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Abstract Many plant pentatricopeptide repeat (PPR) proteins
are known to contain a highly conserved C-terminal DYW do-
main whose function is unknown. Recently, the DYW domain
has been proposed to play a role in RNA editing in plant organ-
elles. To address this possibility, we prepared recombinant DYW
proteins and tested their cytidine deaminase activity. However,
we could not detect any activity in the assays we used. Instead,
we found that the recombinant DYW domains possessed endori-
bonuclease activity and cleaved before adenosine residues in the
RNA molecule. Some DYW-containing PPR proteins may cata-
lyze site-specific cleavage of target RNA species.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

An unusually large gene family encoding the pentatricopep-

tide repeat (PPR) proteins exists in land plants, compared with

a small gene family in animals and yeast [1,2]. For instance,

Arabidopsis thaliana, Oryza sativa, and the moss Physcomitrel-

la patens contain 450, 477, and 103 genes, respectively encod-

ing PPR proteins [3]. Most PPR proteins are predicted to

localize in mitochondria or plastids, and have been implicated

in the control of organelle gene expression [2] since several

PPR proteins were demonstrated to be involved in site-specific

cleavage, splicing, or RNA editing for targeted organellar tran-

scripts [4–6]. PPR motifs probably act as sequence-specific

RNA binding proteins, and may recruit some catalytic factors

for RNA cleavage, splicing or RNA editing, etc.

The PPR proteins are structurally divided into P and PLS

subfamilies. The P subfamily is composed of only canonical

PPR (P) motifs and the PLS subfamily consists of repeated

units of the classic PPR (P) motif, and longer (L) and shorter

(S) non-canonical PPR motifs [2,3]. The P and PLS-type PPR

proteins occupy approximately half of all PPR proteins in A.

thaliana and O. sativa. The remaining ones are PLS proteins
Abbreviations: aa, amino acid(s); bp, base pair(s); nt, nucleotide(s);
GFP, green fluorescent protein; PCR, polymerase chain reaction; PPR,
pentatricopeptide repeat; Trx, thioredoxin; RNase, ribonuclease
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with a highly conserved C-terminal domain, 87 of which in

A. thaliana contain the DYW domain. This domain was

named because of its characteristic terminal tripeptide (Asp-

Tyr-Trp) and has not been found in any other proteins or in

any organisms apart from land plants. The DYW domain con-

tains a conserved region composed of an aba secondary struc-

ture, which includes invariant residues that match the active

site of cytidine deaminases from bacteria, plant, animals, and

yeast [7]. Cytidine deaminases are zinc-dependent enzymes

containing a motif corresponding to the active site, C/

HxExx. . .xPCxxC [8]. The DYW domain contains the CxxCH

motif of the cytochrome c family heme-binding signature [9],

which suggests that it may have a certain catalytic activity.

However, the actual function of these motifs is completely

unknown.

Neither RNA editing nor DYW domains could be identified

in algae or the marchantiid liverworts. There is an intriguing

correlation between the presence of nuclear DYW genes and

organelle RNA editing among embryophytes. These observa-

tions provide a hypothesis that the DYW domains are respon-

sible for RNA editing in plant organelles and catalyze RNA

editing [7,10]. Therefore, we investigated the function of the

DYW domain. Here, we show that this domain can act as

an endoribonuclease.
2. Materials and methods

2.1. Transient expression of At2g02980-green fluorescent protein (GFP)
fusion protein in tobacco protoplasts

A DNA fragment (1809 base pair (bp)) encoding the full-length
At2g02980 protein was amplified from A. thaliana ecotype Colum-
bia-0 genomic DNA by polymerase chain reaction (PCR) using prim-
ers 2g02980(sal)-F and 2g02980F(nco)-R (see Supplemental Table 1).
The amplified DNA fragment was digested by SalI-NcoI and ligated
into SalI-NcoI digested CaMV35S-sGFP (S65T)-nos3 0 [11]. The resul-
tant plasmid p02980-GFP was introduced into Nicotiana tabacum
Bright Yellow 4 leaf cell protoplasts as described previously [12].

