Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation

Hidetaka Hamada a,*,1, Tatsuhiro Honda b,2,3, Gabriela Kohr c

a Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan
b Department of Mathematics, Ariake National College of Technology, 150 Higashihagio-machi, Onuta-shi, Fukuoka 836-8585, Japan
c Faculty of Mathematics and Computer Science, Babeş-Bolyai University, I M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania

Received 23 August 2004
Available online 6 September 2005
Submitted by G. Komatsu

Abstract

Let B be the unit ball in \mathbb{C}^n with respect to an arbitrary norm and let $f(z, t)$ be a g-Loewner chain such that $e^{-t} f(z, t) - z$ has a zero of order $k + 1$ at $z = 0$. In this paper, we obtain growth and covering theorems for $f(\cdot, 0)$. Moreover, we consider coefficient bounds and examples of mappings in $S^{0}_{g,k+1}(B)$.© 2005 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: h.hamada@ip.kyusan-u.ac.jp (H. Hamada), thonda@cc.it-hiroshima.ac.jp (T. Honda), gkohr@math.ubbcluj.ro (G. Kohr).
1 Partially supported by Grant-in-Aid for Scientific Research (C) No. 17540183 from Japan Society for the Promotion of Science, 2005.
2 Partially supported by Grant-in-Aid for Scientific Research (C) No. 15540193 from Japan Society for the Promotion of Science, 2005.
3 Current address: Department of Civil and Architectural Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan.

0022-247X/S – see front matter © 2005 Elsevier Inc. All rights reserved.
1. Introduction and preliminaries

Let \mathbb{C}^n denote the space of n complex variables $z = (z_1, \ldots, z_n)$ with respect to an arbitrary norm $\| \cdot \|$. Let $B = \{ z \in \mathbb{C}^n : \| z \| < 1 \}$. Let U be the unit disc in \mathbb{C}. Let $H(G)$ denote the set of holomorphic mappings from an open set $G \subset \mathbb{C}^n$ into \mathbb{C}^n. Further, let $L(\mathbb{C}^n, \mathbb{C}^m)$ be the space of all continuous linear operators from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm. Let I be the identity in $L(\mathbb{C}^n, \mathbb{C}^n)$. A mapping $f \in H(B)$ is called normalized if $f(0) = 0$ and $Df(0) = I$.

Let $S(B)$ be the set of normalized univalent holomorphic mappings in $H(B)$. Also let $K(B)$, respectively $S^*(B)$, be the sets of normalized convex, respectively starlike, mappings on B. When $n = 1$, the sets $S(U)$, $S^*(U)$ and $K(U)$ are denoted by S, S^* and K, respectively.

For each $z \in \mathbb{C}^n \setminus \{0\}$, we set $T(z) = \{ l_z \in L(\mathbb{C}^n, \mathbb{C}) : l_z(z) = \| z \|, \| l_z \| = 1 \}$. Then this set is nonempty by the Hahn–Banach theorem.

If $f, g \in H(B)$, we say that f is subordinate to g, and write $f \prec g$, if there exists a Schwarz mapping v (i.e., $v \in H(B)$, $v(0) = 0$, and $\| v(z) \| < 1$, $z \in B$) such that $f = g \circ v$ on B. If g is univalent on B, this condition is equivalent to $f(0) = g(0)$ and $f(B) \subset g(B)$.

We recall that a mapping $f : B \times [0, \infty) \to \mathbb{C}^n$ is called a Loewner chain if $f(\cdot, t)$ is univalent holomorphic on B, $f(0, t) = 0$, $Df(0, t) = e^t I$ for $t \geq 0$, and

$$f(z, s) \prec f(z, t), \quad z \in B, \quad 0 \leq s \leq t < \infty.$$

The above condition is equivalent to the fact that there exists a unique univalent Schwarz mapping $v = v(z, s, t)$, called the transition mapping of $f(z, t)$, such that $f(z, s) = f(v(z, s, t), t)$, $z \in B$, $t \geq s \geq 0$. The normalization of $f(z, t)$ implies the normalization $Dv(0, s, t) = e^{s-t} I$ for $t \geq s \geq 0$.

A fundamental role in the study of Loewner chains and the Loewner differential equation in several complex variables is played by the following set:

$$\mathcal{M} = \left\{ p \in H(B) : p(0) = 0, \quad Dp(0) = I, \quad \text{Re} \|l_z(p(z))\| > 0, \quad z \in B \setminus \{0\}, \quad l_z \in T(z) \right\},$$

which is the generalization of the Carathéodory set in one complex variable.

In [8] (see also [7]; cf. [5]), it is proved the following result:

Lemma 1. Let $f(z, t)$ be a Loewner chain and $v = v(z, s, t)$ be the transition mapping of $f(z, t)$. Then $f(z, \cdot)$ is locally Lipschitz continuous on $[0, \infty)$ locally uniformly with respect to $z \in B$, and there exists a mapping $h = h(z, t)$ such that $h(\cdot, t) \in \mathcal{M}$, $t \geq 0$, $h(z, \cdot)$ is measurable on $[0, \infty)$, and

$$\frac{\partial f}{\partial t}(z, t) = Df(z, t)h(z, t), \quad a.e. \ t \geq 0, \ \forall z \in B. \quad (1)$$

Also $v(z, s, t)$ satisfies the initial value problem

$$\frac{\partial v}{\partial t} = -h(v, t), \quad a.e. \ t \geq s, \quad v(z, s, s) = z. \quad (2)$$
for all \(z \in B \) and \(s \geq 0 \). Moreover, if \(\{ e^{-t} f(z, t) \}_{t \geq 0} \) is a normal family on \(B \), then for every \(s \geq 0 \),
\[
\lim_{t \to \infty} e^{t} v(z, s, t) = f(z, s)
\]
and the above limit holds locally uniformly on \(B \).

Definition 2. Let \(f : B \to \mathbb{C}^n \) be a normalized holomorphic mapping. We say that \(f \) has parametric representation if there exists a mapping \(h = h(z, t) \) which satisfies the conditions in Lemma 1 such that \(f(z) = \lim_{t \to \infty} e^{t} v(z, t) \) locally uniformly on \(B \), where \(v = v(z, t) \) is the unique solution of the initial value problem
\[
\frac{\partial v}{\partial t} = -h(v, t), \quad \text{a.e. } t \geq 0, \quad v(z, 0) = z,
\]
for all \(z \in B \) (see [5]; cf. [19,27]).

Let \(S^0(B) \) be the set of all mappings which have parametric representation on \(B \). Then \(S^0(B) \subset S(B) \) (see [5,27]). It is known that in the case of one complex variable, \(S^0(U) = S \) (see [26, Theorems 6.1 and 6.3]). However, in higher dimensions, \(S(B) \) is a larger set than \(S^0(B) \) (see [5]).

