renin-related model
of severe hypertension.

Fig. 3. Electron-immunocytochemistry  of
the P2X7 receptor subtype in glomeruli. (A)
Control, showing no P2X7 receptor staining
of podocytes (Pd), podocyte foot processes
(white arrows), and fenestrated endothelium
(black arrow head) of glomerular capil-
laries (cap) (magnification x16,000). (B)
P2X7 receptor immunoprecipitate localized
intracellularly and on the membrane of
podocyte (Pd) foot processes (black arrows).
Glomerular capillary (cap), basement
membrane (bm), fenestrated endothelium
(black arrow head) of a 3-week diabetic
glomerulus (magnification x15,000). (C)
A higher magnification of the glomerular
filtration barrier showing P2X; receptor
immunoprecipitate intracellularly and in
association with the cell membrane of
secondary foot processes (black arrows) of
a 9-week diabetic glomerulus. Fenestrated
endothelium (black arrow head), lumen of
capillary (cap) (magnification x28,000). (D)
An immunocytochemical control showing no
immunoprecipitate when the P2X7 receptor
antibody was replaced with nonimmune 10%
normal horse serum (magnification x15,000).

Fig. 4. Photomicrographs. (A) An increase
in terminal deoxynucleotidyl transferase-
mediated nick end-labeling (TUNEL)-
positive cells in the glomerulus of a 9-week
diabetic rat. (B) Comparison with a control
glomerulus (scale bar = 30 um).

Cell permeation by ATP was first reported in mast
cells [7] (associated with degranulation and histamine
release) and later in other hemopoietic cells, especially
macrophages and monocytes; it is mediated by the P2X5
receptor, formerly known as P2Z [5]. The ability of
extracellular ATP to induce cell death is now well-
established [33]; cells that express the P2X; receptor, such
as macrophages and lymphocytes, can die by either apop-
tosis or necrosis [6, 34]. Although its physiologic func-
tion is still unclear, P2X7 receptor expression in shedding
epithelia, such as skin [22], duodenum [35], vagina and
uterus [36], suggests that it might also have a role in nor-
mal cell turnover. It is an unusual receptor, because of its
dual function as a rapidly opening ligand-gated ion chan-
nel and a slowly forming membrane pore [6, 30]; it can
also cause cell fusion [37], membrane blebbing [38], and
shedding of microvesicles (ectocytosis), which may bind
cytokines or complement, as well as act as stimuli to cy-
tokine release when phagocytically ingested and cleared
[39]. Some authors have suggested that its ion channel
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Fig. 6. Comparison of P2X7 receptor mRNA levels by real time poly-
merase chain reaction (PCR) analysis expressed as a ratio to p-actin.
An eightfold increase in P2X7 receptor mRNA levels in 6-week dia-
betic glomeruli (**P < 0.005), and in 9-week diabetic glomeruli (*P <
0.05) when compared with control.
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Fig. 7. Sample immunoblot using polyclonal P2X7 receptor antibody.
Lanes 1 to 3 are protein extracts from control glomeruli; lanes 4 to 6 are
protein extracts from 9-week diabetic glomeruli. Twenty micrograms of
glomerular protein were loaded onto each lane and B-actin was used as
loading control (data not shown). (A) Increased P2X7 receptor protein
in diabetic glomeruli (lanes 4 to 6) compared with control (lanes 1 to
3). Two bands were detected, one of ~80 kD and another of ~50 kD.
The larger band is probably the glycosylated monomeric form of the
P2X7 receptor [24] and the smaller band may be a degradation product.
(B) Preabsorption of P2X7 receptor antibody with homologous peptide
completely abolished both protein bands.

activity versus pore formation might account for induc-
tion of apoptosis rather than necrosis, depending on cell
type [34], and that these diverse, though related, re-
sponses might also depend on a difference in sensitivity
to ATP. However, the level of receptor expression at the
plasma membrane, together with the extent and duration
of exposure to ATP are probably key determinants of
the final response. While formation of the large plasma
membrane pore is likely to result in cell death by lysis
and necrosis, activation of the ligand-gated ion channel
may lead to caspase activation and apoptosis after more
prolonged exposure to ATP, or repeated P2X; receptor
stimulation [6, 40].