2.2. Production of recombinant proteins
The DNA sequence encoding a 109 amino acid (aa) C-terminal

DYW domain of At2g02980 was PCR-amplified from A. thaliana
genomic DNA using primers 02980DYW-F(eco) and 02980-R(sal).
The sequence encoding tobacco cp28 protein was PCR-amplified from
plasmid pNS28 [13] using primers 28N-F(eco) and 28N-R(sal). The
DNA sequence encoding a 108 aa C-terminal region containing the
DYW domain of Os05g30710 was amplified from O. sativa genomic
DNA using primers os05g30710-F and os05g30710-R. The DNA frag-
ment for T-28DYW was prepared by combining by PCR (with primers
28N-F(eco) and 02980-R(sal)), the two partial fragments obtained by
amplification using either primers (28N-F(eco) and 28DYW-R) and
pNS28 [13], or primers (28DYW-F and 02980-R(sal)) and A. thaliana
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82599128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


50

25

30

35

75

T-D
YW

T-2
8

T-2
8D

YW

105
160

(kDa)

100 aa

T-DYW_M

T-28DYW

T-28

10 x PPR

DYWE,E+

Trx

Trx

His6

T-DYW

cp28

cp28

At2g02980
S P L S P L S P L S

Trx

Trx

(kDa) Trx
-H

is 6

250

150

100
75

50

37

25
20

15

T-D
YW

_M

4164 T. Nakamura, M. Sugita / FEBS Letters 582 (2008) 4163–4168
genomic DNA, as described previously [14]. The DNA fragment for T-
DYW_M was generated likewise by two successive PCR reactions,
using primers 02980DYW-F(eco), 02980M2-R, 02980M2-F and
02980-R(sal) and A. thaliana genomic DNA.

The PCR products were inserted in-frame into pBAD/Thio-TOPO
(Invitrogen) and the plasmids pT-DYW, pT-osDYW, pT-28, and
pT-28DYW were obtained. The recombinant proteins were expressed
in Escherichia coli LMG194 as a fusion with thioredoxin at its N-ter-
minus and six histidine residues at the C-terminus, and purified by
binding to Probond N resin (Invitrogen). They were dialyzed against
a solution (20 mM HEPES-NaOH, pH 7.9, 60 mM KCl, 10 mM
MgCl2, 0.1 mM EDTA, 3 mM dithiothreitol (DTT), and 17% glyc-
erol).

2.3. Preparation of RNA and DNA probes
A 538 bp 5 0 translated region of the plastid ndhB gene was amplified

from A. thaliana genomic DNA (10 ng) using primers ndhB-F and
ndhB-R. ndhB-F contains a promoter sequence for T7 RNA polymer-
ase and ndhB-R has a sequence forming a stem-loop sequence to pre-
vent attack by 3 0 fi 5 0 exonucleases at the 3 0 terminus of RNA. The
PCR product (named NB500 DNA) was in vitro transcribed by T7
RNA polymerase to produce a 514 nucleotide (nt) of [a-32P]-CTP or
[a-32P]-UTP labeled RNA (named NB500 RNA). The 32P-labeled
NB500 DNA was obtained by PCR amplification using [a-32P]-dCTP
and the same primer set. Single-stranded (ss) NB500 DNAs were ob-
tained by heat denaturing 32P-labeled double-stranded (ds) NB500
DNA at 90 �C for 3 min and subsequent cooling at 4 �C. 32P-labeled
RNA or DNA was gel-purified as described [15].

2.4. Assay of cytidine deaminase activity
[32P-CTP]-labeled NB500 RNA (1 fmol, 0.05 nM, 10000 cpm) was

incubated for 30 min at 25 �C with the recombinant protein in
10 mM Tris–HCl, pH 7.9, 30 mM KCl, 6 mM MgCl2, 2 mM ATP,
1 mM ZnCl2 2 mM DTT, and 8% glycerol [16]. Then, the RNA was
extracted and digested at 37 �C for 3 h into 5 0 mononucleotides by
1 lg of nuclease P1 and 120 units of S1 nuclease (Takara) in the pres-
ence of 50 mM ammonium acetate (pH 4.8). The resultant mononucle-
otides were separated on a cellulose thin-layer chromatography plate
using isopropanol/hydrochloride/water (70:15:15). The separated 32P-
mononucleotides were visualized by autoradiography.