Remark 3. Let \(f(z, t) \) be a Loewner chain such that \(\{ e^{-t} f(z, t) \}_{t \geq 0} \) is a normal family on \(B \). According to Lemma 1, we deduce that \(f = f(\cdot, 0) \in S^0(B) \). Graham–Hamada–Kohr [5] (cf. [28]) proved that the converse result is also true. That is, if \(f \in S^0(B) \), then there exists a Loewner chain \(f(z, t) \) such that \(\{ e^{-t} f(z, t) \}_{t \geq 0} \) is a normal family on \(B \) and \(f = f(\cdot, 0) \).

Assumption 4. Let \(g : U \to \mathbb{C} \) be a univalent holomorphic function such that \(g(0) = 1 \), \(g(\zeta) = g(\zeta) \) for \(\zeta \in U \) (so, \(g \) has real coefficients in its power series expansion), \(\Re g(\zeta) > 0 \) on \(U \). We assume that \(g \) satisfies the conditions
\[
\begin{align*}
\min_{|\zeta|=r} \Re g(\zeta) &= \min\{g(r), g(-r)\}, \\
\max_{|\zeta|=r} \Re g(\zeta) &= \max\{g(r), g(-r)\},
\end{align*}
\]
for \(r \in (0, 1) \).

We mention that there are many functions which satisfy the above assumption (see [5]). As in [5,19], we shall introduce various subsets of \(\mathcal{M} \). Let
\[
\mathcal{M}_g = \left\{ p \in H(B) : p(0) = 0, \quad Dp(0) = I, \quad \frac{1}{\|z\|} l_z(p(z)) \in g(U), \quad z \in B \setminus \{0\}, \quad l_z \in T(z) \right\}.
\]
If \(g(\zeta) = (1 + \zeta)/(1 - \zeta) \), then \(\mathcal{M}_g = \mathcal{M} \). However, there are other choices of \(g \) which provide interesting properties of the set \(\mathcal{M}_g \).

The basic existence theorem for the Loewner differential equation on \(B \), originally due to Pfaltzgraff (see [23, Theorem 2.1]), can be improved by omitting the boundedness assumption on \(h(z, t) \). The following proposition is due to [5, Theorem 1.4] (cf. [27]).
Proposition 5. Let $g : U \to \mathbb{C}$ satisfy the conditions of Assumption 4 and let $h = h(z,t) : \mathcal{B} \times [0, \infty) \to \mathbb{C}^n$ satisfy the following conditions:

(i) for each $t \geq 0$, $h(\cdot, t) \in \mathcal{M}_g$;
(ii) for each $z \in \mathcal{B}$, $h(z, t)$ is a measurable function of $t \in [0, \infty)$.

Then the limit
$$\lim_{t \to \infty} e^t v(z, s, t) = f(z, s)$$
exists locally uniformly on \mathcal{B} for each $s \geq 0$, where $v = v(z, s, t)$ is the unique solution of the initial value problem (2). The mapping $v(z, s, t) = e^{s-t} z + \cdots$ is a univalent Schwarz mapping on \mathcal{B} and is a locally Lipschitz function of $t \geq s$ locally uniformly with respect to $z \in \mathcal{B}$. Moreover, $f(z, t)$ is a Loewner chain and $v(z, s, t)$ is the transition mapping associated to $f(z, t)$. Further, f and h satisfy the differential equation (1).

In view of the above result, Graham–Hamada–Kohr [5] (cf. [19,27]) have recently introduced the following definition.

Definition 6. Let g satisfy the conditions of Assumption 4 and let $f \in \mathcal{H}(\mathcal{B})$. We say that f has g-parametric representation on \mathcal{B} if there exists a mapping $h(z, t) : \mathcal{B} \times [0, \infty) \to \mathbb{C}^n$, which satisfies the assumptions of Proposition 5 such that
$$\lim_{t \to \infty} e^t v(z, s, t) = f(z, s)$$
locally uniformly on \mathcal{B}, where $v = v(z, t)$ is the unique solution of the initial value problem (3).

Let $S^0_\mathcal{B}(\mathcal{B})$ be the set of all mappings which have g-parametric representation on \mathcal{B} [5] (cf. [19]). If $g(\zeta) = (1 + \zeta)/(1 - \zeta)$, then $S^0_\mathcal{B}(\mathcal{B})$ reduces to the set $S^0(\mathcal{B})$ of mappings which have parametric representation on \mathcal{B}. Clearly, $S^0_\mathcal{B}(\mathcal{B}) \subset S^0(\mathcal{B}) \subset S(\mathcal{B})$. On the other hand, we remark that, in several complex variables, there exist mappings which can be imbedded in Loewner chains without having parametric representation [5, Example 2.12].

Remark 7. According to Definition 6, Proposition 5 and Lemma 1, a mapping f belongs to $S^0_\mathcal{B}(\mathcal{B})$ if and only if there exist a Loewner chain $f(z, t)$ and a mapping $h(z, t)$ such that $f = f(\cdot, 0)$, $\{e^{-t} f(z, t)\}_{t \geq 0}$ is a normal family on \mathcal{B}, $h(\cdot, t) \in \mathcal{M}_g$, $t \geq 0$, $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in \mathcal{B}$, and $f(z, t)$ satisfies the Loewner differential equation (1). Such a Loewner chain is also called a g-Loewner chain (cf. [5,19]). This equivalence provides many examples of mappings which have g-parametric representation on \mathcal{B}.

It is known that certain subsets of $S(\mathcal{B})$ can be characterized in terms of Loewner chains. For example, a mapping f belongs to $S^*(\mathcal{B})$ if and only if $f(z, t) = e^t f(z)$ is a Loewner chain. On the other hand, according to [24], we say that a normalized locally biholomorphic mapping $f \in \mathcal{H}(\mathcal{B})$ is said to be close-to-starlike if there exists a mapping $g \in S^*(\mathcal{B})$ such that
$$\Re_l(z) \left([Df(z)]^{-1} g(z) \right) > 0$$
for all \(z \in B \setminus \{0\} \) and \(l_z \in T(z) \). Let \(C(B) \) denote the set of all close-to-starlike mappings on \(B \). It is known that every mapping \(f \in C(B) \) is univalent on \(B \). Moreover, close-to-starlikeness can also be characterized in terms of Loewner chains, in the sense that \(f \in C(B) \) if and only if there exists a mapping \(g \in S^*(B) \) such that \(f(z,t) = f(z) + \left(e^t - 1 \right) g(z) \) is a Loewner chain.

Let \(0 < p < 1 \). A normalized locally biholomorphic mapping \(f \in H(B) \) is said to be starlike of order \(p \) if
\[
\frac{1}{\|z\|} l_z \left(\left[Df(z) \right]^{-1} f(z) \right) - \frac{1}{2p} < \frac{1}{2p}
\]
for all \(z \in B \setminus \{0\} \) and \(l_z \in T(z) \). We denote by \(S_p^*(B) \) the set of all starlike mappings of order \(p \) on \(B \). It is clear that \(S_p^*(B) \subset S^*(B) \) for \(p \in (0,1) \).

