Short communication

A distribution analysis of action potential parameters obtained from patch-clamped human stem cell-derived cardiomyocytes

Fernando López-Redondo a, **, Junko Kurokawa b, *, Fumimasa Nomura a, Tomoyuki Kaneko c, Tomoyo Hamada a, Tetsushi Furukawa b, Kenji Yasuda a

a Department of Biomedical Information, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
b Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
c Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan

ARTICLE INFO

Article history:
Received 11 December 2015
Received in revised form 3 April 2016
Accepted 10 April 2016
Available online 21 April 2016

Keywords:
 iPSC cells
Cardiomyocyte
Patch-clamp

ABSTRACT

We investigated electrophysiological properties of human induced pluripotent–stem-cell-derived and embryonic–stem-cell-derived cardiomyocytes, and analyzed action potential parameters by plotting their frequency distributions. In the both cell lines, the distribution analysis revealed that histograms of maximum upstroke velocity showed two subpopulations with similar intersection values. Subpopulations with faster maximum upstroke velocity showed significant prolongation of action potential durations by application of E-4031, whereas others did not, which may be partly due to shallower maximum diastolic potentials. We described electrophysiological and pharmacological properties of stem-cell-derived cardiomyocytes in the respective sub-populations, which provides a way to characterize diverse electrical properties of stem-cell-derived cardiomyocytes systematically.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Considerable attention has been paid to the potential of human induced pluripotent stem cells (hiPSC) as an unlimited cell source for in vitro screening assays, because the production of hiPSC production possess less legal and ethical issues than that of human embryonic stem cells (hESC) (1–3). As a conventional assay for toxicological/pharmacological evaluations, field potentials measurement from multi-cellular preparations with micro-electrode array (MEA) platform (4, 5) is utilized to reduce cell-to-cell variation of action potential (AP) dynamics (2, 6, 7), some reports revealed that considerable variation exists in commercially available cell-lines (8, 9). Indeed, mixture of non-myocyte or different types changes excitability of multicellular preparations (10). This indicates necessity of precise information on cell-to-cell variation to understand mechanistic insights on results obtained from conventional MEA assay. However, in previous single-cell analysis, cells were classified into arbitrary three types (i.e. nodal, atrial and ventricular) without applying distribution analysis (6, 7, 11), mainly because of small cell numbers. Thus, we collected significant numbers of action potential data from patch-clamped hSC-CMs, and analyzed frequency distribution of AP parameters to characterize the cell properties in respective sub-populations.

Cell cultures and isolation of the both cardiomyocytes were performed according to the company’s protocols. In brief, frozen hiPSC-CMs (iCell cardiomyocytes, lot#1131800, #1791676, #1341341, iPS PORTAL, Kyoto, Japan) were thawed, and embryoid bodies of hESC-CMs (SA002, Cellartis AB, Göteborg, Sweden) were shipped. Then, cells were isolated by trypsinization (0.25% trypsin-EDTA) from cell sheets or embryoid bodies respectively, and plated onto 0.5% gelatin/10 μg/ml laminin-coated plasma-etched glass bottom dishes, and used within two weeks. Isolated hiPSC-CMs were maintained in the CDI maintenance medium at 37 °C and at 7% CO2. Isolated hES-derived cardiomyocytes were maintained in DMEM supplemented with 5 mM GlutaMax™, 20% FBS, 1% Pen/Strep, 1% non-essential amino acids, 0.2% 2-mercaptoethanol, and were kept at 37 °C and 5% CO2 E-4031 (4’-[1-2-(6-methyl-2-pyridyl)ethyl]-4-piperidinyl]carboxyl[methanesulfonanilide dihydrochloride hydrate, Eisai Co., Tokyo) was kept as 10 mM stock in

http://dx.doi.org/10.1016/j.jphs.2016.04.015
1347-8613/$ © 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
distilled water. All other materials were reagent quality and obtained from standard sources.