In the context of tissue injury and inflammation, P2X5
receptor activation has been shown to induce interleukin-
converting enzyme (ICE) activity and release of mature
interleukin-1f (IL-1p) from macrophages and microglial
cells (perhaps by a [K*];-dependent mechanism), which
may itself be linked to activation of other caspases and
therefore to apoptosis [34, 38, 40]. Lipopolysaccharide
(LPS) and cytokines such as interferon-y (IFN-y) and tu-

mor necrosis factor-o (TNF-a) can increase expression of
the P2X; receptor and synergize with ATP to augment IL-
1B release [11, 34]; moreover extracellular ATP can itself
stimulate TNF-a release [41]. Recent data also show that
stimulation of P2X; receptors by ATP activates the tran-
scription factor nuclear factor-kB (NF-«B) [42], which
is involved in regulating inflammatory cytokine synthe-
sis; again potentially linking P2X; receptor stimulation
to autocrine- or paracrine-induced apoptosis. Thus ATP,
via P2X7 receptors, could interact with, and orchestrate,
inflammatory cytokines and the inflammatory response
in vivo, eventually leading to cell death by necrosis or
apoptosis; at least partially confirmed by a recent study
of a P2X; knockout mouse [43]. In keeping with such a
role, and in contrast to the P2Y receptor subfamily (and
other P2X receptor subtypes), P2X; receptor stimula-
tion requires relatively high concentrations of extracellu-
lar ATP (>100 pmol/L) [5], which are most likely to be
found during platelet aggregation, thrombosis, and cell
injury.

As already mentioned, in the kidney, the level of P2X5
receptor mRNA is low or undetectable, at least in native
tissue [30]. However, it has been more readily detectable
in isolated and cultured rat glomerular mesangial cells
[11, 12], mouse podocytes [13], and medullary collect-
ing duct cells [44]. The intriguing observation from the
present study is the strong (and seemingly unique) ap-
pearance and increase in P2X7 receptor expression in the
glomeruli of our two models of renal injury. Moreover,
expression based on our electron microscopy findings
was predominantly located to podocytes, although there
was some staining of endothelial and mesangial cells. We
have previously demonstrated electron microsopic im-
munolocalization of P2X; receptors in a subpopulation
of unstimulated rat mesangial cells in culture [11], though
immunoreactivity in these cells appeared to be more
prevalent than in mesangial cells in situ, suggesting that
cultured mesangial cells produce more P2X; receptor
protein than their counterpart in native tissue and that
there may be some heterogeneity of expression.

We can only speculate at present as to the likely
role of the P2X; receptor. We have nothing with which
to compare our observation of a localized increase in
its expression, except with in vitro observations that
bear some similarity. For example, altered P2X; recep-
tor expression and increased sensitivity to ATP-induced
apoptosis have been reported in cultured fibroblasts ex-
posed to high concentrations of extracellular glucose [14].
In these cells P2X; receptor expression has also been
linked to release of the autocrine growth factor IL-6
[45], which is increased in diabetic glomeruli [46]. In ad-
dition, IL-1 and TNF-a, both closely associated with
P2X7 receptor stimulation, are also increased in diabetic
glomeruli [47]. A recent study by Rost et al [48] suggested
that nucleotides might be involved in glomerular repair
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following injury: they showed that the P2 receptor an-
tagonist PPADS inhibited mesangial cell proliferation in
the anti-Thy-1 model of proliferative glomerulonephri-
tis. Although these authors presented data in support of
an effect via a P2Y, rather than a P2X receptor, receptor
characterization is limited because PPADS is generally
regarded as a nonselective P2 receptor antagonist [49]
that can also be active at the P2X; receptor [6] (a re-
ceptor not examined in their study), as well as being an
inhibitor of ectoATPase and hence ATP breakdown [50].

Normally in the kidney, apoptosis occurs at a low level,
but increases following various forms of injury, includ-
ing ischemia [51] and in diabetes [29]. However, in some
models healing follows this process [52], whereas in oth-
ersit may lead to renal scarring [51]; therefore, regulation
of this process could be important in normal tissue repair
and remodeling following injury. Thus our finding of in-
creased intensity of P2X7 receptor immunoreactivity in
the glomeruli of 12-week TGR and 6-week diabetic rats
compared with their age-matched normal control animals
might indicate a role for the P2X; receptor in glomeru-
lar repair by deleting damaged cells (although we could
not unequivocally co-localize P2X; receptor expression
with apoptotic cells), yet at the same time encouraging
proliferation and repair. Although the implication that
hypertensive damage might be an immune cell-mediated
“inflammatory” process is indeed arguable, it is not with-
out precedent [abstract; Collidge et al, J Am Soc Nephrol
13:53A, 2002]. An amelioration of both blood pressure
and hypertensive intrarenal arterial damage in TGR rats
treated with tacrolimus has been reported. What deter-
mines this balance will undoubtedly depend on the pres-
ence and expression of additional factors, including other
P2 receptors, such as P2Y, [11, 26, 48], P2Y, [48] or
P2Y, [26], as well as the activity of ATP degrading ecto-
ATPases [53]. Moreover, the intracellular immunolocal-
ization of the P2X7 receptor seen in the present study, and
also in our previous work on cultured mesangial cells [11],
suggests the presence of a preformed receptor, which may
only be expressed at the plasma membrane (for activa-
tion) following an as yet unknown stimulus. Further stud-
ies, perhaps in P2X5 receptor knockout mice, are needed
to confirm and extend these observations, and to deter-
mine their relationship to apoptosis (and diabetes) and if
manipulation of the P2X7 receptor is a potentially useful
therapeutic option.
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