Another set of special interest in our discussion is that consisting of quasi-convex mappings. This subset of \(S(B) \) was introduced by Roper–Suffridge [29] as a natural generalization to higher dimensions of convexity. Let \(u \in \mathbb{C}^n \) with \(\|u\| = 1 \) and \(l_u \in T(u) \).

Let \(G \) denote the set of all normalized locally biholomorphic mappings \(f \) on \(B \) that satisfy the condition \(\Re G_f(\alpha,\beta) > 0 \), for all \(\alpha, \beta \in U, u \in \mathbb{C}^n \) with \(\|u\| = 1 \) and \(l_u \in T(u) \). Roper and Suffridge [29] proved the inclusion relation
\[
K(B) \subset G \subset S_{1/2}^*(B)
\]
and obtained several properties of the mappings in \(G \). In particular, they obtained the sharp growth result for mappings in \(G \) on the Euclidean unit ball. In [5], it is shown that this result is also valid in the case of an arbitrary norm. We shall refer to the set \(G \) as the set of quasi-convex mappings.

Let \(\alpha \in (-\pi/2, \pi/2) \) and \(f \in H(B) \) be a normalized locally biholomorphic mapping. According to [11], we say that \(f \) is spirallike of type \(\alpha \) if
\[
\Re l_z \left(e^{-i\alpha} \left[Df(z) \right]^{-1} f(z) \right) > 0, \quad z \in B \setminus \{0\}, \ l_z \in T(z).
\]

Let \(\tilde{S}_\alpha(B) \) be the set of spirallike mappings of type \(\alpha \). In [11], it is proved that every \(f \in \tilde{S}_\alpha(B) \) is univalent on \(B \) and also the following alternative characterization of spirallikeness of type \(\alpha \) is proved: \(f \) is spirallike of type \(\alpha \) if and only if \(f(z,t) = e^{(1-i\alpha)t} f(e^{i\alpha}z) \) is a Loewner chain, where \(\alpha = \tan \alpha \).

We have the following inclusion relations:
\[
S^*(B) \subset C(B) \subset S^0(B) \subset S(B)
\]
and
\[
\tilde{S}_\alpha(B) \subset S^0(B), \quad |\alpha| < \frac{\pi}{2}.
\]

Let \(f \in H(B) \) and let \(k \) be a positive integer. Then \(f \) is said to be \(k \)-fold symmetric if the image of \(f \) is unchanged when it multiplied by the scalar complex number \(\exp(2\pi i/k) \). We say that \(z = 0 \) is a zero of order \(k \) of \(f(z) \) if \(f(0) = 0, \ldots, D^{k-1} f(0) = 0 \) and \(D^k f(0) \neq 0 \).
and } f(0) \text{ is the } j\text{th Fréchet derivative of } f \text{ at } z = 0. \text{ We note that } z = 0 \text{ is a zero of order } m \text{ of } f(z) - z \text{ for some } m \text{ with } m \geq k + 1 \text{ if } f \text{ is } k\text{-fold symmetric and } f(z) \neq z.

We denote by } S^0_{k+1}(B) \text{ (respectively } S^0_{g,k+1}(B)) \text{ the subset of } S^0(B) \text{ (respectively } S^g(B)) \text{ consisting of mappings } f \text{ for which there exists a Loewner chain (respectively a } g\text{-Loewner chain) } f(z,t) \text{ such that } \{e^{-t} f(z,t)\}_{t \geq 0} \text{ is a normal family on } B, f = f(\xi,0) \text{ and } z = 0 \text{ is a zero of order } k + 1 \text{ of } e^{-t} f(z,t) - z \text{ for each } t \geq 0. \text{ Also, we denote by } S_{k+1}(B) \text{ (respectively } S_{g,k+1}(B), K_{k+1}(B), G_{k+1}(B), S_p^{g,k+1}(B), \hat{S}_{\alpha,k+1}(B)) \text{ the subset of } S(B) \text{ (respectively } S^{g}(B), K(B), G(B), S_p^{g}(B), \hat{S}_{\alpha}(B)) \text{ of mappings } f \text{ such that } z = 0 \text{ is a zero of order } k + 1 \text{ of } f(z) - z. \text{ Moreover, we denote by } C_{k+1}(B) \text{ the subset of } C(B) \text{ of mappings } f \text{ such that } z = 0 \text{ is a zero of order } k + 1 \text{ of } e^{-t} f(z) + e^{-t}(e^t - 1)g(z) - z \text{ for each } t \geq 0.

In the rest of this paper, we shall obtain growth and covering theorems, as well as coefficient bounds for mappings in } S^0_{g,k+1}(B). \text{ These results were obtained by Graham, Hamada and Kohr [5] in the case } k = 1 \text{ (cf. [19,27]). Some of the growth and covering theorems in this paper are generalizations of the results in Liu–Liu [20].}

2. A growth theorem for mappings in } S^0_{g,k+1}(B)

In this section, we will give a growth theorem for mappings in } S^0_{g,k+1}(B). \text{ To this end, we need to use the following lemma.}

Lemma 8. Let } g \text{ satisfy the conditions of Assumption 4, } h \text{ satisfy the assumptions of Proposition 5 and } f(z,t) \text{ be a } g\text{-Loewner chain satisfying the differential equation (1) such that } z = 0 \text{ is a zero of order } k + 1 \text{ of } e^{-t} f(z,t) - z. \text{ Then}

\[
\|z\| \min\left\{g(\|z\|^k), g(-\|z\|^k)\right\} \leq \Re l_z(h(z,t)) \leq \|z\| \max\left\{g(\|z\|^k), g(-\|z\|^k)\right\}
\]

for } z \in B \setminus \{0\}, l_z \in T(z) \text{ and a.e. } t \geq 0.

Proof. Fix } t \geq 0 \text{ such that the differential equation (1) holds. We take a point } z_0 \text{ with } \|z_0\| = 1. \text{ Let } p(\xi, t) : U \to \mathbb{C} \text{ be given by}

\[
p(\xi, t) = \begin{cases} \xi l_{z_0}(h(\xi z_0, t)), & \xi \neq 0, \\ 1, & \xi = 0. \end{cases}
\]

Then } p(\xi, t) \in H(U), p(0, t) = g(0) = 1. \text{ Since } z = 0 \text{ is a zero of order } k + 1 \text{ of } e^{-t} f(z,t) - z \text{ for each } t \geq 0, \text{ there exists a holomorphic mapping } F(z,t) \text{ on a neighbourhood of } 0 \text{ such that } f(\xi z_0, t) = e^t \xi z_0 = \xi^{k+1} F(\xi z_0, t). \text{ Then}

\[
\frac{\partial f}{\partial t}(\xi z_0, t) = e^t \xi z_0 = \xi^{k+1} \frac{\partial F}{\partial t}(\xi z_0, t).
\]