Action potentials were recorded at 36 ± 1 °C with the perifused patch configuration as described previously (12). External solution contained (in mM): NaCl (135), NaH2PO4 (0.33), KCl (5.4), CaCl2 (1.8), MgCl2 (0.53), glucose (5.5), HEPES (5), pH 7.4. To achieve patch perforation (<20 MΩ; series resistances), amphotericin B (0.3 μg/ml) was added to the internal solution composed of (in mM): potassium-aspartate (110), KCl (30), CaCl2 (1), adenosine-5′-triphosphate magnesium salt (5), creatine phosphate disodium salt (5), HEPES (5), EGTA (11), pH 7.25. We adopted the AP data only when more than 35 stable AP traces were recorded. Data were acquired and analyzed using pClamp10 software (Molecular Devices, Sunnyvale, CA, USA). In quiescent cells, 2-ms duration current pulses (120% of the threshold intensity) were applied to elicit APs. All values are presented as mean ± S.E.M. Statistical significance was assessed with Student’s t-test for simple comparisons and non-parametric Kolmogorov–Smirnov test for frequency distributions by using OriginPro 8 software (Origin Lab Co, Northampton MA, USA). Differences at P < 0.05 were considered to be significant.

In Fig. 1 and Table 1, APs recorded from 54 hiPSC-CMs and 80 hESC-CMs were summarized. Although the beating rate (BR) in hiPSC-CMs was significantly slower than that in hESC-CMs with comparing two averages (Table 1), it is difficult to conclude that these cells have different phenotypes. Because the distribution analysis revealed that hiPS-CM in itself would have at least more than two phenotypes, which is consistent with significantly larger variations of beat-to-beat times shown as bigger coefficient of variation (CV) in hiPS-CM (Fig. 1A and Table 1).

In terms of AP parameters, there was no statistical difference in average values of AP parameters (Table 1): AP amplitude (APA), AP duration at 50% and 70% of repolarization (APD50, APD70), maximum upstroke velocity (dV/dtmax), APD ratio during phase 2 (APD20-40/APD50-70); an indicative of AP plateau, and APD ratio (APD90/APD50); an indicative of phase 4 depolarization, except of slight but significant differences in mean values of maximum diastolic potential (MDP) (Table 1). Relatively large variations of beat-to-beat times shown as bigger coefficient of variation (CV) in spontaneously AP beating hESC-CMs (Fig. 1A and Table 1).

![Fig. 1. Distributions of electrophysiological parameters in hiPSC- and hESC-derived cardiomyocytes (CMs). Histograms for AP (A) and beating rate (B) parameters were fitted with single or multiple Gaussian distributions. Multiple Gaussian functions were applied when coefficient of determination (R²) on single Gaussian fitting fell below 0.81. Rate [%] of each fraction (i.e. peak) in multiple fitting was calculated from ratio of each peak area. (A) Frequency distribution of BR and its coefficient of variation (CV) in spontaneously AP firing 39 hiPSC-CMs (white bars, upper panels) and 54 hESC-CMs (gray bars, lower panels). The distribution on the BR of hiPSC-CMs showed two major peaks at 0.38 Hz (69.8%) and 0.88 Hz (30.2%) of Gaussian distribution (intersection 0.82 Hz, R² = 0.88%). (B) Frequency distribution of AP parameters in 54 hiPSC-CMs (white bars, upper panels) and 80 hESC-CMs (gray bars, lower panels). Frequency peaks [% fraction for multiple distributions] of dV/dtmax are as follows: hiPSC-CMs: 2.6 V/s (50.8%) and 6.4 V/s (49.2%) (intersection 4.11 V/s, R² = 0.927), and hESC-CMs: 3.3 V/s (50.8%) and 7.4 V/s (49.2%) on hESC-CMs (intersection 5.25 V/s, R² = 0.941), respectively. The intersections of bimodal distributions for dV/dtmax were shown in red dotted lines. (C) Scatterplot representation of upstroke velocity (dV/dtmax) against APD20-40/APD50 ratio in hiPSC-CMs (black dots, right panel) and hESC-CMs (black dots, right panel). Representative AP waveforms at precincts are shown in insets.](image-url)
In this study, we evaluated basic electrophysiological characteristics of hiPSC-CMs, and they were compared with those of hESC-CMs by analyzing frequency distribution. The major findings of this study are as follows: (1) Average values of the AP parameters in hiPSC-CMs and hESC-CMs were statistically indistinguishable from each other with the exception of MDP and beating rate. (2) Our distribution analysis of AP parameters from single cell data presented a way to set numerical criteria to segregate respective subpopulations. (3) It is possible that the subpopulation with fast upstroke velocity exhibit AP prolongation by an application of E-4031. If respective subpopulations of hESC-CMs exhibit various pharmacological responses, it may be worth knowing respective cell properties to understand molecular mechanisms for developing specific cell types or predicting multicellular responses by system biological approaches. Although long APD$_{50}$ has been used as an arbitrary criterion for drug sensitivity in a particular cell source (9), it must be difficult to apply this to others (8,13). Our distribution analysis could add useful information on electrophysiological properties of hiPSC-CMs for in vitro pharmacological screening assays.