2.5. RNA cleavage assay
Internal [32P-UTP]-labeled NB500 RNA (1 fmol, 0.05 nM,

10000 cpm) was denatured by heating to 70 �C for 2 min, and trans-
ferred to 25 �C. Then, the 32P-labeled RNA and the recombinant pro-
tein were incubated for 30 min at 25 �C in 20 ll of reaction mixture
(10 mM Tris–HCl, pH 7.9, 30 mM KCl, 6 mM MgCl2, 25 mM EDTA,
2 mM DTT, 8% glycerol). After incubation, the 32P-RNA was ex-
tracted by phenol/chloroform followed by ethanol precipitation, and
then analyzed on a 6% polyacrylamide gel containing 6 M urea.

2.6. Primer extension analysis for identification of 5 0 ends of RNA
fragments

To determine the cleavage site by T-DYW protein, the cleavage
reactions were carried out using 1 lg T-DYW protein and non-radio-
labeled NB500 RNA (10 fmol) for 15 or 30 min at 25 �C. The resultant
RNA was subjected to primer extension analysis [17], using the 32P-la-
beled primer barrier-R (5 0-CCCATAGGGATTTAGGTGACACTC-
3 0). The sequence ladder was obtained using NB500 DNA, the same
primer, and the thermo-sequencing kit (GE healthcare).
10 10

Fig. 1. Structure and expression of the recombinant proteins. (A)
Predicted domain structure of At2g02980 protein and various
recombinant proteins. PPR motifs are indicated as canonical PPR
(P), PPR-like S, and L according to [2]. The C-terminal E, E+ motifs
and DYW domain are indicated by a filled box and a gray box,
respectively. The position of the mutated cysteine residues in putative
heme-binding signature of DYW domain is shown by a filled triangle.
The recombinant proteins were expressed as fused protein with
thioredoxin (Trx) at the N-terminus and His6 tag at the C-terminus.
(B) The recombinant proteins were separated by SDS–PAGE and
stained with Coomassie Brilliant Blue.
3. Results

3.1. Characterization of DYW domain-containing PPR protein

(At2g02980)

In this study we selected several DYW domain-containing

PPR proteins for analysis. Among them, we chose the Arabid-

opsis PPR protein At2g02980, which consists of 603 aa residues

with 10 PPR motifs and C-terminal E, E+ and DYW domains,

because a transferred DNA (T-DNA) insertion mutant line
Salk_008983 [18] displayed a severe dwarf phenotype (Supple-

mental Fig. 1). We next analyzed whether At2g02980 protein

is localized in either plastids or mitochondria, or both. Tran-

sient expression assays in tobacco leaf cell protoplasts showed

that At2g02980 is a mitochondrial protein (Supplemental

Fig. 2). This suggested that disruption of the At2g02980 gene

impaired mitochondrial function (probably respiration), and

resulted in retarded development of plant seedlings.

To identify the target transcripts for the At2g02980 PPR

protein, we performed northern blot analysis of total cellular

RNA from the wild-type and T-DNA tag line plants using

23 mitochondrial protein gene-specific probes. However, we

could not detect any aberrant transcripts in the T-DNA tag

line (data not shown).
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3.2. The DYW domain has a novel endoribonuclease activity

To characterize the DYW domain of At2g02980, we made

four recombinant proteins, T-DYW, T-DYW_M, T-28 and

T-28DYW (Fig. 1). T-28 was composed of tobacco chloroplast

RNA binding protein cp28 [13] and in T-28DYW cp28 was

fused to the DYW domain (Fig. 1A). All the recombinant pro-

teins were expressed as soluble proteins, and therefore purified

under native conditions (Fig. 1B).

We first tested cytidine deaminase activity of T-DYW and T-

28DYW by using [32P CTP]-labeled NB500 RNA. If some cyti-

dines converted to uridines in the RNA, a spot of [32P]-labeled

uridines could be detected by thin-layer chromatography.