Therefore, we obtain that

\[
p(\xi, t) = l_{z_0} \left(\left[Df(\xi z_0, t)^{-1} e^t \right]^{-1} - l_{z_0} \left(\left[Df(\xi z_0, t)^{-1} e^t \right]^{-1} \frac{\partial F}{\partial t}(\xi z_0, t) \right) \xi^k.\right.
\]
Thus, there exists a holomorphic function \(\tilde{p}(\xi, t) \) on a neighbourhood of 0 such that
\[
p(\xi, t) = 1 + \xi^k \tilde{p}(\xi, t).
\]
Since \(h(z, t) \in M_g \), we deduce that \(p(\xi, t) \in g(U) \) for \(\xi \in U \). Therefore, \(g^{-1} \circ p(\cdot, t) : U \to U \) and \(g^{-1} \circ p(0, t) = 0 \). Since \(g^{-1}(1) = 0 \), there exists a holomorphic function \(G(w) \) on a neighbourhood of 1 such that
\[
g^{-1}(w) = (w - 1)G(w).
\]
Therefore, we obtain that
\[
g^{-1} \circ p(\xi, t) = \xi^k \tilde{p}(\xi, t)G(p(\xi, t))
\]
on a neighbourhood of 0.

Then, by the Schwarz lemma, we obtain that
\[
|g^{-1} \circ p(\xi, t)| \leq |\xi|^k \text{ for } \xi \in U.
\]
Thus, there exists a holomorphic function \(H(\xi, t) \) on \(U \) such that
\[
g^{-1} \circ p(\xi, t) = \xi^k H(\xi, t)
\]
on \(U \) and
\[
|H(\xi, t)| \leq 1 \text{ on } U.
\]
Then, \(p(\xi, t) = g(\xi^k H(\xi, t)) \). Next, in view of the maximum and minimum principle of harmonic functions, we conclude that
\[
\min\{g(\|\xi\|^k), g(-\|\xi\|^k)\} \leq \Re p(\xi, t) \leq \max\{g(\|\xi\|^k), g(-\|\xi\|^k)\}, \ \xi \in U.
\]
(5)

Putting \(\xi = \|z\| \) in (5), we obtain (4). This completes the proof.

The following lemma generalizes [5, Lemma 2.1] (cf. [19]).

Lemma 9. Let \(f, g \) and \(h \) be as in Lemma 8. Also let \(v = v(z, s, t) \) be the solution of the initial value problem (2). Then
\[
e^t\|z\| \exp \int_{\|v(z, s, t)\|} \left[\frac{1}{\max\{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x}
\]
\[
\leq e^t\|v(z, s, t)\| \leq e^t\|z\| \exp \int_{\|v(z, s, t)\|} \left[\frac{1}{\min\{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x}
\]
(6)
for \(z \in B \) and \(t \geq s \geq 0 \).

Proof. We will prove the upper bound. The proof of the lower bound is similar. Fix \(s \geq 0 \) and \(z \in B \setminus \{0\} \) and let \(v(t) = v(z, s, t) \). Since \(v(t) \) is locally Lipschitz continuous on \([s, \infty)\), it follows that \(\|v(t)\| \) is also locally Lipschitz continuous for \(t \in [s, \infty) \). Thus \(\|v(t)\| \) is differentiable a.e. on \([s, \infty)\). Moreover,
\[
\frac{d\|v\|}{dt} = \Re\left[l_v\left(\frac{dv}{dt}\right)\right]
\]
for \(l_v \in T(v(t)) \) a.e. on \([s, \infty)\) by [16, Lemma 1.3]. Equivalently,
\[
\frac{d\|v\|}{dt} = -\Re[l_v(h(v, t))], \quad \text{a.e. on } [s, \infty).
\]

By Lemma 8, we obtain that
\[
1 \leq -\frac{1}{\|v(t)\| \min\{g(\|v(t)\|^k), g(-\|v(t)\|^k)\}} \cdot \frac{d\|v(t)\|}{dt}, \quad \text{a.e. } t \geq s.
\]
Since \(\|v(t)\| \) is locally absolutely continuous, we may integrate both sides of the above inequalities and make a change of variable, to obtain that
Finally, straightforward computations in the above relations yield (6), as desired. This completes the proof. □

We are now able to obtain the following growth result for the set $S_{g,k+1}^0(B)$. This result generalizes [5, Theorem 2.2] and [19, Theorem 2.3].

Theorem 10. Let $g: U \rightarrow \mathbb{C}$ satisfy the conditions of Assumption 4 and $f \in S_{g,k+1}^0(B)$. Then

$$
\|z\| \exp \int_0^\|z\| \left[\frac{1}{\max \{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x}
\leq \|f(z)\| \leq \|z\| \exp \int_0^\|z\| \left[\frac{1}{\min \{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x}, \quad z \in B.
$$

(7)

Proof. First, we mention that the above integrals exist and are finite since $g(0) = 1$ and $\text{Re} \ g(\zeta) > 0$ for $|\zeta| < 1$. Also since $f \in S_{g}^0(B)$, we have

$$
f(z) = \lim_{t \rightarrow \infty} e^t v(z, t)
$$

(8)

locally uniformly on B, where $v = v(z, t)$ is the solution of the initial value problem (3). Taking into account the relations (6), one deduces that

$$
\|z\| \exp \int_{\|v(z,t)\|}^\|z\| \left[\frac{1}{\max \{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x}
\leq e^t \|v(z, t)\| \leq \|z\| \exp \int_{\|v(z,t)\|}^\|z\| \left[\frac{1}{\min \{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x},
$$

(9)

for all $z \in B$ and $t \geq 0$. Since $\lim_{t \rightarrow \infty} e^t \|v(z, t)\| = \|f(z)\| < \infty$, we must have $\lim_{t \rightarrow \infty} \|v(z, t)\| = \lim_{t \rightarrow \infty} e^{-t} e^t \|v(z, t)\| = 0$. Letting $t \rightarrow \infty$ in (9) and using (8), we obtain the estimate (7), as desired. This completes the proof. □
We remark that if \(f(z, t) \) is a \(g \)-Loewner chain such that \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} f(z, t) - z \) for each \(t \geq 0 \), then using a similar reasoning as above, we obtain the following growth result (cf. [5, Corollary 2.3]).

Corollary 11. Let \(g: U \to \mathbb{C} \) satisfy the conditions of Assumption 4 and \(f(z, t) \) be a \(g \)-Loewner chain such that \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} f(z, t) - z \) for each \(t \geq 0 \). Then

\[
\|z\| \exp \left(\int_0^\|z\| \left[\frac{1}{\max\{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x} \right) \leq \|f(z, t)\| \leq \|z\| \exp \left(\int_0^\|z\| \left[\frac{1}{\min\{g(x^k), g(-x^k)\}} - 1 \right] \frac{dx}{x} \right), \quad z \in B, \ t \geq 0.
\]

3. **Examples of mappings in** \(S^0_{g,k+1}(B) \)

First, we remark that the following inclusion relations hold:

\[
K_{k+1}(B) \subset G_{k+1}(B) \subset S_{1/2,k+1}^+(B) \subset S_{k+1}^+(B) \subset C_{k+1}(B) \subset S^0_{k+1}(B)
\]

and \(\hat{S}_{\alpha,k+1}(B) \subset S^0_{k+1}(B) \) for \(|\alpha| < \pi/2 \).