Table 1
Summary of action potential parameters obtained from individual hiPSC-cardiomyocytes and hES-cardiomyocytes. Action potential (AP) parameters (mean ± S.E.M.) were determined by averaging data from three consecutive APs at steady state. *P < 0.05, **P < 0.01, ***P < 0.001 unpaired Student’s t-test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>hiPSC-CMs (n = 54)</th>
<th>hESC-CMs (n = 80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP (mV)</td>
<td>75.9 ± 2.9</td>
<td>81.8 ± 2.5</td>
</tr>
<tr>
<td>MDP (mV)</td>
<td>-43.3 ± 1.7</td>
<td>-48.9 ± 1.5*</td>
</tr>
<tr>
<td>APD50 (ms)</td>
<td>309.4 ± 29.5</td>
<td>273.7 ± 28.7</td>
</tr>
<tr>
<td>APD70 (ms)</td>
<td>330.2 ± 32.2</td>
<td>330.4 ± 30.1</td>
</tr>
<tr>
<td>APD20–40/</td>
<td>1.4 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>APD50–70</td>
<td>2.8 ± 0.3</td>
<td>2.9 ± 0.2</td>
</tr>
<tr>
<td>dV/dtmax</td>
<td>27.3 ± 5.3</td>
<td>18.0 ± 2.6</td>
</tr>
</tbody>
</table>

Spontaneous AP only
hiPSC-CMs (n = 39; 72% out of total cell numbers) hESC-CMs (n = 58; 73% out of total cell numbers)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>hiPSC-CMs</th>
<th>hESC-CMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beating rate (Hz)</td>
<td>0.6 ± 0.1</td>
<td>1.0 ± 0.1***</td>
</tr>
<tr>
<td>CV of beating rate (%)</td>
<td>28.9 ± 2.8</td>
<td>15.9 ± 1.9***</td>
</tr>
</tbody>
</table>

APA: action potential amplitude, CM: cardiomyocytes, MDP: maximum diastolic potential, APD$_{50}$ and APD$_{70}$: action potential duration at 50 and 70% of repolarization, dV/dtmax: maximum upstroke velocity, APD$_{20}$–APD$_{40}$/APD$_{50}$–APD$_{70}$: APD ratio which indicates "plateau" during phase 2, APD$_{50}$/APD$_{90}$: APD ratio which indicates the presence of phase 4 depolarization, CV: coefficient of variation indicating SD/mean.

S.E.M. values for AP parameters reminded us that the data distributed in a wide range. We therefore plotted the data with frequency distribution. In Fig. 1A and B, the histogram for most of parameters was fitted to single Gaussian distributions with more than 0.81 of R2 values (Fig. 1B). Exceptionally, histograms on APD$_{50}$ and APD$_{70}$ of hiPSC-CMs were widely distributed, and R2 values of the fitting could not be less than 0.81 using multiple Gaussian fitting, or not be converged to the single result. Despite differences on each AP parameter, mean values for ratios of AP (APD$_{20}$–40/APD$_{50}$–70 and dV/dtmax) were similar and were fitted with single Gaussian distribution in both cell-lines (Table 1 and Fig. 1B), indicating indistinguishable at repolarization processes. On the other hand, the histograms of dV/dtmax, upstroke velocity, showed bimodal distributions composed of a slow and a fast fraction. In these cases, intersections of two Gaussian curves in hiPSC-CMs and hESC-CMs were 4.11 (V/s) and 5.25 (V/s), respectively. Although these subtle differences existed in the distribution pattern, there was no statistical significance for differences of AP parameters between hiPSC-CMs and hESC-CMs as previously described by others (13). Fig. 1C shows the relationship between waveform of action potential and two AP parameters. These parameters (APD$_{20}$–40/APD$_{50}$–70 and dV/dtmax) are well-known indices reflecting the duration of depolarization or plateau phase, so it is usable to distinguish the cell types, i.e., between nodal and atrial/ventricular types, or between atrial and ventricular types. When APD$_{20}$–40/APD$_{50}$–70 was plotted against dV/dtmax in Fig. 1C, arbitrary “ventricular-like” cells were seen only if dV/dtmax was larger than 4.11 (V/s) on hiPSC-CMs and 5.25 (V/s) in hESC-CMs, respectively. Additional distribution analysis with faster dV/dtmax in Supplementary Figure 1 did not provide numerical criteria to segregate “atrial-like” and “ventricular-like”.