However, the predicted spot of uridines was not detected under

our experimental conditions (Fig. 2A). Instead, we observed

that the RNA probe was rapidly degraded to produce discrete
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Fig. 2. Detection of biochemical activities of the recombinant proteins. (A) A
DYW and T-28DYW proteins. [a-32P CTP]-labeled NB500 RNA (10 000 cpm
without protein (minus protein), then digested into mononucleotides, and
prepared from [a-32P UTP]-labeled NB500 RNA. (B) RNA cleavage assay. I
labeled NB500 RNA in the presence of 6 mM MgCl2 and 25 mM EDTA, a
containing 6 M urea. (C) The T-DYW protein (100 ng) was incubated with
fragments (Fig. 2B). This activity depended on the concentra-

tion of T-DYW. In contrast, T-28 protein did not digest the

RNA although T-28DYW weakly digested it (Fig. 2B). Cleav-

age of the RNA by T-DYW was strongly suppressed by addi-

tion of increasing amounts of T-28 protein (Fig. 2C). T-DYW

protein digested the RNA but not ssDNA and dsDNA

(Fig. 3), which were digested by ribonuclease (RNase)-free

DNase I under the same condition. These results indicate that

T-DYW is an endoribonuclease.

In general, RNase activity depends on Mg ions [19]. However,

RNase activity of T-DYW was not enhanced even by the addi-

tion of 1 to 10 mM MgCl2 (Fig. 4A). In contrast, EDTA en-

hanced the RNase activity of T-DYW at an optimal

concentration of 25 mM (Fig. 4B). However, higher concentra-

tions of EDTA (100–200 mM) inhibited its activity. ATP and Zn
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ion did not affect the RNA cleavage activity of the T-DYW pro-

tein, whether EDTA was added, or not (Supplemental Fig. 3).

To investigate whether other DYW domains possess RNase

activity or not, we analyzed the DYW of rice PPR protein

Os05g30710 (664 aa), whose DYW domain has significant simi-

larity to that of At2g02980. The rice protein contains 13 PPR

motifs and was predicted to be localized in plastids. We produced

recombinant T-osDYW and tested the activity. The T-osDYW

protein also displayed RNase activity (Supplemental Fig. 4).
3.3. A CxxCH motif in the DYW domain is required for

endoribonuclease activity

The DYW domain contains the cytochrome c family heme-

binding site signature (CxxCH). To investigate the role of this
Protein

EDTA 
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- +- + + + +
Mg2+ (mM)
Protein

0 1 3 10

Fig. 4. Effect of EDTA and Mg2+ on RNA cleavage activity. (A) T-DYW p
NB500 RNA in the presence of the indicated concentrations of Mg2+ but w
labeled NB500 RNA in the presence of 6 mM MgCl2 and various concentra
signature we made the recombinant protein T-DYW_M whose

CxxCH motif was mutated to GxxGH and tested its RNase

activity. Mutation of this motif resulted in a significant reduc-

tion (loss) of cleavage activity (Fig. 5). This indicated that the

CxxCH motif is required for endoribonuclease activity of the

DYW domain.

3.4. Identification of endonucleolytic cleavage sites

The discrete RNA fragments produced by T-DYW suggest

that it recognizes definite primary sequence(s) and/or second-

ary structure(s) of RNA. Therefore, we attempted to identify

the cleavage sites by primer extension analysis. The termini

of the primer extended products were mapped at 288A,
+ + + +
50 100150 2000

- + + + + + +
50250

62.512.5 37.5

rotein dialyzed against a buffer without Mg2+ was incubated with the
ithout EDTA. (B) T-DYW protein (100 ng) was incubated with [32P]-
tions of EDTA (left panel, 0–200 mM and right panel, 0–62.5 mM).
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324A, 378A, 381A, 383A and 405A relative to the 5� end of

NB500 RNA (Fig. 6A). This indicated that the T-DYW

cleaved before adenosine residues of the RNA probe. There

are no consensus sequences in the flanking region of cleavage

sites (Fig. 6B).
4. Discussion

In this study, cytidine deaminase activity of the DYW do-

main that we initially expected was not detected under our as-

say conditions. However, this does not mean that the DYW

domain would not have such activity under other conditions,

with other substrates, or in the presence of other polypeptides.
Instead, we found that the DYW domain possessed RNase

activity that cleaved before adenosines in the RNA molecule.