A particular interest in Theorem 10 consists in the case \(g(\zeta) = (1 + \zeta)/(1 - \zeta) \). We have the following growth result for the set \(S^0_{k+1}(B) \) (cf. [5,19,27]).

Theorem 12. If \(f \in S^0_{k+1}(B) \), then

\[
\frac{\|z\|}{(1 + \|z\|^k)^{2/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{2/k}}, \quad z \in B.
\]

Consequently, \(f(B) \supset B_{2^{-2/k}} \).

As corollaries to the above theorem, we have the following growth results for the sets \(\hat{S}_{\alpha,k+1}(B) \) (cf. [11]) and \(C_{k+1}(B) \).

Corollary 13. If \(f \in \hat{S}_{\alpha,k+1}(B) \) or \(f \in C_{k+1}(B) \), then

\[
\frac{\|z\|}{(1 + \|z\|^k)^{2/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{2/k}}, \quad z \in B.
\]

Consequently, \(f(B) \supset B_{2^{-2/k}} \).

In particular, we have the following growth result for the set \(S_{k+1}^+(B) \) due to Liu–Liu [20, Theorem 1] (cf. [1,3,10]).
Corollary 14. Let $f \in S^*_k(B)$. Then
\[
\frac{\|z\|}{(1 + \|z\|^k)^{2/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{2/k}}, \quad z \in B.
\]
Consequently, $f(B) \supset B_{2^{-2/k}}$.

We have the following growth result for the set $S^*_p,k+1(B)$ due to Liu–Liu [20, Theorem 2] (cf. [13,17]).

Theorem 15. If $f \in S^*_p,k+1(B)$, then
\[
\frac{\|z\|}{(1 + \|z\|^k)^{2(1-p)/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{2(1-p)/k}}, \quad z \in B.
\]
Consequently, $f(B) \supset B_{2^{-2(1-p)/k}}$.

Proof. Let $f \in S^*_p,k+1(B)$. Then $f \in S^0_{g,k+1}(B)$, where $g(\zeta) = (1 + \zeta)/(1 + (2p - 1)\zeta)$. Therefore, we obtain the claimed result from Theorem 10. This completes the proof. \qed

In particular, we obtain the following corollary (cf. [5,29]. See also [4,12,15,17], [20, Corollary 1] and [31]). We mention that if $k = 1$, then the growth result contained in Corollary 16 is sharp (see [29]).

Corollary 16. If $f \in G_{k+1}(B)$, then
\[
\frac{\|z\|}{(1 + \|z\|^k)^{1/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|^k)^{1/k}}, \quad z \in B.
\]
Consequently, $f(B) \supset B_{2^{-1/k}}$.

Remark 17. Liu–Liu [20] showed that the results of Corollary 14 and Theorem 15 are sharp. The sharpness of these results yield the sharpness of Theorem 12.

Example 18. (i) Let $B^2(p)$ be the unit ball in \mathbb{C}^2 with respect to a p-norm, where $2 \leq p < \infty$. Muir–Suffridge [22] proved that if $a \in \mathbb{C}$, $k \in \mathbb{N}^*$ and $f: B^2(p) \to \mathbb{C}^2$ is given by $f(z) = (z_1 + az_2^{k+1}, z_2)$, $z = (z_1, z_2) \in B^2(p)$, then f is convex if and only if
\[
|a| \leq \begin{cases}
0 & \text{if } k < p - 1, \\
\frac{1}{k(k+1)} & \text{if } k = p - 1 \in \mathbb{N}, \\
\frac{1}{k(k+1)} \left(\frac{k^k}{(p-1)^{p-1}(k+1-p)^{k+1-p}} \right)^{1/p} & \text{if } k > p - 1.
\end{cases}
\]
Under these conditions, f is k-fold symmetric and $f \in K_{k+1}(B^2(p))$. Hence $f \in G_{k+1}(B^2(p))$ too.

(ii) Let \mathbb{B}^n denote the Euclidean unit ball in \mathbb{C}^n. As in [29, Theorem 3.4], it is possible to prove that if $f_j(z_j)$ is a k-fold symmetric normalized convex function on U for $j = 1, \ldots, n$ such that $f_j(z_j) \neq z_j$ for some j, then $f: \mathbb{B}^n \to \mathbb{C}^n$ given by $f(z) = (f_1(z_1), \ldots, f_n(z_n))$, $z = (z_1, \ldots, z_n) \in \mathbb{B}^n$, belongs $G_m(\mathbb{B}^n)$ for some m with $m \geq k + 1$.

For the Euclidean unit ball B^n in \mathbb{C}^n, we have the following theorems and examples. The next theorem generalizes [23, Theorem 2.4] (cf. [2]).

Theorem 19. Let $f \in H(B^n)$ be a normalized locally biholomorphic mapping which satisfies

$$1 - \|z\|^2 \|\left[Df(z)\right]^{-1} D^2 f(z)(z, \cdot)\| \leq c \quad \text{for all } z \in B^n. \quad (10)$$

If $c \leq 1$ and $z = 0$ is a zero of order $k + 1$ of $f(z) - z$, then $f \in S_{k+1}^0(B^n)$ and

$$\frac{\|z\|}{(1 + c\|z\|^k)^{2/k}} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - c\|z\|^k)^{2/k}}, \quad z \in B^n. \quad (11)$$

Consequently, $f(B^n) \supset B^n_{(1+c)^{-2/k}}$.

Proof. Pfaltzgraff [23, Theorem 2.4] proved that

$$f(z, t) = f(ze^{-t}) + (e^t - e^{-t})Df(ze^{-t})(z), \quad t \geq 0,$$

is a Loewner chain. Moreover, since $\lim_{t \to \infty} e^{-t} f(z, t) = z$ locally uniformly on B^n, we deduce that $\{e^{-t} f(z, t)\}_{t \geq 0}$ is a normal family, and thus $f \in S^0(B^n)$. Further, since $z = 0$ is a zero of order $k + 1$ of $e^{-t} f(z, t) - z$ for each $t \geq 0$, it follows that $f \in S^0_{k+1}(B^n)$. We will prove the bound (11). Let

$$E(z, t) = -(1 - e^{-2t})[Df(ze^{-t})]^{-1} D^2 f(ze^{-t})(ze^{-t}, \cdot)$$

and $h(z, t) = (I - E(z, t))^{-1}(I + E(z, t))(z)$. Then f and h satisfy the differential equation (1). Since $z = 0$ is a zero of order k of $E(z, t)$ and $\|E(z, t)\| \leq c$ from (10), we obtain that $\|E(z, t)\| \leq c\|z\|^k$ by the Schwarz lemma. Therefore,

$$\|h(z, t) - z\| = \|E(z, t)(h(z, t) + z)\| \leq c\|z\|^k \|h(z, t) + z\|. \quad (12)$$