In Fig. 2, the effects of a standard hERG blocker, E-4031, on AP traces were investigated both in hiPSC-CMs and hESC-CMs. According to previous reports on cardiac toxicological assessment using hESC-CMs, it has been noticed that “ventricular-like” cells are more responsive to QT-prolonging drugs (6), but no study has provided any numerical criteria of AP parameters to categorize “ventricular-like” cells. We therefore asked whether our distribution analysis allows segregating cell populations which are responsive to drugs. To test this, we employed the intersection dV/dtmax values (4.11 V/s for hiPSC-CMs and 5.25 V/s for hESC-CMs) (Fig. 1B). Then, the effect of E-4031 on AP was investigated in two subpopulations with slow or fast dV/dtmax (Fig. 2D). Without considering the subpopulations, we found a wide variety of responses to E4031 application at each concentration tested, resulting in neither evident effect on APD$_{70}$ nor occurrence of EAD (Fig. 2A–C). With considering the subpopulations in Fig. 2D and F, in the case of hiPSC-CMs with fast upstroke velocity (7 cells), E-4031 at 10 nM tended to prolong APD$_{70}$, although it was not statistically significant (P = 0.08). In these cells, high concentration of E-4031 did not alter APD$_{70}$, which is due to dramatic AP alternation as shown in Fig. 2B right. In contrast, in the case of hiPSC-CMs with slow upstroke velocity (3 cells), E-4031 either at 10 nM and 100 nM did not alter APD$_{70}$ (2 out of 3 cells) or arrested (1 out of 3 cells). Similar results were obtained in hESC-CMs. With fast upstroke velocity (9 cells), E-4031 at 10 nM tended to prolong APD$_{70}$ but not significantly (P = 0.05), and an application of 100 nM E-4031 (4 out of 9 cells) diminished the tendency. With slow upstroke velocity (3 cells), the E-4031 application did not alter APD$_{70}$ and arrested at 100 nM in one out of 3 cells. E4031 also depolarized MDP in some cells (Fig. 2A). But there was no significant effect on MDP, when all the data were analyzed (Fig. 2E). In the hiPSC-CMs, the subpopulation with slow upstroke velocity had shallower MDP than that with fast upstroke velocity. But effects of E-4031 on MDP were unclear (Fig. 2F). In hESC-CMs, the difference of MDP without drugs between slow or fast upstroke velocities was not clear as shown in hiPSC-cardiomyocytes (Fig. 2F).
Disclosures

The authors declared no conflict of interest.

Acknowledgments

This research was supported by the Japan New Energy and Industrial Technology Development Organization (NEDO) (P08030). The authors are grateful to Ms. Reiko Osumi, Ms. Reiko Kimura, Ms. Akiko Hagiya, Ms. Tamae Takato and Ms. Naoko Ishii for technical assistance.

Appendix A. Supplementary material

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jphs.2016.04.015.

Fig. 2. Effects of E-4031 on APD70 in hiPSC-CMs and hESC-CMs. (A) Representative AP waveforms in hiPSC-CM 1 (B, left) without (control) or with E-4031 (10, 100 nM and 1 μM). (B) Individual variability in the response to E-4031. Overlay of expanded traces marked in (A) with open black dot (control), open red dot (10 nM) and closed red dot (100 nM) (left). hiPSC-CM2 showing decreasing effect on APD70 at 100 nM E-4031 (right). (C) Dose-response bar graphs of E-4031 effect on APD70. hiPSC-CMs white bars and hESC-CMs gray bars. (D) Effect of E4031 on the subpopulations segregated by cut-off points of dV/dtmax (4.11 V/s for hiPSC-CM and 5.25 V/s for hESC-CMs) resulting from Fig. 1A. Cells with faster upstroke (>4.11 V/s for hiPSC-CMs and >5.25 V/s for hESC-CMs) presented enhanced prolongation of APD70. (E) Bar graph of the depolarizing effect elicited by E-4031. Each bar indicates mean ± SEM. n: indicated by numbers in brackets. No significant differences were found. (F) Dose-response curves of E4031 effect on MDP of the two cell subpopulations. Left: hiPSC-CM with slow (white squares) and fast (white triangles) dV/dtmax. Right: hESC-CM with slow (gray squares) and fast (gray triangles).

References