The recombinant DYW proteins contained additional C-ter-

minal 30 aa residues consisting of V5 epitope and six histidines

after the natural C-terminal tripeptide DYW. Therefore, we

cannot exclude the possibility that tag sequences might abolish

correct folding or function of the DYW domain.

RNase T1 cleaves regularly and exclusively after G while

RNase U2 cleaves after adenosine residues. RNase A cleaves

exclusively after pyrimidines [19]. Therefore, the DYW domain

is a novel type of endoribonuclease. In addition, its activity is

enhanced in the presence of EDTA. This is quite unique to the

DYW RNase.

Although the T-DYW domain cleaved at multiple sites, it is

possible that At2g02980 plays a role in site-specific RNA

cleavage in mitochondria. The PPR motifs of At2g02980 pro-

tein may recognize sequences of target RNA molecules and the

DYW domain might cleave at a specific site. In this study, the

target RNA molecule of At2g02980 PPR protein was not iden-

tified. Perhaps if the actual target RNA and the recombinant

full-sized At2g02980 PPR protein were incubated together,

site-specific cleavage(s) might be observed.

In plant mitochondria, site-specific endonucleolytic cleavage

by RNase P and RNase Z is required for 5 0 and 3 0 end forma-

tion of mRNAs [20]. The rice fertility restoration factor, Rf-1a,

is a member of the PPR protein family and promotes cleavage

of the atp6-orf78 transcript [21,22]. The Arabidopsis protein

OTP43 is required for trans-splicing of the mitochondrial

nad1 intron 1 and belongs to the P subfamily of PPR proteins

[23]. These PPR proteins do not contain the DYW domain. To

date, there are no reports on the mitochondrial DYW-contain-

ing PPR proteins that are involved in RNA cleavage of pre-

mRNAs. In plastids, the Arabidopsis CRR2, a PPR protein

with DYW domain, was well characterized to be responsible

for the site-specific intergenic cleavage between the rps7 and

ndhB pre-mRNA [24]. Therefore, it is possible that the

CRR2 acts as a site-specific endoribonuclease.

In the present study, both an Arabidopsis and a rice DYW

domain exhibited endoribonuclease activity. This suggests that

additional PPR-DYW proteins may act as RNA cleavage fac-

tors in addition to Arabidopsis CRR2. Analysis of additional

members of the 87-member Arabidopsis PPR-DYW family

and the 90-member rice PPR-DYW family [3] will be necessary

to conclude whether or not endoribonuclease activity is a com-

mon feature of DYW-domain-containing proteins.

The fact that inhibition of the RNase activity of DYW do-

main by chloroplast RNA-binding protein cp28 was observed

(Fig. 2 B and C) is significant because gene-specific RNA

cleavage occurs in the presence of various RNA-binding pro-

teins [25]. In plant mitochondria, RNA-binding proteins simi-

lar to cp28 are present [26]. Such general organelle RNA-

binding proteins have strong affinity to RNAs and therefore

could inhibit the binding of PPR proteins to the target RNAs.

Site-specific cleavage of the target RNA may occur by cooper-

ation of PPR-DYW proteins and organelle RNA-binding pro-

teins.

The reason why EDTA affected the RNase activity of the

DYW domain is unknown, but the relatively small range of

effective EDTA concentrations (20–60 mM) may provide a

useful tool when exploiting DYW-domain-containing proteins

for applied purposes. In this study, RNase activity was de-

tected when excess amounts of the T-DYW protein were incu-
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bated with an RNA substrate. The weak activity may be due to

the absence of PPR repeats in the recombinant DYW protein

we produced. It may be possible to combine PPR motifs with

various DYW domains to create artificial sequence-specific

endoribonucleases. Such possible applications will first require

further detailed biochemical analysis of DYW domains and

their enzymatic activities.
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