This implies that

$$\Re[h(z, t), z] \leq \|h(z, t)\| \cdot \|z\| \leq \|z\| \frac{1 + c\|z\|^k}{1 - c\|z\|^k}. \quad (13)$$

Also, from (12), we obtain that

$$\|z\| \frac{1 - c\|z\|^k}{1 + c\|z\|^k} \leq \|h(z, t)\| \quad (14)$$

and

$$\|h(z, t) - z\|^2 \leq c^2 \|z\|^{2k} \|h(z, t) + z\|^2. \quad (15)$$

From (14) and (15), we obtain that

$$(1 + c^2\|z\|^{2k})2\Re[h(z, t), z] \geq \frac{1 - c^2\|z\|^{2k}}{(1 + c\|z\|^k)^2} 2(1 + c^2\|z\|^{2k})\|z\|^2. \quad (16)$$

Thus, from (13) and (16), we obtain that

$$\|z\| \frac{1 - c\|z\|^k}{1 + c\|z\|^k} \leq \Re[h(z, t), z] \leq \|z\| \frac{1 + c\|z\|^k}{1 - c\|z\|^k}. \quad (17)$$
Let \(\alpha \in [0, 1] \) and \(\beta \in [0, 1/2] \) be such that \(\alpha + \beta \leq 1 \). Graham, Hamada, Kohr and Suffridge [6, Theorem 2.1] showed that if \(f \in S \), then \(\Psi_{n,\alpha,\beta}(f) \in S^0(B^n) \), where

\[
\Psi_{n,\alpha,\beta}(f)(z) = \left(f(z_1), z' \left(\frac{f(z_1)}{z_1} \right)^\alpha \left(f'(z_1) \right)^\beta \right)
\]

for \(z = (z_1, z') \in B^n \). The branches of the power functions are chosen so that

\[
\left(\frac{f(z_1)}{z_1} \right)^\alpha \bigg|_{z_1=0} = 1 \quad \text{and} \quad \left(f'(z_1) \right)^\beta \bigg|_{z_1=0} = 1.
\]

We will generalize the above result to \(f \in S^0_{k+1}(U) \). This result gives many examples of mappings in \(S^0_{k+1}(B^n) \).

Theorem 20. Let \(\alpha \in [0, 1] \) and \(\beta \in [0, 1/2] \) be such that \(\alpha + \beta \leq 1 \). Let \(\Psi_{n,\alpha,\beta}(f) \) be as in (17). If \(f \in S^0_{k+1}(U) \), then \(\Psi_{n,\alpha,\beta}(f) \in S^0_{k+1}(B^n) \).

Proof. It suffices to give the proof when \(n = 2 \). Since \(f \in S^0_{k+1}(U) \), there exists a Loewner chain \(f(z_1, t) \) such that \(f(z_1) = f(z_1, 0) \) for all \(z_1 \in U \) and \(z_1 = 0 \) is a zero of order \(k + 1 \) of \(e^{-t}f(z_1, t) - z_1 \) for each \(t \geq 0 \). Let \(F_{\alpha,\beta}(z, t) \) be defined by

\[
F_{\alpha,\beta}(z, t) = \left(f(z_1, t), e^{(1-\alpha-\beta)t}z_2 \left(\frac{f(z_1, t)}{z_1} \right)^\alpha \left(f'(z_1, t) \right)^\beta \right),
\]

for \(z = (z_1, z_2) \in B^2 \) and \(t \geq 0 \). In [6, Theorem 2.1], it is shown that \(F_{\alpha,\beta}(z, t) \) is a Loewner chain such that \(\{e^{-t}F_{\alpha,\beta}(z, t)\}_{t \geq 0} \) is a normal family on \(B^2 \). Also, \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t}F_{\alpha,\beta}(z, t) - z \) for each \(t \geq 0 \). This completes the proof. \(\qed \)

In the following result, we shall denote by \(\mathcal{L}S_n \) the set of normalized locally biholomorphic mappings in \(B^n \). Also for \(n \geq 1 \), let \(z' = (z_1, \ldots, z_n) \) so that \(z = (z', z_{n+1}) \in C^{n+1} \). Pfaltzgraff–Suffridge [25] defined the following extension operator \(\Phi_n : \mathcal{L}S_n \to \mathcal{L}S_{n+1} \) given by

\[
\Phi_n(f)(z) = F(z) = (f(z'), z_{n+1}[J_f(z')]^{1/(n+1)}), \quad z = (z', z_{n+1}) \in B^{n+1},
\]

where \(J_f(z') = \det Df(z') \) for \(z' \in B^n \). On the other hand, Graham–Kohr–Pfaltzgraff [9] have recently proved that the class \(S^0(B^n) \) is preserved by the above operator, i.e., if \(f \in S^0(B^n) \) then \(\Phi_n(f) \in S^0(B^{n+1}) \). In particular, they proved that if \(f \in S^\ast(B^n) \) then \(\Phi_n(f) \in S^\ast(B^{n+1}) \). Related to the class \(S^0_{k+1}(B^n) \), we have the following result, which also provides examples of mappings in \(S^0_{k+1}(B^{n+1}) \).

Theorem 21. If \(f \in S^0_{k+1}(B^n) \), then \(\Phi_n(f) \in S^0_{k+1}(B^{n+1}) \).
Proof. Since \(f \in S_{k+1}^0(\mathbb{B}^n) \), there exists a Loewner chain \(f(z^t, t) \) such that \(f(z^t) = f(z^t, 0) \), \(z^t \in \mathbb{B}^n \), and \(z^t = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} f_t(z^t) - z^t \) for \(t \geq 0 \), where \(f_t(z^t) = f(z^t, t) \). Let \(F(z, t) \) be given by

\[
F(z, t) = \left(f(z^t, t), z_{n+1} e^{t/(n+1)} [J f_t(z^t)]^{1/(n+1)} \right)
\]

for \(z = (z^t, z_{n+1}) \in \mathbb{B}^{n+1} \) and \(t \geq 0 \). In [9, Theorem 2.1], it is shown that \(F(z, t) \) is a Loewner chain such that \(\{ e^{-t} F(z, t) \}_{t \geq 0} \) is a normal family. We next prove that \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} F(z, t) - z \) for \(t \geq 0 \). To this end, fix \(t \geq 0 \) and let \(G_t(z) = e^{-t} F(z, t) - z \) for \(z \in \mathbb{B}^{n+1} \). Then it is clear that \(G_t(0) = 0 \) and \(D G_t(0) = 0 \). A straightforward computation, based on the facts that \(\Phi(\zeta) \) is a normalized univalent holomorphic mapping of \(\mathbb{B} \) for each \(\zeta \), and thus \(F = F(\cdot, 0) \in S_{k+1}^0(\mathbb{B}^{n+1}) \), as claimed. This completes the proof. \(\square \)

We have seen that \(\tilde{S}_{a,k+1}(B) \subset S_{k+1}^0(B) \), \(|a| < \pi/2 \). However, in general, a spirallike mapping relative to a linear operator need not belong to \(S_{k+1}^0(B) \). In other words, there exist mappings in \(S_{k+1}(B) \setminus S_{k+1}^0(B) \). We have the following example on the Euclidean unit ball \(\mathbb{B}^2 \) of \(\mathbb{C}^2 \):

Example 22. Let \(n = 2 \) and \(f(z) = (z_1 + a z_2^{k+1}, z_2) \) for \(z = (z_1, z_2) \in \mathbb{B}^2 \). Let \(A(z) = ((k + 1) z_1, z_2) \) for \(z = (z_1, z_2) \in \mathbb{B}^2 \). Then \(m(A) > 0 \) and \(D f(z)^{-1} A f(z) = ((k + 1) z_1, z_2) \) for \(z = (z_1, z_2) \in \mathbb{B}^2 \). Hence \(f \) is a spirallike mapping relative to \(A \) for all \(a \in \mathbb{C} \) (see [30]). In particular, \(f \in S_{k+1}(\mathbb{B}^2) \). Let \(a \in \mathbb{R} \) with \(a > 2/16^{1/k} - 1 \). Let \(z_0 = (0, 1/2^{1/k}) \). Then \(\| f(z_0) \| > 2^{1/k} = \| z_0 \|/(1 - \| z_0 \|)2^{1/k} \). Taking into account Theorem 12, one deduces that \(f \not\in S_{k+1}^0(\mathbb{B}^2) \).

These observations suggest that one should consider another subset \(S_{k+1}^1(B) \) of \(S_{k+1}(B) \). That is, \(f \in S_{k+1}^1(B) \) if and only if there exists a Loewner chain \(f(z, t) \) such that \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} f(z, t) - z \) for each \(t \geq 0 \) and \(f(z, 0) = f(z) \) for \(z \in B \).

Combining Proposition 5 and Definition 6, we have the following inclusion relations:

\[
S_{k+1}^0(B) \subset S_{k+1}^1(B) \subset S_{k+1}(B).
\]

The next example shows that, in higher dimensions, \(S_{k+1}^1(\mathbb{B}^2) \) is a strictly larger set than \(S_{k+1}^0(\mathbb{B}^2) \). However, in the case of one complex variable, these sets are identical (cf. [26]).

Example 23. Let \(\Phi : \mathbb{C}^2 \to \mathbb{C}^2 \) be given by \(\Phi(z) = (z_1, z_2 + z_1^{k+1}) \), \(z = (z_1, z_2) \in \mathbb{C}^2 \). Then it is easy to see that \(\Phi \) is a normalized univalent holomorphic mapping of \(\mathbb{C}^2 \) onto \(\mathbb{C}^2 \). Further, we consider the Loewner chain

\[
f(z, t) = \left(\frac{e^t z_1}{(1 - z_1^k)^2/k}, \frac{e^t z_2}{(1 - z_2^{k+1})^{2/k}} \right), \quad z = (z_1, z_2) \in \mathbb{B}^2, \ t \geq 0,
\]
whose initial element \(f(z) = f(z, 0) \) satisfies \(\| f(r, 0) \| = r/(1 - r^k)^{2/k} \) for \(0 \leq r < 1 \). Then it is not difficult to deduce that \((\Phi \circ f)(z, t) \) is also a Loewner chain such that \(z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} \Phi(f(z, t)) - z, t \geq 0 \). Thus \(\Phi \circ f \in S_{k+1}^1(\mathbb{B}^2) \) and

\[
\| \Phi(f(r, 0)) \| = \sqrt{\frac{r^2}{(1 - r^k)^{4/k} + \frac{r^{2(k+1)}}{(1 - r^k)^{4(k+1)/k}}} \geq \frac{r}{(1 - r^k)^{2/k}}
\]

for \(r \in (0, 1) \). Therefore, from Theorem 12, we conclude that \(\Phi \circ f \notin S_{k+1}^0(\mathbb{B}^2) \).

4. Coefficient bounds for mappings in \(S_{g,k+1}^0(B) \)

We now prove an estimate for the \((k + 1)\)th order coefficients of mappings in the set \(S_{g,k+1}^0(B) \) (cf. [5, Theorem 2.14], [19, Theorem 2.4], [27, Theorem 3]).

Theorem 24. Let \(g \) satisfy the conditions of Assumption 4 and \(f \in S_{g,k+1}^0(B) \). Then

\[
\left| \frac{1}{(k + 1)!} I_w(D^{k+1}f(0)(w^{k+1})) \right| \leq \frac{1}{k} |g'(0)|, \quad \|w\| = 1, \quad I_w \in T(w).
\]

Proof. Since \(f \in S_{g,k+1}^0(B) \), there exist a mapping \(h_t(z) = h(z, t) \in M_g \) and a Loewner chain \(f(z, t) \) such that \(f(z, s) = \lim_{t \to \infty} e^{t}v(z, s, t) \) locally uniformly on \(B \), where \(v(t) = v(z, s, t) \) is the solution of the initial value problem (2), for each \(s \geq 0, z = 0 \) is a zero of order \(k + 1 \) of \(e^{-t} f(z, t) - z \) and \(f(z) = f(z, 0) \).

Fix \(z \in B \setminus \{0\} \), \(I_z \in T(z) \) and \(t_0 \geq 0 \). Let

\[
p_{t_0}(0) = \begin{cases} \frac{1}{\xi} I_z(h_{t_0}(\xi, \frac{z}{\|z\|})), & \xi \in U \setminus \{0\}, \\ 1, & \xi = 0. \end{cases}
\]

Then \(p_{t_0}(0) \) is a holomorphic function on \(U \). As in the proof of Lemma 8, we have \(p_{t_0}(\xi) = g(|\xi|^k H_{t_0}(\xi)) \) for \(\xi \in U \), where \(H_{t_0}(\xi) \) is a holomorphic function on \(U \) such that \(|H_{t_0}(\xi)| \leq 1 \) on \(U \). Hence we obtain that \(|p_{t_0}^{(k)}(0)| \leq k! |g'(0)| \).

Since

\[
\frac{1}{k!} p_{t_0}^{(k)}(0) = \frac{1}{(k + 1)!} I_z(D^{k+1}h_{t_0}(0)\left(\left(\frac{z}{\|z\|}\right)^{k+1}\right))
\]

by identifying the coefficients in the power series expansions, we deduce that

\[
\left| \frac{1}{(k + 1)!} I_z(D^{k+1}h_{t_0}(0)\left(\left(\frac{z}{\|z\|}\right)^{k+1}\right)) \right| \leq |g'(0)|.
\]

On the other hand, since \(f(z, t) \) is a Loewner chain, it follows from Lemma 1 that \(f(z, t) \) is differentiable for almost all \(t \in [0, \infty) \). Moreover, by differentiating the equality \(f(z, s) = f(v(z, s, t), t) \) with respect to \(t \) and using (2), we obtain that \(f \) and \(h \) satisfy the differential equation (1). Integrating both sides of the equality (1), we obtain that

\[
f(z, T) - f(z, 0) = \int_0^T Df(z, t)h(z, t) dt
\]
for $T > 0$. After simple computations, using the fact that $z = 0$ is a zero of order $k + 1$ of $e^{-t} f(z, t) - z$, we deduce that

$$D^{k+1} f(0, T)(z^{k+1}) - D^{k+1} f(0, 0)(z^{k+1})$$

$$= \int_0^T [(k + 1)D^{k+1} f(0, t)(z^{k+1}) + e^t D^{k+1} h(0, t)(z^{k+1})] dt. \tag{20}$$

Let

$$q(T) = e^{-(k+1)T} D^{k+1} f(0, T)(z^{k+1}) - D^{k+1} f(0, 0)(z^{k+1})$$

$$- \int_0^T e^{-kt} D^{k+1} h(0, t)(z^{k+1}) dt.$$

Since $q'(T) = 0$ for almost all $T > 0$ by (20), we have $q(T) = q(0) = 0$. This implies that

$$e^{-(k+1)T} l_z(D^{k+1} f(0, T)(z^{k+1})) - l_z(D^{k+1} f(0, 0)(z^{k+1}))$$

$$= \int_0^T l_z(e^{-kt} D^{k+1} h(0, t)(z^{k+1})) dt. \tag{21}$$

As in Corollary 11, we have the estimate

$$\|f(z, T)\| \leq e^T \|z\| \exp \int_0^{\|z\|} \left[\frac{1}{\min\{g(x^k), g(-x^k)\}} - 1 \right] dx \tag{22}.$$

Next, using the Cauchy formula

$$\frac{1}{(k + 1)!} D^{k+1} f(0, T)(u^{k+1}) = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{f(\xi u, T)}{\xi^{k+2}} d\xi, \quad r < 1,$$

for $u \in \mathbb{C}^n$, $\|u\| = 1$, and taking into account (22), we easily obtain that

$$\lim_{T \to \infty} e^{-(k+1)T} D^{k+1} f(0, T)(z^{k+1}) = 0.$$

Letting $T \to \infty$ in (21) and using the above equality and (19), we deduce that

$$\left| \frac{1}{(k + 1)!} l_z(D^{k+1} f(0, 0) \left(\frac{z}{\|z\|} \right)^{k+1}) \right| \leq \frac{1}{k} |g'(0)|.$$

Since $l_z = l_z/\|z\|$ and $f(z, 0) = f(z)$ for $z \in B \setminus \{0\}$, the proof is complete. \qed

For the norm of the $(k + 1)$th order Fréchet derivative of a mapping in $S_{g, k+1}^0(B)$, we have the following estimate (cf. [5, Corollary 2.15]).
Corollary 25. Let \(g \) satisfy the conditions of Assumption 4 and \(f \in S^0_{g,k+1}(B) \). Then
\[
\left\| \frac{1}{(k+1)!} D^{k+1} f(0)(w^{k+1}) \right\| \leq b_k |g'(0)|, \quad \|w\| = 1,
\]
where \(b_k = (k + 1)^{(k+1)/k} / k \).

Proof. Let \(P_m = D^m f(0)/m! \). Then \(P_m \) is a homogeneous polynomial of degree \(m \). Let \(|V(P_m)| = \lim_{s \to 1-0} \sup \{|\lambda| : \lambda \in V(P_{m,s})\} \) be the numerical radius of \(P_m \), where \(P_{m,s}(z) = P_m(sz) \) and \(V(P_{m,s}) = \{l_z(P_{m,s}(z)) : l_z \in T(z), \|z\| = 1\} \) is the numerical range of \(P_{m,s} \). Then we obtain that \(\|P_{k+1}\| \leq (k + 1)^{(k+1)/k}|V(P_{k+1})| \) by [14, Theorem 1]. Taking into account (18) and the above relations, we easily deduce that \(|V(P_{k+1})| \leq \frac{1}{k} |g'(0)| \) and the result now follows. This completes the proof.

Corollary 26. If \(f \in S^0_{k+1}(B) \), then
\[
\left\| \frac{1}{(k+1)!} D^{k+1} f(0)(w^{k+1}) \right\| \leq 2 b_k, \quad \|w\| = 1, \quad l_w \in T(w).
\]
Moreover, for \(\|w\| = 1 \), we have
\[
\left\| \frac{1}{m!} D^m f(0)(w^m) \right\| < \left[\frac{e(m+1)}{2} \right]^{2/k}, \quad m \in \mathbb{N}, \quad m \geq k + 2.
\] (23)

Proof. It suffices to prove the bounds (23). To this end, fix \(m \in \mathbb{N}, \quad m \geq k + 2 \), and \(w \in \mathbb{C}^n, \quad \|w\| = 1 \). Using the Cauchy formula
\[
\frac{1}{m!} D^m f(0)(w^m) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(zw)}{z^m+1} \, dz, \quad 0 < r < 1,
\]
and taking into account Theorem 12, we easily obtain that
\[
\left\| \frac{1}{m!} D^m f(0)(w^m) \right\| \leq \frac{1}{2\pi r^{m}} \int_{0}^{2\pi} \| f(re^{i\theta}w) \| \, d\theta \leq \frac{1}{r^{m-1}(1-r^k)^{2/k}} \] (24)
for \(0 < r < 1 \). If we set \(r^k = (m-1)/(m+1) \) in the inequality (24), then we obtain (23). This completes the proof.

For \(g(\zeta) = 1 + \zeta, \quad \zeta \in U \), we obtain the following bound for the \((k+1)\)th order coefficients of mappings in \(S^0_{g,k+1}(B) \). In particular, this result is satisfied by all mappings.
in $K_{k+1}(B)$ and $G_{k+1}(B)$ (cf. [5, Corollary 2.19], [18]). For the proof, it suffices to use arguments similar to those in the proof of Corollary 26.

Corollary 27. If $f \in S_{g,k+1}^0(B)$ with $g(\zeta) = 1 + \zeta$, $\zeta \in U$, then

$$\left| \frac{1}{(k+1)!} l_w \left(D^{k+1} f(0)(w^{k+1})\right) \right| \leq \frac{1}{k}, \quad \|w\| = 1, \ l_w \in T(w).$$

Moreover, for $\|w\| = 1$, we have

$$\left\| \frac{1}{(k+1)!} D^{k+1} f(0)(w^{k+1}) \right\| \leq b_k, \quad \|w\| = 1,$$

and

$$\left\| \frac{1}{m!} D^m f(0)(w^m) \right\| < (em)^{1/k}, \quad m \in \mathbb{N}, \ m \geq k + 2.$$

References

